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Abstract. A new family of explicit time integration algorithms with controllable accuracy for
structural dynamics are proposed in this paper based on discrete control theory. Firstly, the transfer
function of the new algorithms with integration coefficients are obtained by Z transform, then the
coefficient expressions of the new algorithms are derived according to the poles condition. The
theoretical analyses about the stability and accuracy indicate that the new algorithms possess the
properties of second-order accuracy, zero amplitude decaying, moreover, the period elongation can
be controlled by parameter λ, which can adjust the accuracy of the new algorithms. When λ is less
than or equal to 4, the algorithm are unconditionally stable for the linear system.

Introduction

Time integration algorithms are typically utilized to solve the motion equation in structural
dynamics. Various methods have been used to develop time integration algorithms, such as Taylor
formula expansion, weighted residual method, least squares method and Hamiltonian principle. The
existing algorithms are mainly divided into explicit and implicit algorithm. If the structural
displacement for the next time step can be determined from responses of current and previous time
step, the algorithm is explicit, otherwise it is implicit. Explicit algorithms are usually conditionally
stable and do not require iterative solution, e.g., the central difference method. Implicit algorithms
are usually unconditionally stable and require to solve simultaneous equations, such as Newmark
method [1], HHT-α method [2], WBZ-α method [3], generalized-α method [4]. For the structures
with a large number of DOFs (degrees of freedom), the explicit algorithms can greatly improve
computational efficiency.

Recently, due to the need for fast and accurate dynamical simulation of pseudo-dynamic testing
and real-time hybrid testing [5], unconditionally stable explicit algorithms are paid close attention.
Chang proposed a series of unconditionally stable explicit algorithms [6-8], transformed the
stability of the explicit algorithms from the traditional conditionally stable to unconditionally stable.
Based on discrete control theory, Chen and Ricles proposed an unconditionally stable CR explicit
algorithm, clarified the whole process of algorithm design [9]. Gui proposed an unconditionally
stable Gui-λ explicit algorithm, and parameter λ can adjust the accuracy of algorithm, CR algorithm
is a special case of Gui-λ algorithm [10]. Kolay and Ricles combined the equilibrium equation of
the generalized-α method with the displacement and velocity recursion of CR algorithm, designed
an unconditionally stable explicit KR-α algorithm with numerical dissipation [11].

As a new method of time integration algorithm design, discrete control theory makes the
algorithm derivation and analysis more rational and convenient. Based on the discrete control theory,
this paper assumes the displacement and velocity recursion, making the new algorithms with
unknown coefficients have same poles as the Gui-λ algorithm, thus a new family of explicit time
integration algorithms for structural dynamics are designed. Then theoretical analyses about the
stability of linear system, truncation error, amplitude decaying and period elongation of the new
algorithm are conducted.
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Design of the Explicit Time Integration Algorithms

The Gui-λ algorithm can effectively be used to solve the approximate solution of motion
equation for structural dynamics, which is described by the following three equations [10]:

1 1 1 1i i i imx cx k x f+ + + ++ + =&& & (1)

1 1i i ix x h xα+ = +& & && (2)

2
1 2i i i ix x hx h xα+ = + +& && (3)

where,

2
1 2 / ( )α α λ λ λΩξ Ω= = + + (4)

Eqs. (1), (2) and (3) represent the equilibrium equation, recursive formula of velocity and
displacement of Gui-λ algorithm for SDOF system separately; Where m, c=2mωξ, k =mω2 are the
mass, damping and stiffness, respectively; ω is the natural frequency; ξ is equal to the damping ratio;
ẍi, ẋi, xi and fi stand for acceleration, velocity, displacement and external force at ith time step; h
denotes the integration step; α1 and α2 are integration coefficients. The new explicit time integration
algorithms with controllable accuracy are designed based on Gui-λ algorithm.

Generally, two kinds of methods are used to analyze the property of time integration algorithms
[11]. The first one is to use the eigenvalues of amplification matrix [12]. The algorithm can be
represented as

Xi+1=AXi , Xi=[ xi, hẋ, h2ẍi]
T (5)

where, A is the amplification matrix of algorithm. The second one is to use discrete control theory to
solve the poles of the transfer function. It is worth noting that the poles of the transfer function are
equivalent to the eigenvalues of the amplification matrix [9, 11]. Compared with the eigenvalues,
solving the poles of transfer function is more simple and convenient. This paper adopts the latter
method to analyze the property of the new algorithms.

The transfer function of system is the ratio of the Z transform of the response to the Z transform
of the input. The definition and property of the Z transform are [13]

( ) ( )jZ F F z= , 1
1( ) ( )jZ F z F z−
− = (6)

where, Z(Fj) stands for the Z transform of F(t) at ith time step. Therefore, the transfer function G(z)
of Gui-λ algorithm is
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The corresponding open-loop block diagram is shown in Fig. 1.
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( )X z

Fig. 1 Block diagram of open-loop system.

where, X(z) and F(z) are the Z transform of displacement and external force, respectively. The
coefficients of G(z) are shown in Table 1, in which Ω=ωh.

Table 1. Coefficients of transfer function G(z) for Gui-λ algorithm.

n2 n1 n0 d2 d1 d0

0 α2h
2 (α1–α2) h2 m (α2Ω

2+2α1Ωξ–2)m { (α1–α2) Ω2–2α1Ωξ+1}m
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The characteristic equation, which makes the denominator of transfer function G(z) be equal to
zero, is represented by

d2z
2 + d1z + d0 = 0 (8)

The roots of the characteristic equation are the poles of the open-loop system.
Assuming the recursive formula of velocity and displacement for the new algorithms are

described by the following equations:

1 1 1( )i i i ix x h x xβ+ −= + −& & && && (9)

2
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where, β1 and β2 are the unknown coefficients, the transfer function G′ (z) of the new algorithms is

( )
( )
( )
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(11)

The coefficients of G′(z) are shown in Table 2.

Table 2. Coefficients of transfer function G′(z) for the new algorithms. 

n′2 n′1 n′0 d′2 d′1 d′0

0 β2h
2 (β1–β2) h2 m (β2Ω

2+2β1Ωξ–1)m { (β1–β2) Ω2–2β1Ωξ}m

The stability, amplitude decaying and period elongation of the algorithm are related to the poles
of the transfer function [11]. If two algorithms have same poles, they will have same stability,
amplitude decaying and period elongation. Based on this, it is assumed that the new algorithm has
the same pole as the Gui-λ algorithm, namely, satisfying the following relationship

d′1=d′2d1/d2, d′0=d′2d0/d2 (12)

Thus the unknown coefficients β1 and β2 can be solved

2

1 22 2 2

( 1)
,

( )

λ λ λξ λ
β β

λξ λ λξ λ

− Ω − Ω−
= =
Ω + Ω+ Ω Ω + Ω+

(13)

Therefore, a new family of explicit algorithms with controllable accuracy are proposed,
described by Eq. (1), (9) and (10). The stability and accuracy of the new algorithms will be
analyzed in the following setions.

Stability Analysis of the New Algorithms

For any value Ω∈[0, ∞], if the poles of open-loop transfer function are located within or on the 
unit circle in z-domain, then the system is stable, which is consistent with that the spectral radius is
less than or equal to one. The poles p1,2 can be finally expressed as the function of Ω and λ for
undamped case.

1,2p P Qi= ± (14)

where,
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=

+
(15)

In order to make the expression Q meaningful, Ω and λ need to meet the following equations:

4 0λ Ω≤ < < ∞ (16)
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24 4 / ( 4)λ Ω λ λ> ≤ − (17)

After calculating, P2 + Q2 = 1, so the spectral radius ρ=max{|pi|} (i=1,2) is equal to 1. Thus,
when λ ≤ 4, the algorithms are unconditionally stable for linear system. When λ>4, the algorithms
are conditionally stable, as λ increases, the stability range of Ω decreases, Ω and λ need to satisfy Eq.
(17).

Accuracy Analysis of the New Algorithms

Local truncation error, amplitude decaying and period elongation are often used to investigate
the accuracy of the algorithms [13]. They will be discussed separately hereafter.
Local Truncation Error. The high-order small quantity, omitted in the approximate expression of
acceleration, velocity and displacement of the time integration algorithms, can be estimated by the
local truncation error τ, which is generally defined as

2
1 2 3[ ( 1) ( ) ( 1) ( 2)]h x i A x i A x i A x iτ −= + − + − − − (18)

where, A1=trace of A, A2=sum of principal minors of A, A3=determinant of A, A is the amplification
matrix, as shown in Eq.(5). An algorithm is kth order provided that τ=o(hk) [4]. By expanding x(i+1),
x(i–1), x(i–2) as Taylor series at ith time step, and combing with the equilibrium Eq. (1) at ith time
step, local truncation error τ of the new algorithms is formulated by

2 2 3 2 2 2
1 1 1 1( ) ( 2 2 2 ) ( )i ih x h x o hτ ω β ω β ω ξ ωξ β ωξ β ω ξ= − + + + − + + +& (19)

As the time step h tends to zero, the limit of τ is o(h2), thus the new algorithms have
second-order accuracy.
Amplitude Decaying and Period Elongation. The accuracy of the algorithms can also be
measured by the amplitude decaying AD and the period elongation PE. The open-loop poles of the
new explicit algorithms can be expressed in the following form

2
1,2 exp[ ( 1 )]p P Qi iΩ ξ ξ= ± = − ± − (20)

where, P and Q are shown as Eq. (15), 2 2ln( ) / 2P Qξ Ω= − + ， 1 2tan ( / ) / 1Q PΩ ξ−= − . The

amplitude decaying and the period elongation are defined as

1 exp( 2 )AD πξ= − − , / 1PE Ω Ω= − (21)

After simple calculation, AD=0, therefore, there is no decay of response amplitude for the new
algorithms.

The period elongation PE is a function of the variables λ and Ω. Fig. 2 demonstrate the PE for
the new algorithms with different values of λ, where NCAA is the Newmark constant acceleration
algorithm.
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Fig. 2 PE values corresponding to λ with 2~20.
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Fig. 2 shows that the period elongation PE is closely related to the parameter λ, with the increase
of λ, the absolute value of PE decreases first and then increases for fixed value of Ω, therefore, the
accuracy of the new algorithm can be controlled by λ. When λ takes the value of 10~12, the
absolute value of PE for the new algorithms is significantly smaller than the PE value of NCAA,
thus the new algorithms have higher accuracy with λ between 10~12.

Conclusion

In this paper, a new family of explicit time integration algorithms for structural dynamics are
proposed, which have the merits of second-order accuracy, zero amplitude decaying and
controllable period elongation. Parameter λ can control the accuracy of the new algorithms by
adjusting the period elongation, with the increase of λ, the accuracy of the algorithm increases first
and then decreases. The parameter λ can also control the stability range of the algorithms. As λ
increases, the stability range decreases. For the linear system, when λ≤4, the new algorithms are 
unconditionally stable. If λ>4, the new algorithms are conditionally stable.
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