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Abstract—Constraint satisfaction problem (CSP) can be widely 

applied in many areas. This paper investigates the maximum 

restricted path consistency algorithm. There is a large quantity 

of useless checks in the process of searching for a PC-support 

with the most popular algorithm lmaxRPC3rm. Since 

lmaxRPC3rm has to examine the whole domain of a variable to 

ascertain whether a PC-support exists. The efficiency of the 

search can be improved by eliminating such useless checks. 

Firstly, this paper analyses the features which accounts for the 

existence of these ineffective checks. And then, this paper 

discusses some methods of solving these problems. Afterwards, a 

new data structure is put forward to strengthen residual 

supports and weaken the use of multidirectionality to narrow 

the range of search. A new algorithm, lmaxRPCls, which 

exploits the results above is proposed and it is proved that 

lmaxRPCls is correct and complete. It is also proved that the 

time complexity of this new algorithm is better than that of 

lmaxRPC3rm. Experimental results show that lmaxRPCls 

performs better in most benchmark instances and it can improve 

the performance by 65% in the best case. 
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I. INTRODUCTION 

Constraint satisfaction problem (CSP) is a classical branch 
of artificial intelligence, and many practical problems can be 
explained by the constraint satisfaction problems. However, 
the solution to a CSP is NP-hard [1]. The general strategy is to 
introduce the constraint propagation techniques [2] in the 
backtracking search. Constraint propagation is usually based 
on some local consistency techniques. Classical consistency 
levels involve arc consistency (AC) [3], singleton arc 
consistency (SAC) [4], path consistency (PC) [5], and 
max-restricted path consistency (maxRPC) [6]. The pruning 
ability of maxRPC lies between the SAC and AC, providing a 
more reasonable balance between the consistency level and 
computational cost. At present, many scholars’ research work 
mainly focus on generating the problem-solving model [7, 8], 
boolean satisfiability problem (SAT) [9], and maximum 
satisfaction CSP problem [10].  

As far as we know, there are four main algorithmic 
frameworks enforcing maxRPC. The first algorithm, 
maxRPC1, was presented by Christian Bessiere [6]. 
maxRPC1 is based on the fine-grained algorithm AC-6 [11], 
with an optimal time complexity O(end3) and space 
complexity O(end). maxRPC2 [13], proposed by Fabrizio 
Grandoni, which utilizes ideas from AC2001 / 3.1 [12]. The 
time complexity is the same as maxRPC1 while the space 

complexity is O(ed). Later, Julien Vion et al. proposed a new 
coarse-grained algorithm maxRPCrm[14]. Similar to AC3rm 
[15], residual techniques were exploited to reduce redundant 
checks and the time and space complexity is O(en2d4) and 
O(end) respectively. Although maxRPC2 has the optimal time 
complexity and suboptimal space complexity, maxRPCrm is 
still advantageous during search. Recently, Thanasis 
Balafoutis et al. proposed two coarse-grained algorithms, 
maxRPC3 and maxRPC3rm [16]. maxRPC3 takes advantages 
of maxRPC2 and AC2001 / 3.1, while maxRPC3rm is similar 
to maxRPCrm and AC3rm. The time complexity of these two 
algorithms is O(end3) and O(en2d4) and the space complexity 
is O(end) and O(ed) respectively. At the same time, the most 
popular algorithm MAC has attracted a lot of attention. 
Chavalit Likitvivatanavong et al. proposed the ACS-resOpt 
algorithm [17], which utilizes a new data structure for the 
process of searching for AC-support to avoid searching the 
entire domain of a variable. Afterwards, Thanasis Balafoutis 
et al. exploited ideas from ACS-resOpt algorithm in 
maxRPC3rm and maxRPC3 and proposed the 
lmaxRPC3rm-resOpt algorithm. Although the algorithm has 
decreased the theoretical complexity, but experimentation 
shows it achieve a poor performance due to complicated 
operations on data structures [18]. 

Further experiments show that lmaxRPC3 and 
lmaxRPC3rm are best suited in the preprocessing phase, while 
lmaxRPC3rm is best suited to use during search [19].  

This paper analyzes the characteristics of the popular 
maxRPC algorithms: the search for a PC-support must be 
done with iterating the entire domain. This paper then 
discusses the method of reducing such checks and finds that it 
is possible to narrow the search range if the residual technique 
is strengthened and the symmetry is weakened in some places. 
Then, a new algorithm lmaxRPCls based on this conclusion is 
proposed. Experimental results show that lmaxRPCls is much 
faster in most test cases, and can effectively reduce redundant 
checks with the highest performance increase by 35%. At the 
same time, the performance in those problems with a larger 
domain is more prominent, which is more valuable in many 
practical problems.  

II. BACKGROUND 

A constraint satisfaction problem (CSP) is defined as a 
triple (X, D, C) where: X =  {x1, x2, … , xn } is a set of n 
variables, D = {D(x1), D(x2,…, D(xn)} is a set of domains, 

one for each variable, with maximum cardinality d , and C = 
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{ 1c
, 2c

, … , ec
} is a set of e constraints. Each constraint c is 

a tuple (scp(c),rel(c)) where scp(c) = {x1, x2, … , rx
} is an 

ordered subset of X, rel(c) is a subset of Cartesian product 

D( 1x
), D( 2x

),..., D(x_r) which represents the allowed tuples 
for the variables in scp(c). In this paper, we focus on binary 

CSPs, and a constraint can be expressed by ijc
 that specifies a 

scope  scp( ijc
) = { ix

, jx
}. A tuple τ rel( ijc

) ={ iv
, jv

}, 

where iv
  D( ix

) and jv
 D( jx

),  is valid iff both iv
and 

jv
 are valid. A value iv

 is valid iff it is not removed from the 
current domain of the corresponding variable. 

In a binary CSP, a value iv
  D( ix

) is arc consistent (AC) 

iff for each constraint ijc
 there exists a value iv

  D( jx
) 

called an AC-support s.t ( iv
, jv

)  is a valid tuple. A variable 
is AC iff all its values are AC and a problem P is AC iff all the 
variables are AC. 

A value iv
 in D( ix

) is maximum restricted path 

consistent (maxRPC) iff for each constraint ijc
,  

there exists a value iv
 in D( ix

) which is an AC-support 

for iv
 and the pair ( iv

, jv
) is path consistent (PC). A pair 

( iv
, jv

) is PC iff for any third variable kx
, there exists a 

value kv
 D( kx

) s.t kv
 is an AC-support for both iv

 and 

jv
. In this case,  jv

is called a PC-support for iv
 and kv

 is a 

PC-witness for the tuple ( iv
, jv

). 

III. NEW ALGORITHM 

The reason why performance is not significantly improved 
with lmaxRPC3rm is that the search for a PC-support always 
involves the entire domain and make a lot of redundant checks. 
At the same time, lmaxRPC3 eliminates this redundancy by 
ensuring that every value will be checked at most once. But its 
performance is similar to lmaxRPC3rm due to its inability to 
exploit symmetry. Now we combine these two important 
techniques together. 

 

 

Algorithm 1 is similar to that of lmaxRPC3rm while the 
main differences are in Algorithm 2. The algorithm 
checkPCSupLoss will firstly compute the search start position. 
In order to do this, we use LastStart to record the search start 

startv
 (line 3). After that, it will check each value behind 

startv
 (line4). The algorithm will call isCnst to check whether 

the current value jv
 is consistent with iv

. The 

implementation of isCnst is easy and omitted here. For jv
 

compatible with iv
, the algorithm will call checkPCWitLoss 

to look for PC-witnesses (line 5). 

If checkPCWitLoss returns true, jv
 is a PC-support for vi. 

At this point, the algorithm will update LastPC( ix
, iv

, jx
) 

to record the residual support. Since a PC-support is also an 

AC-support, the algorithm will also update LastAC( ix
, iv

, 

jx
).  Then the value of LastStart( ix

, iv
, jx

)  will be 

modified to the current jv
 position. At the same time, in 

order to use the symmetry, the algorithm will first detect 

whether LastPC( jx
, jv

, ix
) exists, and if it does not exist, 

it will update LastPC( jx
, jv

, ix
) for the current iv

. In 

Algorithm 1: lmaxRPCtr: Boolean 

  begin 

1 initialization 

2 P = currently assigned variables 

3 while (P ≠ ) 

4       P = P – {xj} 

5       for each xi  X, cij  C 

6             for each vi  di 

7                   if ( not checkPCSupLoss(vi, xj) ) 

8                        delete vi 

9                        P = P  {xi} 

10             if (di = ) 

11 

12 

                 return false 

return true 

 end 

Algorithm 2: checkPCSupLoss: Boolean 

  begin 

1 if ( LastPC(xi, vi, xj)   dj )  

2      return true 

3   vstart = LastStart(xi, vi, xj) 

4   for each vj  dj, vj  > vstart 

5         if isCnst(vi, vj) and checkPCWitLoss(vi, vj) 

6              LastPC(xi, vi, xj) = vj 

7              LastAC(xi, vi, xj) = vj 

8              LastStart(xi, vi, xj) = vj 

9         if LastPC(xj, vj, xi)  di 

10              LastPC(xj, vj, xi) = vi 

 end 
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order to ensure the correctness of the algorithm, since the 

PC-support is obtained by symmetry, the LastStart( jx
, jv

, 

ix
)  will no longer be updated. Thus, when a PC-support fails, 

the corresponding search will start from the previous position 

pointed by LastStart( jx
, jv

, ix
), so that no value is 

ignored. 

If checkPCWitLoss returns false, the algorithm will 

continue to try the next value in jd
, and if the value is already 

the last one in the domain, checkPCSupLoss will return false, 

indicating that iv
 has no PC-support in jx

. 

The function checkPCWitLoss is the same as that of 
lmaxRPC3rm. 

IV. EXPERIMENTATION 

We have experimented with binary table constraint CSPs 
taken from C.Lecoutre's XCSP repository which have been 
used in CSP competitions. Excluding those instances that are 
extremely hard for all algorithms, the evaluation involves 
1200 instances. More details about these classes of problems 
could be found in C.Lecoutre's homepage. All tests are run on 
a Intel(R) Core(TM) i5-6300HQ CPU @2.30GHz with 8GB 
RAM processing on Windows.  

TABLE I. EXPERIMENTAL RESULTS: TIME (T) AND CHECKS (CC) 

 
It can be seen that the performance of lmaxRPCls is 

superior to that of the most popular algorithm in most test 
cases. Most performance is improved by 10% to 35%, with 
performance in rand-2-23-15-306 improved by 65%. At the 
same time, the number of checks are largely reduced.  

On tightness problems, for example, when the problem is 
getting harder, the improvement is more obvious. On tightness 
0.1, lmaxRPCls algorithm performance is poor. This is 

because the problem has a low density of constraints and less 
ineffective PC-support, and the use of new data structures has 
led to a reduction in performance. On langford problem, our 
algorithm can be much faster than lmaxRPC3rm. Specifically, 
the performance increase can be up to 30%. 

For the rest test cases, the reduction in checks is positively 
reflected on performance improvement. To be specific, when 
the size of domain is larger, the improvement is more obvious 
which can be referred from rand problems. On rand problems, 
the number of checks have been significantly reduced. And 
then this advantage is reflected on mean run time. 

V. CONCLUSION 

Maximum restricted path consistency has a more powerful 
pruning ability, but its search for a PC-support requires a lot 
of computational cost. This paper analyzes the combination of 
symmetry and residual techniques and gives a new algorithm 
exploits more lightweight multidirectionality to ensure 
significantly less checks. Experimentation shows that 
lmaxRPCls can reduce checks on almost every test instance 
and is much faster than the most popular algorithm. When the 
domain of a problem gets larger, the improvement is more 
obvious. 
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