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Abstract. The article deals with the solution of the problem of bending of a hinged multilayer beam
under the normal uniformly distributed load and induced axial forces. The interaction between
layers is accomplished by the contact layer in which the substances of adhesive and substrate are
mixed. We will consider the contact layer as the transversal anisotropic medium with such
parameters that it can be represented as a set of short elastic rods, which are not connected to each
other. The solution is obtained in the form of decomposition into Fourier series of sines. There is an
example of the calculation of a three-layer beam. The convergence of the obtained solution is
analyzed according to the number of accounted members of the decomposition

Introduction

The solution of the problem of the bending of a multilayer beam is of great complexity, since the
order of the resolving system of equations is proportional to the number of layers. Analytical
solutions can be obtained only for two and three-layer beams. For the solution, numerical methods
are most often used. In this paper, the authors propose an analytic solution in the form of
decomposition into Fourier series.

Statement of Problem

The Initial System of Equations. The initial system of differential equations obtained in [1] for a
multilayer beam bending problem (Fig. 1) can be written as

Fig. 1 Model of multilayer beam.
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The Eq. (1) are composed of the following values:
,k kNv –displacement and the axial force in the layer k respectively;

,k kD B –averaged bending stiffness and tensile stiffness of the layer k is determined from the

expressions
2; ;

k k

k k k k k k k
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kE –Young's modulus of layer k ;

b – beam width;

,k ke e− + – the distance from the top and bottom edge of the layer k to the neutral axis

respectively,
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kξ – variable, calculated from the top edge of the layer k ;

kh – thickness of layer k ;

,k kg e∗ ∗ – averaged shear stiffness and tensile stiffness of the layer k is determined from the

expressions,
* *

* *
; .k k

k k

k k

G E
g e

h h
∗ ∗= =

Here and further, all values marked with * refer to a contact layer.

,f kN – induced forces in the layer k due to the presence of pre-tension, temperature etc.;

kq – normal uniformly distributed load in the layer k .

From the system of equations (1) by substituting 0...k m= , where 1m+ is the number of layers,

it is possible to obtain special cases of resolving equations.
Boundary Conditions.

Fig. 2 The model.

We will consider the hinged beam (Fig. 2), the boundary conditions for which can be written as:
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For these boundary conditions, the solution of the system of equations (1) can be obtained in the
form of decomposition into the Fourier series of sines, as in this case all the boundary conditions
will be satisfied.

The Decomposition of Functions in Fourier Series

The Decomposition of Initial Functions in Fourier Series. In general case the decomposition of
an arbitrary function into Fourier series of sines with a period of T l= in the interval 0...x l=

written as
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The normal uniformly distributed load and induced forces also need to be decomposed in Fourier
series
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The Transformation of the Initial System of Equations. Let us substitute expressions (4) and (5)
in the system of Eq. (1). After transformations we obtain a system of two resolving algebraic
equations for the layer k .
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in which
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The system of resolving equations for the beam can be obtained from the equations (6) and
represented in matrix form for the n -th member of the decomposition as follows:

[ ] [ ] [ ] ,
n n n

A x η⋅ = (8)

where

[ ]
n

A – coefficient matrix of size 2 2m m⋅ × ⋅ ;

[ ]
n

x – vector of unknowns of length 2 m⋅ ;

[ ]
n

η – vector of loads of length 2 m⋅ .

The solution of the system of Eq. (8) is the expression
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−
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Calculating the coefficients in the first and the last two rows of the matrix [ ]
n

A and the vector

[ ]
n

η it is necessary to consider that 0 1 0 1 0m mg g e e∗ ∗ ∗ ∗
+ += = = = .

Example of Calculation

A Three-Layer Beam Model. Resolving Equations for the Three-Layer Beam. As an example
of calculation, we will consider a three-layer beam (Fig. 3). This beam consists of two outer layers
of carbon fiber and an inner layer of syntactic based on hollow glass microspheres. Similar
materials are increasingly used in aircraft construction and mechanical engineering where it is
necessary to ensure high stiffness, strength and lower mass.

Fig. 3 Three-layer beam model.
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It should be noted that the layers of epoxy resin that bind the substrate are not taken into account
in this scheme.

In this case, the resolving system of Eq. (8) takes the form
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The expressions for the n -th members of the Fourier series are not listed in this article, as they
are cumbersome.

The following geometrical and physical-mechanical characteristics [2] are applied by the
calculation

5 3
0 2 1 0 2 1

4 4
1 2 1 2

2 mm; 30 mm; 10 mm; 3.5 10 MPa; 2.6 10 MPa;

kN MPa MPa
1 ; 500mm; 10 ; 10 .

m mm mm

h h h b E E E

q l g g e e∗ ∗ ∗ ∗

= = = = = = ⋅ = ⋅

= = = = = =

From the solution of the system (10) displacement and axial forces are determined for each of
the layers. The remaining parameters of the beam are expressed through them as follows
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The Research of the Convergence of the Analytical Solutions in the Series in Comparison to
the Numerical Solution. Below are the curves for the displacement in the middle of the beam and
tangential stresses on the edge of the section. These curves demonstrate an error of the series
solution compared to the numerical solution for various number of decomposition members. For the
other parameters, the curves are similar.

Fig. 4 Error of displacement at layer 1. Fig. 5 Error of tangential stress of contact
layer 1.

For the numerical solution of the initial system of equations Runge-Kutt method of 5-th order is

applied with the maximum acceptable error of 810− .
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The error is calculated as follows:
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where, maxn – number of accounted members of the decomposition.

The convergence of current values of layer 0 analyzed separately due to the presence of edge
effects. Below this curves

Fig. 6 Bending moment of layer 0. Fig. 7 Shear force of layer 0.

Below are relative curves that reflect the changes of the stress-strain state of a three-layer beam
in layer 1 at 20 accounted decomposition members and in the layer 0 at 500 decomposition
members.

The valuation is obtained according to the following expression:

( )
( )
[ ]

.
max ( )

f x
f x

f x
= (13)

Fig. 8. Displacement, rotation angle, bending
moment and shear force of layer 1.

Fig. 9. Displacement, rotation angle, bending
moment, shear force of layer 0 and tangential

stress of contact layer 1.

The axial forces are not displayed on the presented graphs due to the fact that the nature of their
distribution coincides with the distribution of bending moments.
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Conclusion

The method of solving the problem of the bending of a hinged multilayer beam has been
developed in the form of the decomposition in Fourier series of sines. This method is presented in a
matrix form. As a result, the solution can be easily obtained with the use of software of linear
algebra.

It should be noted that the series for displacements, rotation angles, bending moments and axial
forces are fast enough to converge. Therefore, a solution with an acceptable error of 5% can be
obtained at 10 accounted members of the decomposition. For the transversal forces and tangential
stresses, the solution with 20 accounted decomposition members has a similar error. However, for
the analysis of stress-strain state in the zone of the edge effect it is necessary to consider solutions
based on circa 200-500 decomposition members.

Material of strength and creep of polymer materials can also be found in the works [3 -7].
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