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Abstract 

In this paper, a multi-period multi-echelon reverse logistics network design problem under high extent of 
uncertainty is addressed. We first formulate and then solve the multi-period network design model using the cloud-
based design optimization framework which ensures to: (1) handle high number of uncertain factors; (2) propose 
alternative solution to traditional approaches; (3) provide a robust solution which strengthens decision makers 
against unexpected situations. Finally, applicability of the presented approach is tested through a dataset of e-waste 
reverse logistics network. 

Keywords: Cloud based design optimization; reverse logistics; uncertainty; network design; mixed integer 
programming. 

1. Introduction 

One of the most popular definitions of RL is suggested 
by The European Working Group on Reverse Logistics 
(REVLOG) as the following1: “The process of planning, 
implementing and controlling backward flows of raw 
materials, in process inventory, packaging and finished 
goods, from a manufacturing, distribution or use point, 
to a point of recovery or point of proper disposal”. The 
most important reason for the increased attention to RL 
is environmental obligations. Many regulations have 
been implemented which impose vital responsibilities 
on the actors such as original equipment manufacturers 
(OEMs), governmental institutions, logistics service 
providers, and municipalities. For instance, European 
Union (EU) Directives 2002/96/EC2 and 2002/95/EC3 
are two of the most stringent regulations regarding the 

waste of electrical and electronic equipment (WEEE) 
(European Parliament and of the Council, Directive 
2002/96/EC and 2002/95/EC 2002). The Directive 
contains strict obligations and quotas to reduce 
utilization of dangerous materials and to increase the 
recovery of electrical and electronic WEEE. For 
different periods, the Directive forces actors to collect 
and recover WEEE in specific amounts. 

One of the research topics in the RL field is the RL 
network design (RLND) which has a strategic role in 
supply chain improvement such as the profitability and 
compatibility to the directives of collecting used 
products.4 RLND plays a role in making strategic 
decisions that lead to costly and critical decisions such 
as determination of flowing amount, location of 
facilities, and facility capacities.  
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Uncertainty is one of the basic characteristics of 
RLND decisions. The difficulty in representing the real-
life reverse logistics problems as models and acquiring 
the related data includes the high uncertainty in 
quantity, quality, and time of product returns. 
Randomness and epistemic uncertainty are two types of 
uncertainty.5 Stochastic programming models are 
proposed to contend with randomness uncertainties.6,7,8 
Stochastic programming can be found as weak when 
dealing with linguistic situations. Therefore, it is 
necessary to use fuzzy set theory and possibility theory9 
in linguistic uncertainties such as Refs. 10-14. 

Besides these approaches, there is a new model 
named as cloud based design optimization (CBDO) 
which mediates between aspects of stochastic and fuzzy 
programming.15 In CBDO, high uncertainty is reduced 
via cloud constraint. Advantages of CBDO can be 
summarized as following: (1) Both of certain and 
uncertain factors can be tackled by CBDO 
simultaneously; (2) CBDO’s principle is not depending 
on fuzziness or stochasticity, it proposes alternative 
solution to such kind of traditional methods, and (3) it 
strengthens decision makers against unexpected events. 
Although it is stated that the results of the proposed 
model are deemed satisfactory, there is a lack of 
applications. The contribution of this study is mainly to 
provide an alternative way to address the weaknesses of 
traditional optimization models (such as spending so 
much time to adopt steps etc.) by utilizing CBDO. 
Under these circumstances, this study proposes a CBDO 
model for the multi-period RLND problem and 
contributes to the extant literature by handling a high 
number of different uncertain factors of RLND in a 
CBDO model.  

The proposed approach is designed to be used by 
one of the largest electric and electronic recycling firm 
in Turkey to restructure their RL networks for different 
periods under high uncertainty. We address the issue 
with a reverse logistics problem but not a closed loop 
supply chain problem because the company planned to 
execute the reverse product flow operations separate 
from the forward supply chain. The study is organized 
as follows: Section 2 briefly summarizes the relevant 
literature. The cloud-based design optimization 
fundamentals are reviewed in Section 3. Section 4 
presents the proposed multi-period reverse logistics 
network design model under high uncertainty and its 
formulation based on cloud-based design optimization. 
Then, section 5 explains the setting of the case study 
and reports the computational results. Section 6 presents 
a sensitivity analysis for changing uncertainty levels. 
Finally, section 7 presents the conclusion and further 
research directions. 

2. Literature Review 

There exists a vast literature on the problem of supply 
chain network design (SCND). Special literature on the 
RLND also is found extensively within the SCND 
literature. When the reverse network is integrated with 
the forward network, we use the term “closed-loop 
network” which will lead to more complex SCND 
problems.16 The reverse logistics network design refers 
to the problem of finding the best physical locations of 
the facilities and the best material flow allocations 
between these facilities where the material flows from 
the customer to the collection centers and then to the 
recycling facilities or dumping areas. The network 
design studies are defined in different types of settings.  

Different types of network design settings are 
defined in terms of the following dimensions: (i) the 
number of layers in the supply chain (i.e., single echelon 
or multi-echelon); (ii) the number of commodities in the 
system (i.e., single commodity, multi-commodity); (iii) 
types of the decisions (i.e., only location, only 
allocation, both location and allocation); (iv) number of 
planning periods (i.e., single period and multi-period); 
and (v) the uncertainty of the data (i.e., deterministic, 
stochastic, dynamic, fuzzy). To obtain further 
information on the details and the studies in these 
different settings, interested readers can refer to the 
literature review studies of Refs. 16-19. Since the 
literature is so extensive, in this section we first 
highlight the most recent and relevant reverse logistics 
network design studies and then the multi-period 
network design papers under uncertainty. Ref. 20 
presented a mixed-integer linear programming 
formulation that is flexible to incorporate various 
reverse network structures. A multi-period system was 
considered to make changings in the network 
configuration in the future, and to allow gradual 
changes in the network structure and in the capacities of 
the facilities. Extensive parametric and scenario analysis 
were conducted to illustrate the benefits of using a 
dynamic model as opposed to its static counterpart.  
Ref. 21 presented a bi-objective mathematical 
programming formulation to design a reliable network 
of facilities in closed-loop supply chain under 
uncertainty. To solve the model, a new hybrid solution 
methodology was introduced by combining a robust 
optimization approach, queuing theory, and fuzzy multi-
objective programming. Ref. 22 proposed a 
combinatorial and nonlinear model with integrated 
queuing relationships considering stochastic delays of 
lead times. These delays were transformed into work-in-
process affecting profit through inventory costs.  The 
differential evolution algorithm with an enhanced 
constraint handling method was proposed as an 
appropriate heuristic solution method. Ref. 23 proposed 
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a model for closed-loop SCND. Uncertainty of demand 
and purchasing cost in the model was handled via an 
interval robust optimization technique. The proposed 
model was solved by commercial optimization solvers. 
Ref. 24 addressed the issue of identifying the uncertain 
parameters such as the number of products returned, 
percent of faulty products and warranty fraction of 
modules, and their levels to be considered. A min-max 
robust optimization model was then developed and 
solved to address these uncertainties. Ref. 25 derived 
the optimality conditions of the various decision-
makers, and established that the governing equilibrium 
conditions can be formulated as a finite-dimensional 
variational inequality problem. They proposed an 
algorithm to test the effects of competition, distribution 
channel investment, yield and conversion rates, 
combined with uncertainties in demand, on equilibrium 
quantity transactions and prices. Ref 4 presented a 
stochastic multi-objective model for forward/reverse 
logistic network design under an uncertain environment. 
The set of Pareto optimal solutions and the trade-off 
between the objectives were presented. Ref. 26 
proposed a mixed-integer linear programming model for 
the design of a closed-loop supply chain. The model 
was extended to consider environmental factors by 
weighed sums and ε-constraint methods. In addition, the 
impact of simultaneous demand and return uncertainties 
on the network configuration were investigated by 
scenario-based stochastic programming. Ref. 27 
addressed the facility location and capacity problem 
with integrated bi-directional product flows under 
uncertain data. First, they introduced a deterministic 
model and then extended it to a robust capacitated 
facility location model which minimized the 
expectations of relative regrets for a set of scenarios 
over a multi-period planning horizon considering 
uncertainty regarding supplying and collecting goods. 
Ref. 28 proposed a robust and reliable model for an 
integrated forward–reverse logistics network design, 
which simultaneously considered uncertain parameters 
and facility disruptions. A mixed integer linear 
programming model with augmented p-robust 
constraints was formulated to control the reliability of 
the network among disruption scenarios. Ref. 29 
addressed a risk-averse two-stage stochastic 
programming approach which is not commonly covered 
by two-stage stochastic programming considering only 
the expectation of random variables in its objective 
function. The risk was evaluated as the conditional 
value at risk and return amounts and prices of second 
products were specified as two stochastic parameters. 

We have also reviewed the recent multi-period 
network design studies under uncertainty. Ref. 30 
specified one uncertain parameter, raw material prices 
and developed a stochastic mixed integer linear 

programming for utility supply network design. Ref. 31 
used uncertain supply and demand for closed loop 
supply chain design by a mixed-integer linear 
programming (MILP) formulation. Ref. 32 dealt with 
uncertainty of production capacity requirement (e.g., 
processing time) of products with a robust optimization 
framework. They applied it to the multi-echelon, multi-
product, multi-period supply network design problem 
and the associated robust counterpart is derived. Ref. 33 
specified uncertain demand, travel time and various cost 
parameters uncertain for a multi-period location–
allocation problem of organ transplant centers. They 
have formulated the problem as a robust possibilistic 
programming. Ref. 34 considered fixed and variable 
costs, customer demand, available production time, set-
up and production times stochastic for a bi-objective 
optimization of a multi-product multi-period three-
echelon supply-chain-network problem. They have 
proposed GA based heuristic solution methodologies. 

Comprehensive literature reviews on logistics study 
field (see Refs. 35-36) stated that there is a lack of 
approaches with an explicit focus on high number of 
various uncertainties. Traditional decision making tools 
consist of some main drawbacks.37 The modeling 
process is sensitively impacted by uncertainties and 
traditional tools cannot perform adequately when 
dealing with uncertainties and inaccuracies.38 Therefore, 
it is inevitably required to utilize more robust techniques 
that handle imprecise and unknown factors as dealing 
with high amount of certain and uncertain parameters 
simultaneously makes the system strengthened against 
variances and risks.  

As summarized in Table 1, all of the studies above 
incorporate uncertainty in the SCND or RLND problem 
where stochastic modeling, robust optimization, 
possibilistic/fuzzy programming, queuing, dynamic or 
multi-period models are used to account for the 
uncertainty. We see that the number of uncertain 
parameters is low in stochastic programming, medium 
in robust optimization, and higher in possibilistic/fuzzy 
programming. One can choose one of these approaches 
based on the level of uncertainty. The approach 
presented in our paper defines the uncertain parameters 
in the RLND problems using the cloud for the first time 
to the best of our knowledge. Formulating the 
uncertainty using clouds allows including high 
uncertainty without increasing the computational 
complexity as it is in stochastic programming and robust 
optimization. In probability theory, the concept of 
cumulative distribution functions (CDFs) is usable for 
the univariate cases. But, in order to deal with 
significantly higher dimensions than 1, it is necessary to 
transfer the higher dimensional case to the univariate 
case by means of potential clouds which propose an a 
posteriori information update for decision makers or 
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experts. Also, if an expert is not able to give an idea 
about correlations and if he/she can provides ideas such 
as ‘if parameter x is larger, then variable y cannot have 
low value’; this idea can be entered into the model by 
using graphical user interface. That’s why potential 
clouds are utilized in high dimensional cases. In 
addition, the uncertainty formulated by clouds includes 
more information than possibilistic/fuzzy programming 
where the uncertainty is represented subjectively. 

Clouds which were first developed by Ref. 39 stand 
for incompleteness which has less information than 
stochasticity and more information than fuzziness. They 
provide an adaptive worst case using probabilistic data 
and yield robust solutions considering the perturbations 
of uncertainty. Using clouds, a huge number of 
uncertain parameters can be incorporated to the problem 
formulation whose complexity allows solving the 
resulting model. In this paper, we introduce a cloud 
based multi-period network design model formulation 
which includes a high number of certain and uncertain 
factors simultaneously and present robust solutions to 
this model. 

3. Cloud Based Design Optimization (CBDO)  

CBDO is a robust design-based optimization model 
which conserves experts against worst case scenarios. 
Especially for multidisciplinary decisions which consist 

of several managerial fields, it transforms high amount 
of uncertainties to a simple form by the help of “cloud” 
that is introduced by Ref. 39. Clouds stand for 
incomplete information explicitly. Robustness is gained 
by safeguarding the system against perturbations due to 
unconsidered and imprecise data. Clouds intervene 
between dimensions of probability distributions and 
fuzzy set theory and they have less information than 
stochasticity and more information than fuzziness.  

A continuous potential V refers to a potential based 
cloud. V makes assignments to each scenario ε from a 
set nRM ⊆  a value +∈RV )(ε determining the cloud 

and a lower probability )(Uα  and an upper probability 

)(Uα expressing the cloud bound, such that for all 

:+∈RU   

 )())(Pr())(Pr()( UUVUVU αεεα ≤≤≤<≤  

where M∈ε   is a random variable, and α  and α  
are increasing continuous functions of  U mapping the 
range of V to [0,1] (See Ref. 40)  
The mapping [ ])((),(( xVxVx αα→  is named 
“potential based cloud”.  
    Initially, one potential function is selected for 
determination of cloud shape. Secondly, appropriate 
bounds of potential cloud are found via Kolmogorov 

Table 1. Approaches to deal with uncertainty in the extant literature 

    
Modeling 
Approach Uncertain Parameters 

 Year Authors SP RO PP Oth D RA RQ FC VC C PT DT R PC B Approach to Deal with Uncertainty 
2012 Alumur et al.    x x x  x x x   x   Time-varying parameters 
2012 Vahdani et al.  x    x  x x x x     For queueing: numerical solution 

for robust optimization: box 
uncertainty 

2012 Lieckens& 
Vandaele 

   x x x x    x x   x Numericalsolutionbased on queuing 

2012 Hasani et al.  x   x         x  Interval robust optimisation 
2012 Piplani& 

Saraswat 
 x    x x         Min-max robust optimisation 

2013 Qiang et al. x    x           Variational inequality theory 
2013 Ramezani et al. x    x x   x    x   Expected value from possible 

scenarios 
2013 Amin &Zhang x    x x          Expected value from possible 

scenarios 
2013 Rosa et al.  x   x x          Expectations of regretsfromscenarios 
2014 Hatefi&Jolai  x   x x x         Counterpart model from possible 

scenarios 
2014 Soleimani& 

Govindan 
x     x        x  Mean-risk (mean-CVaR) 

objectivefunction 
(Abbreviations: SP: Stochastic Programming, RO: Robust Optimization, PP: Possibilistic/fuzzy Programming, Oth.: Others (queueing/multi-
periods/etc.) , D: Demand, RA: Return amount, RQ: Return Quality, FC: Fixed Costs (opening costs, etc.), VC: Variable Costs (handling costs, 
processing costs, transportation costs, etc.), C: Capacity, PT: Processing time, DT: Delivery Time, R: Revenues, PC: Purcahsing Costs, B: 
Breakdowns) 
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Smirnov statistics. If there is lack of information of a 
problem, Kolmogorov-Smirnov (KS) statistics can be 
useful for univariate cases (See Ref. 40). In the third 
step, a sample is generated by utilizing the Latin 
Hypercube Sampling approach. In this approach, first of 
all, a finite grid of size nN   (N is the desired quantity 
of sample points and n is the dimension of the random 
vector) is defined. The grid is established such that the 
intervals between adjacent marginal grid points have the 
same marginal probability.  Let 1,…, iN  be the possible 

choice for iθ , then the discrete variable iθ  
corresponds to a finite set of iN  points. This set is 

provided in a ii nN x table. Sample points are 

Nxx ,...,1  and nn
iii Rxxx ∈= ),...,( 1 are placed to 

meet the Latin hypercube requirement (See Ref. 40)  
 

{ } { } ikxxnjNk j
k

j
i ≠≠∈∈ if:,...,1,,...,1  (1) 

 
Finally, in order to preserve the marginal impacts, 

weights are revealed for the sample points. Interested 
readers can refer to Ref. 40 to obtain detailed 
information about the steps of potential cloud 
formalism. 

In the literature, clouds are shown to be a reliable 
and computationally tractable alternative approach in 
case of high-dimensional, incomplete and unformalized 
knowledge which is often encountered in real life 
uncertainty modeling. Ref. 40 compares the cloud 
formalism with p-boxes, Dempster-Shafer structures 
and fuzzy sets and shows its usefulness in cases of 
higher dimensions and unstructured knowledge. Clouds 
help to represent the uncertainty in the form of 
incomplete knowledge (e.g. expert opinion). Thus, 
confidence regions can be captured even with high-
dimensional, incomplete and unformalized knowledge. 
Then, robust optimization is used to search for worst-
case scenarios using these confidence regions. 

There is a lack of studies in the extant literature 
which utilize the CBDO. Our study contributes to the 
CBDO and multi-period network design literature by 
introducing a CBDO based multi-period reverse 
logistics network design model and solution 
methodology. To the best of our knowledge, it is the 
first study formulating the multi-period reverse logistics 
network design model with such a high extent of 
uncertainty (in terms of the number of stochastic 
parameters and their variability degree) and 
implementing a CBDO based solution methodology. 
We believe our contribution will help to motivate 

researchers utilize CBDO as a tool to deal with high 
uncertainty in various domains. 

4. The Multi-Period Reverse Logistics Network 
Design Problem under High Uncertainty 

The motivation behind this study is based on the 
following issues: (1) RLND is a risky problem due to 
uncertainties in product return amount and quality. 
However, traditional techniques are not strong enough 
to tackle high uncertainties simultaneously; (2) Some 
parameters of RLND can fluctuate widely across time 
and safeguarding the design process against worst cases 
becomes a vital necessity.  

The research framework based on CBDO is shown 
in Fig. 1. Considering the literature review and opinions 
of experts, all currently available uncertain RLND 
parameters which differ across period time are 
identified and the historical data of uncertain criteria is 
gathered to define their probability distributions. 
Uncertain parameters are taken into consideration for 
generation of cloud that provides a nested collection of 
regions of relevant scenarios. 

In the following subsections, we first present the 
formulation of the CBDO model for the RLND problem 
under high uncertainty. Then, we compare various 
modelling approaches (i.e. chance constraint 
programming, stochastic programming approach, fuzzy 
programming) that can handle uncertainty to the CBDO 
approach using an illustrative numerical example. 

4.1. The CBDO model for multi-period reverse 
logistics network design problem 

We formulate a RLND model as a multi-period, single 
product, multi echelon (collection points, collection 
centers, recycling centers, and disposal centers/material 
suppliers) model which is generalizable and adaptable 
for similar cases. Generated clouds are entered into the 
optimization model as constraints. In parallel, other 
specifications of the model (e.g., fixed variables, design 
variables, constraints) are also defined by experts due to 
different periods. The optimization model minimizes the 
defined objective (cost minimization) subject to the 
safety constraints for robustness of the model and 
subject to the functional constraints that are represented 
by the model. The optimization provides worst case 
results that are then checked by experts in order to 
decide whether it is necessary to add any new 
uncertainty which makes the process interactive and 
renewable. If experts agree to insert new uncertainty 
into the model, the model is rerun by considering new 
additions until experts are satisfied. 

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 1168–1185
___________________________________________________________________________________________________________

1172



 

Assume that ε  is the vector of uncertainties.θ  is 
the vector of choice variables.  z is the vector consisting 
of all global input variables (u) and all design variables 
(v). x is the vector including all output variables. The 
table constraints assign to each choice  a design vector z  
whose value is the nominal table entry )(θZ  plus its 
(unknown) error ε  with certainty stated by the cloud.  

The functional constraints specify the functional 
relationships in model, which is mostly obtained as a 
black box. One of the assumptions is the quantity of 
equations and output variables is the same and they are 
solvable for x uniquely.  

The typical mixed integer CBDO model can be 
shown as following: 
 

)(maxmin
,,

xf
zx εθ

 (objective function)        

  subject to   
εθ += )(Zz                          (table constraints) 

0),( =zxF  (functional 
constraints) 

)()( αε VV ≤  (cloud constraints) 

T∈θ                                  (selection 
constraints) 

 

 
 
 
 
 

(2) 

 
In order to handle the outer level of the Eq. (2) (to 

find the design choice θ  with the minimal worst case 
objective function value), two different techniques are 

utilized: (1) a quadratic model (one fits a quadratic 
model of the objective function and minimizes it); and 
(2) separable underestimation. The separable 
underestimation technique has the advantage of the 
discrete nature of θ  and finds a separable 
underestimation )(θθ  for the objective form (See Ref. 
40) 

∑=
= 0

1
)(:)( n

i
i

iqq qq  (3) 

0n = the dimension of the choice variable  
iθ  = the ith coordinate of θ  

Let 0N   equals the number of function evaluations 

0
,...,1 Nff that have been made in advance for the 

design choices 
0

,...,1 Nθθ . )( i
iq q  is a constant i

liq
q,

  

for integer choice variables i
lθ  and 

2

21)( i
li

i
li

i
li qqq qqq += , with constants 1iq  and 2iq , 

for continuous choice variables i
lθ . The constant iq  are 

treated as variables iq  in a linear optimization program 
satisfying the constraints in Eq. (4) 
 

01
,...,1)(0 Nlfq l

n

i
i

i =≤∑ =
q  (4) 

Fig. 1.  CBDO research framework for multi-period RLND 
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And they are computed by an LP solver. This 
ensures that many constraints in Eq. (4) will be active. 
The underestimator )(θθ can then be easily minimized 
later. The minimizers are utilized as starting points for a 
limited global search that includes an integer line search 
for discrete choice variables and multilevel coordinate 
search for continuous (See Ref. 40). 

A typical RL process includes the following steps as 
illustrated in Fig. 2: First, end of life products are 
gathered in containers of distributors. Then, returned 
products are collected in collection centers. Manual 
inspecting is achieved to separate the units according to 
their recoverability. The recoverable products are 
transported to recovery centers, and the remainders are 
shipped to the disposal centers. The recoverable 
products are processed at recovery centers and then sold 
to material suppliers (MS) while the remainder is sent to 
disposal centers. 

The goal of our study is to decide on the best 
arrangement while minimizing total cost under high 
uncertainty. In the extant literature, the RL design 
problems are formulated both as a cost minimization 
(See Ref. 29) and profit maximization (See Ref. 20). We 
formulated a multi-period reverse logistics network 
design problem for an electric and electronic recycling 
company seeking a cost minimization objective. The 
company does not expect profit maximization from the 
reverse logistics operations rather it aims to satisfy the 
WEEE regulations by a minimum-cost reverse logistics 
design. 

For this initial and pure case, some assumptions are 
considered to decrease the complex nature of the 
problem such as: (1) Inventory costs are ignored; (2) 
There is no capacity constraint on centers; (3) 
Inspection rates at collection centers and material 
amount rates obtained at recycling centers are uncertain 
parameters which are stochastic; (4) Operation costs, 
opening costs and transportation costs are uncertain 
parameters which are stochastic. 

The reverse logistics network design model will lead 
to select the best locations and allocations with the aim 

of minimum cost by considering four multiple periods 
(p=1,2,…). It is stated that in the first period the 
decision of opening centers will be made and the 
allocations of units between centers will change over 
time.  

The formulation of CBDO based multi-period 
reverse logistics network design model contains three 
main phases: 

• Phase 1: Determination of probabilistic 
uncertain parameters 

• Phase 2: Determination of parameters, 
variables and objective function 

• Phase 3: Structuring the CBDO model 

Phase 1: Determination of probabilistic uncertain 
parameters 

Parallel to technological developments and investments 
made on recovery systems, performance of recovery has 
increased and it directly affects the inspection rate and 
the quantity of materials recovered from products. In 
our model, fluctuating parameters; inspection amount, 
material amount rates, and operation, opening and 
transportation costs are considered stochastic. It is 
assumed that stochastic parameters are normally 
distributed with a given mean and a standard deviation.  

lpL  denotes percentage of recyclable material amount 
obtained at collection center l at period p; 

mpM denotes percentage of material amount obtained at 
recycling center m at period p;  

lpFL denotes opening cost of collection center l at 
period p; 

mpFM denotes opening cost of recycling center m at 
period p; 

lpCL denotes unit operation cost of collection center l at 
period p; 

mpCM denotes unit operation cost of recycling center m 
at period p; 

 

 

 

 

 

Fig. 2. General RL network structure 
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klpKC denotes cost of shipping one unit from collection 
point k to collection center l at period p; 

lmpLC denotes cost of shipping one unit from collection 
center l to recovery center m at period p; 

ldpLD denotes cost of shipping one unit from collection 
center l to disposal center d at period p; 

mdpMD denotes cost of shipping one unit from 
recycling center m to disposal center d at period p; 

mspMS denotes cost of shipping one unit from recovery 
center m to material supplier s at period p. 

The multi-period reverse logistics problem we 
model includes a much higher number of uncertain 
criteria. It is large enough to develop a representative 
case for dealing with uncertainty by utilizing CBDO. 

Phase 2: Determination of parameters, variables 
and objective function 

 
Seven variables that refer to the connection indicators 
and choice of opening centers are involved in the model. 
For each period there are 28 uncertain input variables. 
In total there are 112 uncertain input variables including 
4 periods. The details of the CBDO model are given as 
the following: 
Sets 

Kk ∈ = set of collection points 
Ll∈ = set of collection center locations 
Mm∈ = set of recycling center locations 
Dd ∈ = set of disposal center locations 
Ss∈ = set of material supplier locations 
Pp∈ = set of periods  

Parameters 

kpQ = return amount at collection point k at period p 

lpL = percentage of recyclable material amount obtained 
at collection center l at period p 

mpM = percentage of material amount obtained at 
recycling center m at period p 

lpFL = annualized fixed costs for opening collection 
center l at period p 

mpFM = annualized fixed costs for opening recycling 
center m at period p 

lpCL = unit operation cost of collection center l at 
period p 

mpCM = unit operation cost of recycling center m at 
period p 

klpKC = cost of shipping one unit from collection point 
 to collection center  l  at period p 

lmpLC = cost of shipping one unit from collection 
center  l  to recovery center  m at period p 

ldpLD = cost of shipping one unit from collection 
center  l  to disposal center  d at period p 

mdpMD = cost of shipping one unit from recycling 
center  m to disposal center  d at period p 

mspMS = cost of shipping one unit from recovery center  
m to material supplier s at period p 
Decision Variables 

lpl = selection of collection center  l and it equals to 1 if 
collection center  l is selected, 0 otherwise at period p 

mpm = selection of recycling center  m and it equals to 1 if 
recycling center  m is selected, 0 otherwise at period p 

klpkl = indicator connecting collection point k and 
collection center  l at period p 

lmplm = indicator connecting collection center  l and 
recycling center m at period p 

ldpld = indicator connecting collection center  l and 
disposal center  d at period p 

mdpmd = indicator connecting recycling center  m and 
disposal center  d at period p 

mspms = indicator connecting recycling center  m and 
material supplier s at period p 
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The main goal is to select the best network design 
option by considering the design objective tmcos which 

includes cost minimization.  tmcos  is the sum of cost 
items given in Eq. (5)-(12). 

In the CBDO model, iθ  is the choice of network 
design option with the minimum cost. Each choice is 
specified by 80 main design variables ),...,( 801

ii vv  
which address the input variables of the model; 
therefore in =80. If any link between centers is open, 

the value of in  is selected as “1”; otherwise “0”. Let  

iN,...1  be the possible choices for iθ  then the discrete 

choice variable iθ  corresponds to a finite set of iN  

points ),...,( 1
i
n

i
i

vv . This set is provided in a ii nN x  

table )( ,
i

kjτ . “1” is used if the relevant criteria are 
selected; “0” is used otherwise. “1” indicates the link 
between centers is open.  
 
4.2. Comparison of CBDO using a Numerical 

RLND Example  

In this part, we aim to compare chance constraint 
programming, stochastic programming approach, fuzzy 
programming and cloud based design optimization by 
using an illustrative numerical example. The indices, 
parameters and variables used at the following 
formulations are listed below: 
 
 
Indices 
i = number of potential warehouse locations 
j = number of markets  
 

Annualized fixed costs for opening 
collection center and recycling 
center 
 

∑∑ ∑∑
= = = =

+
1 1 1 1

**
l p m p

mpmplplp mFMlFL  

 

(5) 
 

Cost of shipping from collection 
points to collection centers 
 

∑∑∑
= = =1 1 1

**
k l p

klpkpklp klQKC  

 

(6) 

Operation cost of collection centers 
 ∑∑ ∑∑

= = = =1 1 1 1
**

k p l p
lplpkp lCLQ  

 

(7) 

Operation cost of recycling centers ∑∑ ∑∑ ∑∑
= = = = = =1 1 1 1 1 1

****
l p k p m p

mpmpmpkplp mMCMQL  

 

(8) 

Cost of shipping from collection 
centers to disposal centers ∑∑ ∑∑ ∑∑∑

= = = = = = =

−
1 1 1 1 1 1 1

***)1(
l p k p l d p

idpldpkplp ldLDQL  

 

(9) 

Cost of shipping from collection 
centers to recovery centers ∑∑ ∑∑ ∑∑∑

= = = = = = =1 1 1 1 1 1 1
***

l p k p l m p
implmpkplp lmLCQL  

 

(10) 

Cost of shipping from recycling 
centers to disposal centers ∑∑ ∑∑ ∑∑∑

= = = = = = =

−
1 1 1 1 1 1 1

*)1(***
l p k p m d p

mdpmpmdpkplp mdMMDQL  

 

 (11) 

Cost of shipping from recovery 
centers to material suppliers ∑∑ ∑∑ ∑∑∑

= = = = = = =1 1 1 1 1 1 1
****

l p k p m s p
mspmpmspkplp msMMSQL   (12) 
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Parameters 

jD = annual demand of market j 

iF = fixed cost of locating a warehouse at site i  

ijC = cost of shipping one unit from warehouse i to 
market j  
P = probability of stochastic (demand) constraint  
 
Decision Variables 

iY = 1 if warehouse is located at site i, 0 otherwise 

ijL = 1 if allocation from warehouse i to market j is 
open, 0 otherwise 

ijX = quantity shipped from warehouse i to market j 
The illustrative numerical example solved in this 

section has one echelon simple network that includes 
three warehouses and two markets. It is assumed that 
the demands of two markets are uncertain. The 
objective is to minimize the total costs. The parameters 
values for the illustrative numerical example are given 
at Table 2. 

4.2.1. Chance constraint programming  

The chance constraint programming model for the 
RLND problem is: 

Min ∑ ∑∑ = ==
+

I

i j ijij
I

i ii XCYF
1

1

11
  

Subject to 

iijjij LDXP α≥= )*(  

iji LY =  

∑=
=

I

i ijL
1

1 

iY , ijL binary 

0>ijX  

)1,0(∈iα  

The constraint probability is assumed to be iα =0.9 
Normally distributed demand constraints are: 

311211111312111 ** LDLDLDXXX +++=++  

322222122322212 ** LDLDLDXXX +++=++  
Risk adjusted demand constraints are: 

20*282,1
** 311211111312111

−
+++=++ LDLDLDXXX

 

40*282,1
** 322222122322212

−
+++=++ LDLDLDXXX

 
The model is run by utilizing GAMS CPLEX solver. 

The results reveal out that minimum cost is 1759$ and a 
decision of opening the first warehouse is made. 

4.2.2. Two stage stochastic programming  

The general location-allocation model is proposed by 
considering the studies of Ref. 41 and Ref. 42 which are 
originated from general formulation stated by Ref. 43 

The number of scenarios is indexed by s and 
probability of each scenarios (if probability is same for 
each scenario, then it is = 1/scenario amount) is 
represented as sq . Then, the two stage stochastic 
programming RNLD model is formulated as: 

Min ∑ ∑ ∑∑ = = ==
+

I

i j

S

s ijsijs
I

i ii XCqYF
1

1

1 11
 

Subject to 

ijjsijs LDX *=  

iji LY =  

∑=
=

I

i ijL
1

1 

iY , ijL binary 

0>ijsX  
A numerical study is conducted by considering that 

there are three warehouses and two markets and ten 
scenarios. The values of the parameters are same as the 
chance constraint programming model. Additionally, 
the probability of each scenario is set as 1/10. 

The model is run by utilizing GAMS CPLEX solver. 
The results reveal out that minimum cost is 2494,83 $. 
The open decision is made for the first warehouse. 

4.2.3. Fuzzy programming   

According to the study of Ref. 44, uncertain demand 
can cause uncertain penalty costs for overages and 
shortages. Similarly, in our case, it is assumed that if the 

Table 2. Parameters of chance constraint 
programming 

1D = normally distributed with 
mean 80 and st.dev. 20 11C =5 $/unit 

2D = normally distributed with 
mean 100 and st.dev. 40 12C =10 $/unit 

1F =1000 $ 21C =6 $/unit 

2F =1250 $ 22C =12 $/unit 

3F =1500 $ 31C =8 $/unit 

 
32C =16 $/unit 
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needed demand is not met as it is requested, then 
penalty cost occurs. The fuzzy programming of a 
facility location allocation model is given below: 

Min 
∑

∑ ∑∑

=

= ==

−+

+
J

j jjj

I

i j ijij
I

i ii

DEDP

XCYF

1

1

1

11

~  

Subject to 

ijjij LDX *=  

iji LY =  

∑=
=

I

i ijL
1

1 

iY , ijL binary 

0>ijX  
 
where jDE  is the expected annual demand of market j, 

and jP~  is the fuzzy penalty cost of not satisfying the 
demand of market j exactly. 

For our example, if the demand exceeds the 
expected demand, then overage penalty cost (0,1 $/unit) 
is considered. If the demand is under the expected 
demand, then shortage penalty cost (0,4 $/unit) is 

considered. And total penalty cost jP~ is calculated by  
considering the overage and shortage costs in terms of 
the model of Ref.1 for each different demand 
combinations.  

The model is solved by considering all of these 
options separately by utilizing GAMS CPLEX solver. 
That means the model is run for all demand 
combinations (from the most pessimistic one to the most 
optimistic one). The optimum result is 2369,5 $ and first 
warehouse is open.  

4.2.4. Cloud based design optimization  

CBDO is developed for alternative warehouse 
selections. In our case iθ  is the choice of location and 
its linkages with the minimum cost (that is the total of 
transportation and facility opening costs). Each choice is 
specified by 9 main design variables ),...,( 91

ii vv , 

therefore 9=in . Let 1,…, iN  be the possible choices 

for iθ then the discrete choice variable iθ corresponds 
to a finite set of iN  points ),...,( 1

i
n

i
i

vv . This set is 

provided in a ii nN x  table )( ,
i

kjτ . In our case iN = 3 
(three combination alternatives=possible choices), and 

9=in  (nine specifications as design variables=that 

shows the selection criteria). The ii nN x table of the 
case is shown at Table 3. “1” is used if the relevant 
criteria is selected, “0” is used otherwise. 

The graphical user interface (GUI) of CBDO is used 
in order to declare the elements of the model. First 
model is declared as GUI needs. Then the uncertainty 
elicitation is represented. In the following step available 
information is entered to form the clouds which produce 
the safety constraints for the optimization. The 
optimization results are obtained in the last step. In 
CBDO, optimum result is found as 3389,64 $ in total. 

The results that are obtained by solving the problem 
with the above mentioned four solution approaches are 
compared at Table 4. Since there was no capacity 
constraint for the warehouses in the model, one 
warehouse (first one) is selected in all approaches. As it 
is expected, the highest cost is obtained by CBDO 
because CBDO conducts a worst case analysis. The 
results indicate that results are very sensitive to 
uncertainty and uncertainty can cause high cost. 

Table 3. Input values of CBDO (in comparative example) 

iN   1n = y1  2n = y2  3n  = y3 4n =l11 5n =l12 6n =l21 7n =l22 8n =l31 9n =l32 
Combination 
Alternatives 

= 
Possible 
Choices 

Open 
warehouse  

1 
(i1) 

Open 
warehouse  

2 
(i2) 

Open  
warehouse  

3 
(i3) 

Open  
linkage 

(i1 to j1) 

Open  
linkage 

(i1 to j2) 

Open  
linkage 

(i2 to j1) 

Open  
linkage 

(i2 to j2) 

Open  
linkage 

(i3 to j1) 

Open  
linkage 

(i3 to j2) 

11 =N  1 0 0 1 1 0 0 0 0 

22 =N  0 1 0 0 0 1 1 0 0 

33 =N  0 0 1 0 0 0 0 1 1 
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5. Case Study and Computational Results  

The CBDO model has been validated through WEEE 
industry to illustrate its performance. We conducted a 
case study in Turkey because the situation of WEEE in 
Turkey is challenging. The environmental regulations 
have been well accepted and implemented in many 
developed countries; however, it is still a fairly new 
process for many developing countries such as Turkey. 
Regional Environmental Centre (REC) Turkey (2012) 
forecasted that Turkish manufacturers added 812,000 
tons of EEE on the market via approximately 20,000 
distributors (2012). This high volume of EEE causes a 
huge volume of WEEE. Turkey tackles with 539,000 
tons of WEEE annually. Average growth per year is 
5%; therefore, it is expected that 894,000 tons EEE will 
be obtained in 2020. According to analysis of REC 
Turkey, if the Directive goes into force successfully, a 
total of 116,355 unit points of environmental risks to the 
ecosystem quality to human health and to energy 
resources can be decreased. The WEEE Directive 
implementation will also provide many social benefits 
such as decreasing the informal sector quantity and job 
creation (REC 2012).  

We take into consideration a recycling facility 
because recycling centres have an important role in RL 
networks. They are responsible for taking out legal 
licenses from ministries and using appropriate 
technologies and techniques for recycling operations. 
Unless appropriate technologies and techniques are 
used, hazards for the environment and health could 
increase and recycling of wastes could be done mostly 
by unskilled labor. Moreover, most OEMs operate RL 
activities by collaborating with recycling firms. It is 
clear the role of recycling centres is significant for 
fulfillment of an effective sustainable RL network. 
Therefore, in this study a case study is conducted with 
the data of the WEEE collection and recycling facility 
which operates in İzmit-Turkey.  

The selected facility is the first licensed Turkish 
recycling firm built in 1999. It has the highest market 
share as a recycling firm in this sector. The common 
recycled WEEE includes monitors, televisions, 
information technology (IT) and telecommunication 

equipment. The facility is in collaboration with 
municipalities, distributors and OEMs for collection of 
used or scrapped electrical and electronic equipments. 
In the network of the recycling firm, there are collection 
points, collection and recycling centres, and disposal 
centres and material suppliers. 

Strategically, the managers of the selected firm 
believe that after the environmental regulations go into 
force, the product return amount will increase in the 
following periods. Therefore, they need to design their 
RL network by considering different facts of different 
periods. It is assumed there are five different actors in 
the alternative networks: three main collection points 
(k=1,2,3), two alternative collection centers (l=1,2), two 
alternative recycling centers (m=1,2), one main disposal 
center (d=1) and one main material supplier (s=1). 

The reverse logistics network design model will lead 
to select the best locations and allocations with the aim 
of minimum cost by considering four main periods (one 
period refers to one year) (p=1,2,3,4). It is stated that in 
the first period the decision of opening centers will be 
made and the allocations of units between centers will 
change over time. The returned amounts are expected to 
increase over time because of the effects of force 
environmental regulations and to increase in the 
consciousness of consumers. The return amounts on 
collection points for each period ( kpQ ) is gathered by 
considering the obligation amounts of WEEE 
regulation. 

For historical data set gathering, we limited the time 
span to the last two years to prevent the effects of out of 
date parameters which address the conditions in Turkey 
before adaptation. Uncertain parameters are analyzed 
for each month of two years. According to historical 
data analysis, it is assumed that stochastic parameters 
are normally distributed with the mean of values and 
standard deviations are given in Table 5. The values of 
means and standard deviations are revealed by 
considering historical data of the last two years. 

In CBDO literature, it is stated the CBDO is an 
effective support tool especially for high dimensional 
problems. If number of uncertainties in a problem 
exceeds five, it means the problem has high uncertainty-
- in other words, “high dimensionality” (See Ref 40). In 
our case study, the number of uncertain criteria 
considered in CBDO equals 112 (is the total of 
uncertainties given in Table 5). Seven variables that 
refer to the connection indicators and choice of opening 
centers are involved in the model. For each period there 
are 28 uncertain input variables. In total there are 112 
uncertain input variables including 4 periods. By 
entering the values of certain and uncertain parameters, 
the model is run by using the CBDO graphical user 
interface (GUI) software which is set up by Ref. 40.  

Table 4. Comparison of the CBDO results with the 
results of the other solution approaches 

 
Chance 

Constraint 
Programming 

Two Stage 
Stochastic 

Programming 

Fuzzy 
Programming CBDO 

Objective 
function 
value ($) 

1759 2494,83 2369,5 3389,64 
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In our case, there are four network design 
alternatives (possible choices) therefore, 4=iN . The 
network design alternatives and linkages between 
centers can be seen in Fig. 3. 

In the model, iθ  is the choice of network design 
option with the minimum cost. Each choice is specified 
by 80 main design variables ),...,( 1

i
n

i
i

vv  which address 

the input variables of the model; therefore 80=in . If 

any link between centers is open, the value of in  is 

selected as “1”; otherwise “0”. Let  iN,...,1  be the 

possible choices for iθ  then the discrete choice variable 
iθ corresponds to a finite set of iN  points 

),...,( 1
i
n

i
i

vv . This set is provided in a ii nN x  table 

)( ,
i

kjτ . The ii nN x  table of the case is shown below. 
“1” is used if the relevant criteria are selected; “0” is 
used otherwise. “1” indicates the link between centers is 
open. For instance, for the first echelon of the first 

Table 5. Mean and standard deviation values of normally distributed stochastic parameters of all periods 

Period 1 

 L11 L21 M11 M21 FL11 FL21 FM11 FM21   

Mean 70 70 80 80 2000 2400 3500 3000   

St.dev. 35 40 40 50 500 720 1050 1500   

 CL11 CL21 CM11 CM21 KC111 KC121 KC211 KC221 KC311 KC321 
Mean 2.5 3 4 5 3 2 3 3 3 3 

St.dev. 0.5 1.5 2 1.5 1 1.2 1.2 1.5 1.5 1.2 

 LC111 LC121 LC211 LC221 LD111 LD211 MD111 MD211 MS111 MS211 
Mean 3 3.5 5 4 2 2 2.5 2.5 2 2 

St.dev. 1.5 0.7 2.5 2 1 1 0.5 0.5 0.4 0.4 

Period 2 

 L12 L22 M12 M22 FL12 FL22 FM12 FM22   

Mean 75 75 85 85 0 0 0 0   

St.dev. 35 30 45 42 - - - -   

 CL12 CL22 CM12 CM22 KC112 KC122 KC212 KC222 KC312 KC322 
Mean 3 3 4 6 2 1.8 2.5 2.5 3 3 

St.dev. 0.5 1.5 2.5 2 0.5 1 1 1.5 1 1.5 

 LC112 LC122 LC212 LC222 LD112 LD212 MD112 MD212 MS112 MS212 
Mean 4.5 3.8 5 4 2 2.5 3 2.5 2.5 2 

St.dev. 1.5 2 2 1.5 0.5 1.2 1.5 1 1 1 

Period 3 

 L13 L23 M13 M23 FL13 FL23 FM13 FM23   

Mean 85 85 90 90 0 0 0 0   

St.dev. 20 20 30 30 - - - -   

 CL13 CL23 CM13 CM23 KC113 KC123 KC213 KC223 KC313 KC323 
Mean 3.5 3.2 4.4 6 5 2 3 3 3.2 3.5 

St.dev. 1 1.5 2.5 3 1 1 1.5 1.5 1.5 1.5 

 LC113 LC123 LC213 LC223 LD113 LD213 MD113 MD213 MS113 MS213 
Mean 6 4 5.2 4.4 3 2.5 4 3 3 2.4 

St.dev. 1.8 2 2 1.5 1.5 1 1.5 1.5 1.5 1 

Period 4 

 L14 L24 M14 M24 FL14 FL24 FM14 FM24   

Mean 88 88 92 92 0 0 0 0   

St.dev. 20 20 30 30 - - - -   

 CL14 CL24 CM14 CM24 KC114 KC124 KC214 KC224 KC314 KC324 
Mean 3.5 3.5 4.5 6 3.5 2.5 4 4 3.5 3.5 

St.dev. 1.5 1.5 2.5 3 1.5 1 1.5 1.5 1.5 1.5 

 LC114 LC124 LC214 LC224 LD114 LD214 MD114 MD214 MS114 MS214 
Mean 4 4 5.5 4.4 3 3 4 3.5 3.5 2.5 

St.dev. 2 2 2 2 1 1.5 2 1.5 1.5 1 
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network design option, the first collection center is open 
and the linkages 311211111 ,, klklkl  are active 

( 1,, 311211111 =klklkl ). 
That means products collected in all containers are 

sent to the first collection center. Then, the products 
which are found as unrecoverable are shipped from first 
collection center to the disposal center ( 1111 =ld ). The 
remainder are passed through recycling operations in 
the first recycling center ( 111 =m ) in order to obtain 
raw materials. The recovered materials are shipped from 
the recycling center to the supplier ( 1111 =ms ) and 
unrecoverable materials are sent to the disposal center 
( 1111 =md ). These input values are the table 
constraints of CBDO and all values of network design 
option can be seen in Table 6. 

Specifications of the model are determined as 
CBDO’s specific necessities by clarifying objective 
function, input (global and design) variables, fixed data, 
and distributions of uncertain data. Confidence level is 
selected as 0.95 for cloud generation and as 0.998 for 

sample generation. The generated sample size of CBDO 
is 1,000 for the cloud generation stage. The 
transformation function is chosen as logarithmic. The 
iteration for weight computation is selected as 
3,000.The number of starting points is randomly defined 
by the software. The results are confirmed two times in 
order to check the accuracy. The principle of 
optimization depends on local search.  

The model is coded in CBDO GUI and run by using 
a computer which has an Intel Core i5 CPU with 2.26 
GHz, 4 GB RAM and a 64 bit operating system. The 
CPU time equals 3.61 seconds. In order to compare 
CPU time performance of the model, the first echelon of 
network is modeled by two alternative programming: 
two stage stochastic programming and fuzzy 
programming. In two-stage stochastic programming, the 
decisions set can be categorized into two groups: (1) 
First stage decisions which include decisions made 
before the experiment; and (2) Second stage decisions 
which include decisions made after experiment. In a 
traditional two stage stochastic facility location, the 
allocation model includes the first stage decisions as 
opening the facility and second stage stochastic 

 
Fig. 3.  Design options. 
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programming as allocation of units between facilities 
(See Ref. 43). The proposed stochastic model is run by 
utilizing GAMS CPLEX solver and its CPU time is 
found as 6.9 seconds. Furthermore, a fuzzy 
programming is developed by considering the model of 
Ref. 44. In our case, it is assumed that if the needed 
demand is not met as it is requested, then the penalty 
cost occurs. The model is solved by considering all 
demand combinations (from the most pessimistic one to 
the most optimistic one) separately by utilizing GAMS 
CPLEX solver. Its CPU time equals to 6.75 seconds. 
Compared to stochastic and fuzzy programming, CBDO 
which intervenes between fuzzy set theory and 
stochastic distributions offers the best CPU time. Under 
high uncertainty, it may be impossible to succeed the 
real quality of approximate solutions. Because of the 
hardness of dealing with a many uncertain parameters 
simultenously, heuristic optimization techniques are 
prefered in many cases. In this case, because CBDO 
provides heuristic solution that includes iterative 
process, generation of results becomes faster compared 
to stochastic and fuzzy programming. 

Furthermore, CBDO has another advantage that 
enables decision makers have confirmation on results, 

as a testing procedure. The results of the case are 
confirmed twice within GUI and the total cost is found 
as 135,618,000 monetary units. 

The results indicate the 3rd network design where 
the second collection center )1( 2 =l and first recovery 

center )1( 1 =m are open should be selected.  
It is required to serve product returns from all 

collection points to a second collection center and 
sending manually inspected products from a second 
collection center to the first recycling center. The 
remainder of the products is sent to the disposal center. 
After recycling is completed in the first recycling 
center, materials are shipped to material supplier and the 
rest of them are sent to the disposal center. It is a two 
times tested result and makes decision makers handle 
uncertainties in a reliable manner although there is a 
lack of information. Under highly uncertain conditions 
of WEEE recycling process, for managers it is more 
helpful to consider worst case based results for 
safeguarding the firm against unsteadiness caused due 
to imprecise data. 

Finally, a sensitivity analysis is conducted to explore 
the effect of changing in standard deviation (SD).With 

Table 6. Input values of CBDO model  

  n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12 n13 n14 n15 n16 n17 n18 n19 n20 
  kl111 kl121 kl211 kl221 kl311 kl321 l11 l21 lm111 lm121 lm211 lm221 ld111 ld211 m11 m21 ms111 ms211 md111 md211 

N1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 
N2 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 
N3 0 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 
N4 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 
  n21 n22 n23 n24 n25 n26 n27 n28 n29 n30 n31 n32 n33 n34 n35 n36 n37 n38 n39 n40 
  kl112 kl122 kl212 kl222 kl312 kl322 l12 l22 lm112 lm122 lm212 lm222 ld112 ld212 m12 m22 ms112 ms212 md112 md212 

N1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 
N2 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 
N3 0 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 
N4 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 
  n41 n42 n43 n44 n45 n46 n47 n48 n49 n50 n51 n52 n53 n54 n55 n56 n57 n58 n59 n60 
  kl113 kl123 kl213 kl223 kl313 kl323 l13 l23 lm113 lm123 lm213 lm223 ld113 ld213 m13 m23 ms113 ms213 md113 md213 

N1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 
N2 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 
N3 0 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 
N4 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 
  n61 n62 n63 n64 n65 n66 n67 n68 n69 n70 n71 n72 n73 n74 n75 n76 n77 n78 n79 n80 
  kl114 kl124 kl214 kl224 kl314 kl324 l14 l24 lm114 lm124 lm214 lm224 ld114 ld214 m14 m24 ms114 ms214 md114 md214 

N1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 
N2 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 
N3 0 1 0 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 
N4 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 
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the goal of understanding how total cost and opening 
decisions will change if the fluctuations vary because of 
some unexpected situations. Therefore, the model is run 
for increasing and decreasing SDs. Four different 
scenarios are taken into consideration:  

(1) standard deviation values are equal to mean 
value; 

(2) standard deviation values are increased by 75 
percentage points;  

(3) standard deviation values are decreased by 50 
percentage points; and  

(4) standard deviation values are decreased by 90 
percentage points. 

For Scenario 1, it is believed the total cost will 
increase to 1,306,264,541. For Scenarios 2, 3 and 4, the 
total costs are 302,416,836; 46,906,395 and 10,558,653 
monetary units, respectively. High volume increase in 
total cost indicates that higher fluctuations in parameters 
cause more risky and costly results. It is evident that the 
total cost converges with decreasing standard deviations 
as seen in Fig. 4. 

Except for Scenario 1, all scenarios result with the 
opening second collection center )1( 2 =l  and first 

recovery center )1( 1 =m . However, the results of 
Scenario 1 address that opening via the first collection 
center )1( 1 =l and the first recovery center )1( 1 =m is 
preferable. It is seen that fluctuations resulting in a high 
level of uncertainty have a direct impact on opening 
decisions. Therefore, the trends in the sector should be 
reviewed in detail by managers and if there is high 
potential to meet with risky situations in the future, the 
effectiveness of collection centers should be criticized 
again.  

The case study shows that consideration of 
uncertainty and changing the amounts of the product-
returns would have direct impact on the results. 
Decision makers should not ignore the imprecise 
parameters of the RLND problem. The results obtained 
from our CBDO model show that the optimal design 
point is sensitive to whether the uncertainty is 
considered in the model or not. Experts must track 
product return trends and have optimistic foresight, 
expected and pessimistic returns in various periods. 
CBDO application contributes to the literature by 
revealing the necessity to consider uncertainties as one 
of vital responsibility for decision makers in RLND 
problems. 
 

 

6. Conclusion 

In recent years, RL has become increasingly important 
in many sectors. RLND, which is one of important 
strategic decisions in RL study, contains uncertain 
structure and has potential to increase the complexity of 
decision making process on facility location allocation 
problems. High uncertainty that is not considered in 
decision-making can cause high costs and wasted time 
because it will lead to wrong planning. Therefore, it 
becomes inevitable to benefit from an effective decision 
making tool in order to challenge high uncertainty. 
Under these circumstances, this study proposes a 
general, multi-echelon, multi-period, single product, 
cost minimization RLND model. A new notion titled 
CBDO is in order to handle high quantity of certain and 
uncertain factors simultaneously. It identifies best 
solution within worst case scenario. Only few 
approaches such as simulation, fuzzy theory and 
stochastic programming can tackle the cases including 
high level of incomplete information. However they are 
able to deal with low dimensions and need high 
computational effort. CBDO can handle high 
dimensionality and can help the decision makers to have 
foresight about the riskiest conditions and take 
necessary action on time.  

To the best of our knowledge, this study is the first 
in which the CBDO model is used for the decision of a 
logistics network design based industrial problem. 
CBDO, which provides a baseline for high number of 
various uncertainty assessments, can be used as 
guidelines for RLND problems. A motivating study is 
conducted to validate performance of the proposed 
model. The results show this system can help managers 
to make decisions on facility selection. Directions for 
future studies may include: (1) new issues that can also 
be added into the methodology, such as lot sizing, 
vehicle routing, and inventory management; (2) 
considering more uncertain parameters; and (3) 
integrating fuzziness to tackle epistemic uncertainties 
within CBDO. 
 

 
Fig. 4. Sensitivity analysis results 
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