
lmaxRPCls: An Algorithm Utilizing Light Symmetry

for Approximating maxRPC in Constraint

Programming

Zhiying Xu2, Shihui Song3 and Zhanshan Li1,3
1Laboratary of Symbol Computation and Knowledge Engineering, Education Ministry, China

2School of Computer Science, Jilin University, Changchun, China
3School of Software, Jilin University, Changchun, China

Abstract—Constraint satisfaction problem (CSP) can be widely

applied in many areas. This paper investigates the maximum

restricted path consistency algorithm. There is a large quantity

of useless checks in the process of searching for a PC-support

with the most popular algorithm lmaxRPC3rm. Since

lmaxRPC3rm has to examine the whole domain of a variable to

ascertain whether a PC-support exists. The efficiency of the

search can be improved by eliminating such useless checks.

Firstly, this paper analyses the features which accounts for the

existence of these ineffective checks. And then, this paper

discusses some methods of solving these problems. Afterwards, a

new data structure is put forward to strengthen residual

supports and weaken the use of multidirectionality to narrow

the range of search. A new algorithm, lmaxRPCls, which

exploits the results above is proposed and it is proved that

lmaxRPCls is correct and complete. It is also proved that the

time complexity of this new algorithm is better than that of

lmaxRPC3rm. Experimental results show that lmaxRPCls

performs better in most benchmark instances and it can improve

the performance by 65% in the best case.

Keywords-constraint programming; symmetry; maxRPC

I. INTRODUCTION

Constraint satisfaction problem (CSP) is a classical branch
of artificial intelligence, and many practical problems can be
explained by the constraint satisfaction problems. However,
the solution to a CSP is NP-hard [1]. The general strategy is to
introduce the constraint propagation techniques [2] in the
backtracking search. Constraint propagation is usually based
on some local consistency techniques. Classical consistency
levels involve arc consistency (AC) [3], singleton arc
consistency (SAC) [4], path consistency (PC) [5], and
max-restricted path consistency (maxRPC) [6]. The pruning
ability of maxRPC lies between the SAC and AC, providing a
more reasonable balance between the consistency level and
computational cost. At present, many scholars’ research work
mainly focus on generating the problem-solving model [7, 8],
boolean satisfiability problem (SAT) [9], and maximum
satisfaction CSP problem [10].

As far as we know, there are four main algorithmic
frameworks enforcing maxRPC. The first algorithm,
maxRPC1, was presented by Christian Bessiere [6].
maxRPC1 is based on the fine-grained algorithm AC-6 [11],
with an optimal time complexity O(end3) and space
complexity O(end). maxRPC2 [13], proposed by Fabrizio
Grandoni, which utilizes ideas from AC2001 / 3.1 [12]. The
time complexity is the same as maxRPC1 while the space

complexity is O(ed). Later, Julien Vion et al. proposed a new
coarse-grained algorithm maxRPCrm[14]. Similar to AC3rm
[15], residual techniques were exploited to reduce redundant
checks and the time and space complexity is O(en2d4) and
O(end) respectively. Although maxRPC2 has the optimal time
complexity and suboptimal space complexity, maxRPCrm is
still advantageous during search. Recently, Thanasis
Balafoutis et al. proposed two coarse-grained algorithms,
maxRPC3 and maxRPC3rm [16]. maxRPC3 takes advantages
of maxRPC2 and AC2001 / 3.1, while maxRPC3rm is similar
to maxRPCrm and AC3rm. The time complexity of these two
algorithms is O(end3) and O(en2d4) and the space complexity
is O(end) and O(ed) respectively. At the same time, the most
popular algorithm MAC has attracted a lot of attention.
Chavalit Likitvivatanavong et al. proposed the ACS-resOpt
algorithm [17], which utilizes a new data structure for the
process of searching for AC-support to avoid searching the
entire domain of a variable. Afterwards, Thanasis Balafoutis
et al. exploited ideas from ACS-resOpt algorithm in
maxRPC3rm and maxRPC3 and proposed the
lmaxRPC3rm-resOpt algorithm. Although the algorithm has
decreased the theoretical complexity, but experimentation
shows it achieve a poor performance due to complicated
operations on data structures [18].

Further experiments show that lmaxRPC3 and
lmaxRPC3rm are best suited in the preprocessing phase, while
lmaxRPC3rm is best suited to use during search [19].

This paper analyzes the characteristics of the popular
maxRPC algorithms: the search for a PC-support must be
done with iterating the entire domain. This paper then
discusses the method of reducing such checks and finds that it
is possible to narrow the search range if the residual technique
is strengthened and the symmetry is weakened in some places.
Then, a new algorithm lmaxRPCls based on this conclusion is
proposed. Experimental results show that lmaxRPCls is much
faster in most test cases, and can effectively reduce redundant
checks with the highest performance increase by 35%. At the
same time, the performance in those problems with a larger
domain is more prominent, which is more valuable in many
practical problems.

II. BACKGROUND

A constraint satisfaction problem (CSP) is defined as a
triple (X, D, C) where: X = {x1, x2, … , xn } is a set of n
variables, D = {D(x1), D(x2,…, D(xn)} is a set of domains,

one for each variable, with maximum cardinality d , and C =

2nd International Conference on Control, Automation, and Artificial Intelligence (CAAI 2017)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research, volume 134

382

{ 1c
, 2c

, … , ec
} is a set of e constraints. Each constraint c is

a tuple (scp(c),rel(c)) where scp(c) = {x1, x2, … , rx
} is an

ordered subset of X, rel(c) is a subset of Cartesian product

D(1x
), D(2x

),..., D(x_r) which represents the allowed tuples
for the variables in scp(c). In this paper, we focus on binary

CSPs, and a constraint can be expressed by ijc
 that specifies a

scope scp(ijc
) = { ix

, jx
}. A tuple τ rel(ijc

) ={ iv
, jv

},

where iv
 D(ix

) and jv
 D(jx

), is valid iff both iv
and

jv
 are valid. A value iv

 is valid iff it is not removed from the
current domain of the corresponding variable.

In a binary CSP, a value iv
 D(ix

) is arc consistent (AC)

iff for each constraint ijc
 there exists a value iv

 D(jx
)

called an AC-support s.t (iv
, jv

) is a valid tuple. A variable
is AC iff all its values are AC and a problem P is AC iff all the
variables are AC.

A value iv
 in D(ix

) is maximum restricted path

consistent (maxRPC) iff for each constraint ijc
,

there exists a value iv
 in D(ix

) which is an AC-support

for iv
 and the pair (iv

, jv
) is path consistent (PC). A pair

(iv
, jv

) is PC iff for any third variable kx
, there exists a

value kv
 D(kx

) s.t kv
 is an AC-support for both iv

 and

jv
. In this case, jv

is called a PC-support for iv
 and kv

 is a

PC-witness for the tuple (iv
, jv

).

III. NEW ALGORITHM

The reason why performance is not significantly improved
with lmaxRPC3rm is that the search for a PC-support always
involves the entire domain and make a lot of redundant checks.
At the same time, lmaxRPC3 eliminates this redundancy by
ensuring that every value will be checked at most once. But its
performance is similar to lmaxRPC3rm due to its inability to
exploit symmetry. Now we combine these two important
techniques together.

Algorithm 1 is similar to that of lmaxRPC3rm while the
main differences are in Algorithm 2. The algorithm
checkPCSupLoss will firstly compute the search start position.
In order to do this, we use LastStart to record the search start

startv
 (line 3). After that, it will check each value behind

startv
 (line4). The algorithm will call isCnst to check whether

the current value jv
 is consistent with iv

. The

implementation of isCnst is easy and omitted here. For jv

compatible with iv
, the algorithm will call checkPCWitLoss

to look for PC-witnesses (line 5).

If checkPCWitLoss returns true, jv
 is a PC-support for vi.

At this point, the algorithm will update LastPC(ix
, iv

, jx
)

to record the residual support. Since a PC-support is also an

AC-support, the algorithm will also update LastAC(ix
, iv

,

jx
). Then the value of LastStart(ix

, iv
, jx

) will be

modified to the current jv
 position. At the same time, in

order to use the symmetry, the algorithm will first detect

whether LastPC(jx
, jv

, ix
) exists, and if it does not exist,

it will update LastPC(jx
, jv

, ix
) for the current iv

. In

Algorithm 1: lmaxRPCtr: Boolean

 begin

1 initialization

2 P = currently assigned variables

3 while (P ≠ )

4 P = P – {xj}

5 for each xi  X, cij  C

6 for each vi  di

7 if (not checkPCSupLoss(vi, xj))

8 delete vi

9 P = P  {xi}

10 if (di = )

11

12

 return false

return true

 end

Algorithm 2: checkPCSupLoss: Boolean

 begin

1 if (LastPC(xi, vi, xj)  dj)

2 return true

3 vstart = LastStart(xi, vi, xj)

4 for each vj  dj, vj > vstart

5 if isCnst(vi, vj) and checkPCWitLoss(vi, vj)

6 LastPC(xi, vi, xj) = vj

7 LastAC(xi, vi, xj) = vj

8 LastStart(xi, vi, xj) = vj

9 if LastPC(xj, vj, xi)  di

10 LastPC(xj, vj, xi) = vi

 end

Advances in Intelligent Systems Research, volume 134

383

order to ensure the correctness of the algorithm, since the

PC-support is obtained by symmetry, the LastStart(jx
, jv

,

ix
) will no longer be updated. Thus, when a PC-support fails,

the corresponding search will start from the previous position

pointed by LastStart(jx
, jv

, ix
), so that no value is

ignored.

If checkPCWitLoss returns false, the algorithm will

continue to try the next value in jd
, and if the value is already

the last one in the domain, checkPCSupLoss will return false,

indicating that iv
 has no PC-support in jx

.

The function checkPCWitLoss is the same as that of
lmaxRPC3rm.

IV. EXPERIMENTATION

We have experimented with binary table constraint CSPs
taken from C.Lecoutre's XCSP repository which have been
used in CSP competitions. Excluding those instances that are
extremely hard for all algorithms, the evaluation involves
1200 instances. More details about these classes of problems
could be found in C.Lecoutre's homepage. All tests are run on
a Intel(R) Core(TM) i5-6300HQ CPU @2.30GHz with 8GB
RAM processing on Windows.

TABLE I. EXPERIMENTAL RESULTS: TIME (T) AND CHECKS (CC)

It can be seen that the performance of lmaxRPCls is

superior to that of the most popular algorithm in most test
cases. Most performance is improved by 10% to 35%, with
performance in rand-2-23-15-306 improved by 65%. At the
same time, the number of checks are largely reduced.

On tightness problems, for example, when the problem is
getting harder, the improvement is more obvious. On tightness
0.1, lmaxRPCls algorithm performance is poor. This is

because the problem has a low density of constraints and less
ineffective PC-support, and the use of new data structures has
led to a reduction in performance. On langford problem, our
algorithm can be much faster than lmaxRPC3rm. Specifically,
the performance increase can be up to 30%.

For the rest test cases, the reduction in checks is positively
reflected on performance improvement. To be specific, when
the size of domain is larger, the improvement is more obvious
which can be referred from rand problems. On rand problems,
the number of checks have been significantly reduced. And
then this advantage is reflected on mean run time.

V. CONCLUSION

Maximum restricted path consistency has a more powerful
pruning ability, but its search for a PC-support requires a lot
of computational cost. This paper analyzes the combination of
symmetry and residual techniques and gives a new algorithm
exploits more lightweight multidirectionality to ensure
significantly less checks. Experimentation shows that
lmaxRPCls can reduce checks on almost every test instance
and is much faster than the most popular algorithm. When the
domain of a problem gets larger, the improvement is more
obvious.

REFERENCES

[1] E.C. Freuder, A.K. Mackworth. Constraint satisfaction: An

emerging paradigm, J. Foundations of Artificial

Intelligence. 2 (2006): 13-27.
[2] C. Bessiere. Constraint propagation. Foundations of Artificial

Intelligence, J. 2 (2006): 29-83.

[3] A.K. Mackworth. Consistency in networks of relations, J. Artificial
intelligence 8.1 (1977): 99-118.

[4] R. Debruyne, C. Bessiere. Some practicable filtering techniques for the
constraint satisfaction problem, C. In Proceedings of IJCAI’97. 1997.

[5] U. Montanari. Networks of constraints: Fundamental properties and
applications to picture processing, J. Information sciences 7 (1974):
95-132.

[6] R. Debruyne, C. Bessiere. From restricted path consistency to
max-restricted path consistency, C. Principles and Practice of
Constraint Programming-CP97 (1997): 312-326.

[7] K. Xu, F. Boussemart, F. Hemery, C. Lecoutre. Random constraint
satisfaction: Easy generation of hard (satisfiable) instances,
J. Artificial Intelligence 171.8 (2007): 514-534.

[8] J. Gao, J. Wang, M. Yin. Experimental analyses on phase transitions in
compiling satisfiability problems, J. Science China Information
Sciences 58.3 (2015): 1-11.

[9] S. Cai, K. Su. Comprehensive Score: Towards Efficient Local Search for
SAT with Long Clauses, C. IJCAI. 2013.

[10] S. Cai, K. Su. Local search for Boolean Satisfiability with configuration
checking and subscore, J. Artificial Intelligence 204 (2013): 75-98.

[11] C. Bessiere. Arc-consistency and arc-consistency again, J. Artificial
intelligence 65.1 (1994): 179-190.

[12] F. Grandoni, G. Italiano. Improved algorithms for max-restricted path
consistency, C. Principles and Practice of Constraint
Programming–CP 2003. Springer Berlin/Heidelberg, 2003.

[13] C. Bessière, J.C. Régin. Refining the Basic Constraint Propagation
Algorithm, C. IJCAI. Vol. 1. 2001.

[14] J. Vion, R. Debruyne. Light algorithms for maintaining max-RPC
during search, C. SARA-2009 Eighth Symposium on Abstraction,
Reformulation, and Approximation. 2009.

[15] C. Lecoutre, F. Hemery. A Study of Residual Supports in Arc
Consistency, C. IJCAI. Vol. 7. 2007.

[16] T. Balafoutis, A. Paparrizou, K. Stergiou, T. Walsh. Improving the
performance of maxRPC, C. International Conference on Principles
and Practice of Constraint Programming. Springer Berlin Heidelberg,
2010.

instance
lmaxRPC3rm lmaxRPCls

t cc t cc

BH-4-4-e-3 3.303 40768 3.6 42032

BH-4-4-e-8 3.911 40768 4.2 42032

composed-25-10-

20-3
27.2 23053 22.8 17965

composed-25-10-

20-5
25.5 18163 21.0 17137

composed-25-10-

20-9
28.2 19467 22.1 18790

frb30-15-5 14.5 60562 9.4 59767

langford-3-11 162.2 276159 110.1 285144

rand-23-23-253 18.0 63819 18.4 60891

rand-26-26-325 43.4 90725 25.0 84528

rand-2-30-15-306 9.7 37863 3.4 34767

tightness0.1 163.3 59109 160.8 57768

tightness0.2 135.8 56412 129.9 50749

tightness0.35 421.5 77800 315.8 66634

tightness0.8 687.1 30240 492.3 30156

tightness0.9 1016.1 16480 605.9 16377

Advances in Intelligent Systems Research, volume 134

384

https://scholar.google.com/citations?user=bFRpFuUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=4S6HErgAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=vKgzZAsAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=Om3gYEYAAAAJ&hl=en&oi=sra

[17] C. Likitvivatanavong, Y. Zhang, S. Shannon, J. Bowe, E.C. Freuder.
Arc Consistency during Search, C. IJCAI. Vol. 7. 2007.

[18] T. Balafoutis, A. Paparrizou, K. Stergiou, T. Walsh. New algorithms for
max restricted path consistency, J. Constraints 16.4 (2011): 372-406.

[19] J. Guo, Z. Li, L. Zhang, X. Geng. MaxRPC algorithms based on bitwise
operations, C. International Conference on Principles and Practice of
Constraint Programming. Springer Berlin Heidelberg, 2011.

Advances in Intelligent Systems Research, volume 134

385

https://scholar.google.com/citations?user=1W7pOqkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=4S6HErgAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=vKgzZAsAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=Om3gYEYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=oOQ6x0IAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=I-gOuU8AAAAJ&hl=en&oi=sra

