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The effect of heterogeneity on order statistics has attracted much attention in recent decades. In this paper, first,
we discuss stochastic comparisons of extreme order statistics from independent heterogeneous exponentiated
scale samples. These comparisons are made with respect to usual stochastic, reversed hazard rate and likelihood
ratio orderings. Then, in the presence of the Archimedean copula or survival copula for the random variables,
we obtain the usual stochastic order of the sample extremes. In addition, some examples and applications are
illustrated.
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1. Introduction

Suppose order statistics arising from random variables X1, . . . ,Xn are denoted by X1:n ≤ . . . ≤ Xn:n.
Then it is well-known that the kth order statistic of a sample of size n characterizes the lifetime of a
(n− k+ 1)-out-of-n system. Thus, the study of lifetimes of k-out-of-n systems is equivalent to the
study of the stochastic properties of order statistics. In particular, a 1-out-of-n system corresponds to
a parallel system and an n-out-of-n system corresponds to a series system. In extreme value theory,
the extreme large loss such as stock market crashing or extreme short arrival times of disaster events
could be naturally described by extreme order statistics. Examples and theoretical developments of
extreme order statistics in both areas could be found in [2] and [7]. Also, the sample extremes
have nice applications in auction theory. For example, the maximum and minimum define the final
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price of the sealed-bid first-price auction (FPA) and the first-price procurement auction. One may
refer to [29], [28] and [19] for comprehensive expositions of auction theory, and we refer readers
to [23] and [8] for applications of order statistics in auction theory. Besides, order statistics play a
role in statistical inference, operation research, economics and many other applied probability fields.
There are considerable studies on order statistics during the past several decades and a large number
of which are on stochastic comparisons of order statistics from heterogeneous and homogeneous
samples. Due to the complexity of the distribution theory, most existing research assumes the mutual
independence among concerned random variables. For comprehensive references one may refer
to [5], [15] and [3].

A random variable X belongs to the scale family of distributions if X ∼ F(λx), where λ > 0
and F is an absolutely continuous distribution function. Most of the parametric families of practical
importance have a scale parameter, such as exponential, Weibull, gamma, and Pareto, etc. The scale
model, also known in the literature as the proportional random variables model, is important in
various fields of probability and statistics, see for example [32] and [10], among others. The scale
model is termed as accelerated life models in the context of life testing because the scale parameter
acts to control the rate at which time passes. There is an extensive literature on stochastic orderings
when the observations follow from the exponential distribution with different scale parameters, see
for instance, [32], [33], [6], [12], [17], [15] and the references therein. A natural way to extend
these works is considering the scale model since it includes the exponential distribution, among
others. Firstly, Khaledi and Kochar [11] studied conditions under which series and parallel systems
consisting of components with lifetimes from the scale family of distributions are ordered in the
hazard rate and the reverse hazard rate orderings, respectively. Then, Kochar and Torrado [16] have
compared the magnitudes of two largest order statistics from the scale model when one set of scale
parameters majorizes the other one. Li et al. [25] studied order statistics from random variables
following the scale model. In the presence of the Archimedean copula or survival copula for the
random variables, they obtained the usual stochastic order of the sample extremes.

Consider a distribution function F , and let α > 0. We know that G(x) = (F(x))α is also a
distribution function and is known as exponentiated distribution. It is also known as proportional
reversed hazard rate model (PRHRM). A flexible model which belongs to the exponentiation fam-
ily, is the exponentiated Weibull (EW) distribution proposed by Mudholkar and Srivastava [30]. The
EW distribution is quite adequate for modeling non-monotone failure rates, including the bathtub
shaped hazard rate, which are quite common in reliability and biological studies. Fang and Zhang [9]
and Kundu and Chowdhury [20] stochastically compared two parallel systems each having hetero-
geneous EW components. Recently, a sub-model of the EW distribution, called the generalized
exponential (GE) distribution, has been discussed extensively. Balakrishnan et al. [1] examined the
problem of the stochastic comparison of series and parallel systems with heterogeneous GE compo-
nents. The purpose of this paper is to study the magnitude of extreme order statistics from general
distributions. More specifically, first, we discuss stochastic comparisons of extreme order statistics
from independent heterogeneous exponentiated scale samples. These comparisons are made with
respect to usual stochastic, reversed hazard rate and likelihood ratio orderings. Then, in the pres-
ence of the Archimedean copula or survival copula for the random variables, we obtain the usual
stochastic order of the sample extremes. Some examples and applications are highlighted as well.

Recall that random variable X belongs to the exponentiated scale family of distributions if X ∼
H(x) = [F(λx)]α , where α,λ > 0 and F is an absolutely continuous distribution function. We
denote this family by ES(α,λ ). The exponentiated scale family is flexible enough to accommodate,
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in many cases, for both monotone as well as non-monotone hazard rates. In fact, H(x) is quite
different from F(λx) and need special investigation. For example, if F(λx) is exponential, then its
corresponding PDF is monotone decreasing on the positive half of the real line. However, H(x) =
(1−e−λx)α has a PDF, which is unimodal on [0,∞). Furthermore, while the exponential distribution
has constant hazard rate λ , it can be shown that the generalized exponential H has increasing hazard
rate (IHR), if α > 1, constant hazard rate (CHR), if α = 1, and decreasing hazard rate (DHR) if
α < 1. Let the corresponding density, hazard rate and reverse hazard rate functions of F be f , r and
r̃ respectively. Recall that F is said to be of

(i) Decreasing reversed hazard rate (denoted as DRHR) if r̃(x) is decreasing;
(ii) Increasing hazard rate (denoted as IHR) if r(x) is increasing;
(iii) Decreasing proportional reversed hazard rate (denoted as DPRHR) if xr̃(x) is decreasing.
Notice that the reversed hazard rate function of H is defined by

r̃H(x) = αλ r̃(λx) (1.1)

So that the RHRF of H is proportional to the RHRF of F with proportionality parameter αλ .
Remarks

1 If in ES family, α = λ = 1, then H(x) = F(x), which is also known as baseline distribution.
2 If λ = 1, then H(x) = (F(x))α , which is also as exponentiated distribution.
3 If α = 1, then H(x) = F(λx), which is known as scale family.

The paper is organized as follows: Section 2 deals with different notions of stochastic orders,
majorization and related orders. Some useful lemmas are given in this section. Section 3 contains
the main result of the paper and its applications. Some conclusions are given in Section 4.

2. The Basic Definitions and Some Prerequisites

Throughout this paper, we use the notations R = (−∞,+∞), R+ = [0,+∞) and R++ = (0,+∞),
D+ = {(x1,x2, . . . ,xn) : x1 ≥ x2 ≥ ·· · ≥ xn > 0}, E+ = {(x1,x2, . . . ,xn) : 0 < x1 ≤ x2 ≤ ·· · ≤ xn}. The
term increasing means non-decreasing and decreasing means non-increasing. For any differentiable
function f (.), we write the first derivative of f (t) with respect to t by f ′(t). We mention that all
random variables are nonnegative throughout the paper.

In this section, we recall some notions of stochastic orders, majorization and related orders.
Let X and Y be two univariate random variables with distribution functions F and G, density

functions f and g, the survival functions F̄ = 1−F and Ḡ = 1−G, hazard rate functions rF =

f/F̄ and rG = g/Ḡ, and reverse hazard rate functions r̃F = f/F and r̃G = g/G, respectively. The
following definition contains stochastic orders to compare the magnitudes of two random variables.
For a comprehensive discussion on various stochastic orders, see [34] and [22].

Definition 2.1. Let X and Y be two nonnegative random variables on R++. The random variable X
is said to be smaller than Y in the

(i) likelihood ratio order, denoted by X ≤lr Y , if g(x)/ f (x) is increasing in x ∈ R++,
(ii) hazard rate order, denoted by X ≤hr Y , if rF(x)≥ rG(x) for all x,

(iii) reversed hazard rate order, denoted by X ≤rh Y , if r̃F(x)≤ r̃G(x) for all x,
(iv) usual stochastic order, denoted by X ≤st Y , if F̄(x)≤ Ḡ(x) for all x.
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It is well known that the notion of majorization is quite useful in establishing various inequali-
ties. Let us recall that the notation x(1)≤ x(2)≤ ...≤ x(n) is used to denote the increasing arrangement
of the components of x = (x1, . . . ,xn).

Definition 2.2. The vector x is said to be

(i) weakly submajorized by the vector y (denoted by x �w y) if ∑
n
i= j x(i) ≤ ∑

n
i= j y(i) for all

j = 1, . . . ,n,

(ii) weakly supermajorized by the vector y (denoted by x
w
�y) if ∑

j
i=1 x(i) ≥ ∑

j
i=1 y(i) for all

j = 1, . . . ,n,

(iii) majorized by the vector y (denoted by x
m
�y) if ∑

n
i=1 xi = ∑

n
i=1 yi and ∑

j
i=1 x(i) ≥∑

j
i=1 y(i) for

all j = 1, . . . ,n−1.

Another interesting weaker order related to the majorization order is the p-larger order, intro-
duced in [4].

Definition 2.3. A vector x ∈ Rn
+ is said to be p-larger than the vector y ∈ Rn

+ (denoted by x
p
�y) if

j

∏
i=1

x(i) ≤
j

∏
i=1

y(i), j = 1, . . . ,n.

It is well-known that (cf. [13] and [18])

x
p
�y⇐= x

w
�y⇐= x

m
�y =⇒ x�w y, for x,y ∈ Rn

+,

and,

x
p
�y⇐⇒ (log(x1), . . . , log(xn))

w
�(log(y1), . . . , log(yn))

Lemma 2.1 ( [26], Proposition 3.C.1). If I ⊂ R is an interval and g : I −→ R is convex, then

l(x) = ∑
n
i=1 g(xi) is Schur-convex on In. Consequently, x

m
�y on In implies l(x)≤ l(y).

Lemma 2.2 ( [26], Theorem 3.A.8). For a function φ on A ⊂Rn, x�w (
w
�)y implies φ(x)≤ φ(y)

if and only if it is increasing (decreasing) and Schur-convex on A .

A square matrix is said to be a permutation matrix if each row and each column has a single
unit, and all other entries are zero. There exist n! such matrices of size n× n, each of which is
obtained by interchanging rows (or columns) of the identity matrix. An n× n matrix P = (pi j) is
said to be doubly stochastic if pi j ≥ 0 for i, j = 1, . . . ,n, ∑

n
i=1 pi j = 1, j = 1, . . . ,n and ∑

n
j=1 pi j = 1,

i = 1, . . . ,n. The T-transform matrix has the form Tω = ωIn +(1−ω)Π, where 0≤ ω ≤ 1, In is the
n× n identity matrix and Π is a permutation matrix that just interchanges two coordinates. In the
following definition, various types of multivariate majorization are presented [26].

Definition 2.4. Let A = {ai j} and B = {bi j} be two m× n matrices such that aR
1 , . . . ,a

R
m, and

bR
1 , . . . ,b

R
m are the rows of A, and B, respectively.

(i) A is said to chain majorize B (denoted by A� B) if there exists a finite set of n× n T -
transform matrices Tω1 , . . . ,Tωk such that B = ATω1 . . .Tωk .
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(ii) A is said to majorize B (denoted by A > B) if there exists an n×n doubly stochastic matrix
P such that B = AP.

(iii) A is said to row majorize B (denoted by A >row B) if aR
i

m
�bR

i for i = 1, . . . ,m.

It is known that

A� B =⇒ A > B =⇒ A >row B.

Let

Sn =

{
(x,y) =

[
x1, . . . ,xn

y1, . . . ,yn

]
: xi > 0,yi > 0,and (xi− x j)(yi− y j)≤ 0,

i, j = 1, . . . ,n
}
,

and

Tn =

{
(x,y) =

[
x1, . . . ,xn

y1, . . . ,yn

]
: xi ≥ 1,yi > 0,and (xi− x j)(yi− y j)≤ 0,

i, j = 1, . . . ,n
}
.

For a comprehensive treatment on this topic, see Chapter 15 of [26]. To prove the main results
of this paper, we shall use the following theorems.

Theorem 2.1 ( [1]). A differentiable function ϕ : R4
+ −→ R+ satisfies

ϕ(A)≥ ϕ(B) for all A,B such that A ∈ S2(T2), and A� B (2.1)

if and only if (iff)

(i) ϕ(A) = ϕ(AΠ) for all permutation matrices Π, and for all A ∈ S2(T2); and
(ii) ∑

2
i=1(aik − ai j)(ϕik(A)− ϕi j(A)) ≥ 0 for all j,k = 1,2, and for all A ∈ S2(T2), where

ϕi j(A) =
∂ϕ(A)
∂ai j

.

Theorem 2.2 ( [1]). Let Ψ : R2n
+ −→R+ be a differentiable function, and the function υn : R2n

+ −→
R+ be defined as

υn(A) =
n

∏
i=1

Ψ(a1i,a2i).

Assume that υ2 satisfies (2.1). Then, for A ∈ Sn(Tn), and B = ATω , we have υn(A)≥ υn(B).

Lemma 2.3 ( [1]). Let ω : (0,∞)× (0,1)−→ (−∞,0) be defined as

ω(α, t) =
α t log(t)

1− tα
.

Then,

(i) for each 0 < t ≤ 1, ω(α, t) is increasing with respect to α; and
(ii) for each α ≥ 0, ω(α, t) is decreasing with respect to t.
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Lemma 2.4 ( [13]). The function ψ : Rn
+ −→ R satisfies

x
p
�y =⇒ ψ(x)≤ ψ(y) (2.2)

if and only if;

(i) ψ(ea1 , . . . ,ean) is Schur-convex in (a1, . . . ,an)

(ii) ψ(ea1 , . . . ,ean) is decreasing in ai, for i = 1, . . . ,n,

where ai = log(xi), for i = 1, . . . ,n.

A real function φ is n-monotone on (a,b) ⊆ (−∞,+∞) if (−1)n−2φ (n−2) is decreasing and
convex in (a,b) and (−1)kφ (k)(x) ≥ 0 for all x ∈ (a,b),k = 0,1, . . . ,n− 2, in which φ (i)(.) is the
ith derivative of φ(.). For a n-monotone (n ≥ 2) function φ : [0,+∞) −→ [0,1] with φ(0) = 1 and
limx→+∞ φ(x) = 0, let ψ = φ ,−1 be the pseudo-inverse, then

Cφ (u1, . . . ,un) = φ(ψ(u1)+ . . .+ψ(un)), for allui ∈ [0,1], i = 1, . . . ,n,

is called an Archimedean copula with generator φ . Archimedean copulas cover a wide range of
dependence structures including the independence copula with generator φ(t) = e−t . For more on
Archimedean copulas, readers may refer to [31] and [27].

At the end of this section, we recall a useful lemma, which plays an important role in the proofs
of theorems in Section 4. Note that the two-dimensional case of lemma below had been proved in
Theorem 4.4.2 of [31].

Lemma 2.5 ( [24] Lemma A.1). For two n-dimensional Archimedean copulas Cφ1(u) and Cφ2(u),
if ψ2 ◦φ1 is super-additive, then Cφ1(u)≤Cφ2(u) for all u ∈ [0,1]n.

3. Mutually Independent Variables

Consider a system consisting of independent ES components with heterogeneity in both parameters.
In this case, the specified parameters can be represented in a matrix form, and we can then examine
the behavior of some of the aging functions of the lifetime of the system when the matrix of the
parameters changes to another matrix in the sense of multivariate majorization. Theorem 3.1 and
Theorem 3.2 discusses this problem for the case of parallel and series systems.

Theorem 3.1. Let X1,X2 be independent random variables with Xi ∼ ES(αi,λi), i = 1,2. Further,
let X∗1 ,X

∗
2 be another set of independent random variables with X∗i ∼ ES(α∗i ,λ

∗
i ), i = 1,2 and F is

DRHR. Then, for
[

α1 α2

λ1 λ2

]
∈ S2 , we have

[
α1 α2

λ1 λ2

]
�
[

α∗1 α∗2
λ ∗1 λ ∗2

]
=⇒ X2:2 ≥st X∗2:2. (3.1)

Proof. The distribution function of X2:2 is

FX2:2(x) =
2

∏
i=1

(F(λix))αi , x > 0.

It is easy to see that, for fixed x > 0, the function FX2:2(x) is permutation invariant in (αi,λi), and so
Condition (i) of Theorem 2.1 is satisfied. Next, we should show that Condition (ii) of Theorem 2.1
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is also satisfied. For fixed x > 0, let us define the function g as

g(ααα,λλλ ) = (α1−α2)

(
∂FX2:2(x)

∂α1
− ∂FX2:2(x)

∂α2

)
+(λ1−λ2)

(
∂FX2:2(x)

∂λ1
− ∂FX2:2(x)

∂λ2

)
. (3.2)

The partial derivatives of FX2:2(x) with respect to αi, and λi are

∂FX2:2(x)
∂αi

= FX2:2(x) log(F(λix)),

and

∂FX2:2(x)
∂λi

= xFX2:2(x)αir̃(λix),

respectively. Now, upon substituting for these derivatives in (3.2), we get

g(ααα,λλλ ) =FX2:2(x)(α1−α2)

(
log(F(λ1x)− log(F(λ2x)

)
+

xFX2:2(x)(λ1−λ2)

(
α1r̃(λ1x)−α2r̃(λ2x)

)
. (3.3)

The assumption (ααα,λλλ ) ∈ S2 implies (α1−α2)(λ1−λ2) ≤ 0. This result means that α1 ≥ α2 and
λ1 ≤ λ2, or α1 ≤ α2 and λ1 ≥ λ2. We present the proof only for the case α1 ≥ α2 and λ1 ≤ λ2,
because the proof for the other case is quite similar. Because log(F(λx)) is increasing with respect
to λ , we have log(F(λ2x))≥ log(F(λ1x)). So, it follows that the first expression on the right hand
side of (3.3) is non-positive. On the other hand, r̃(λ2x) ≤ r̃(λ1x), since r̃(x) is decreasing by the
assmption. By combining this observation with the assumption α1 ≥ α2, we see that the second
term on the right hand side of (3.3) is also non-positive. Therefore, g(ααα,λλλ )≤ 0, and this completes
the proof of the theorem.

Theorem 3.2. Let X1,X2 (X∗1 ,X
∗
2 ) be independent random variables with Xi ∼ ES(αi,λi) ( X∗i ∼

ES(α∗i ,λ
∗
i )), i = 1,2 and let F is IHR. Then, for

[
α1 α2

λ1 λ2

]
∈ T2 , we have

[
α1 α2

λ1 λ2

]
�
[

α∗1 α∗2
λ ∗1 λ ∗2

]
=⇒ X∗1:2 ≥st X1:2. (3.4)

Proof. The survival function of X1:2 is given by

F̄X1:2(x) =
2

∏
i=1

(1− (F(λix))αi), x > 0.

For fixed x > 0, the function F̄X1:2(x) is permutation invariant in (αi,λi), and so Condition (i) of
Theorem 2.1 is satisfied. Next, we have to show that Condition (ii) of Theorem 2.1 also holds. For
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fixed x > 0, consider the function g as

g(ααα,λλλ ) = g1(ααα,λλλ )+g2(ααα,λλλ ), (3.5)

where

g1(ααα,λλλ ) = (α1−α2)

(
∂FX1:2(x)

∂α1
− ∂FX1:2(x)

∂α2

)
, (3.6)

and

g2(ααα,λλλ ) = (λ1−λ2)

(
∂FX1:2(x)

∂λ1
− ∂FX1:2(x)

∂λ2

)
. (3.7)

The partial derivatives of F̄X1:2(x) with respect to αi, and λi are

∂ F̄X1:2(x)
∂αi

=−F̄X1:2(x)
(F(λix))αi ln(F(λix))

1− (F(λix))αi
, (3.8)

and

∂ F̄X1:2(x)
∂λi

=−xαiF̄X1:2(x)
f (λix)(F(λix))αi−1

1− (F(λix))αi
, (3.9)

respectively. Upon using (3.8) in (3.6), we get

g1(ααα,λλλ ) = F̄X1:2(x)(α1−α2)

(
ω(α2,F(λ2x))−ω(α1,F(λ1x))

)
.

where ω(α, t) is as defined in Lemma 2.3. The assumption (ααα,λλλ )∈ T2 implies (α1−α2)(λ1−λ2)≤
0. This result means that α1 ≥ α2 ≥ 1 and λ1 ≤ λ2, or 1 ≤ α1 ≤ α2 and λ1 ≥ λ2. We just express
the proof for the case α1 ≥ α2 ≥ 1 and λ1 ≤ λ2, because the proof for the other case is very similar.
From Lemma 2.3, it follows that ω(α,F(λx)) is increasing with respect to α for fixed λ , and is
decreasing with respect to λ for fixed α . Therefore, we can conclude that

ω(α1,F(λ1x))≥ ω(α2,F(λ1x))≥ ω(α2,F(λ2x)),

which in turn implies

g1(ααα,λλλ )≤ 0. (3.10)

On the other hand, upon using (3.9) in (3.7), we get

g2(ααα,λλλ ) =xF̄X1:2(x)(λ1−λ2)

(
α2r(λ2x)

(F(λ2x))α2

1− (F(λ2x))α2
−

α1r(λ1x)
(F(λ1x))α1

1− (F(λ1x))α1

)
.

Now, let us consider the function h(α) = α
(F(λx))α

1− (F(λx))α
. From Lemma 2.8 of [35], it follows that

h(α) is decreasing with respect to α for fixed λ . The assumption r(x) is increasing in x implies that
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r(x)
Fα(x)

1−Fα(x)
is increasing in x for fixed α . Hence,

α2r(λ2x)
(F(λ2x))α2

1− (F(λ2x))α2
≥ α1r(λ2x)

(F(λ2x))α1

1− (F(λ2x))α1

≥ α1r(λ1x)
(F(λ1x))α1

1− (F(λ1x))α1

)
,

and therefore

g2(ααα,λλλ )≤ 0. (3.11)

From (3.5), (3.10), and (3.11), Condition (ii) of Theorem 2.1 is satisfied, and this observation com-
pletes the proof of the theorem.

Next, we extend the special form of Theorem 3.1 and Theorem 3.2 to the case n≥ 3.

Theorem 3.3. Let X1, . . . ,Xn be a set of independent random variables with Xi ∼ ES(αi,λi),
i = 1, . . . ,n. Further, let X∗1 , . . . ,X

∗
n be another set of independent random variables with X∗i ∼

ES(α∗i ,λ
∗
i ), i = 1, . . . ,n.

(i) If F is DRHR,
[

α1 · · · αn

λ1 · · · λn

]
∈ Sn and

[
α∗1 · · · α∗n
λ ∗1 · · · λ ∗n

]
=

[
α1 · · · αn

λ1 · · · λn

]
Tω ,

then Xn:n ≥st X∗n:n.

(ii) If F is IHR,
[

α1 · · · αn

λ1 · · · λn

]
∈ Tn and

[
α∗1 · · · α∗n
λ ∗1 · · · λ ∗n

]
=

[
α1 · · · αn

λ1 · · · λn

]
Tω ,

then X∗1:n ≥st X1:n.

Proof.
(i) For fixed x > 0, let υn(ααα,λλλ ) = FXn:n(x), and Ψ(α,λ ) = (F(λx))α . Then, we have υn(ααα,λλλ ) =

∏
n
i=1 Ψ(αi,λi). As shown in Theorem 3.1, υ2 is satisfied in (2.1). Now, the desired result follows

from Theorem 2.2.
(ii) The proof is similar to that of Part (i), and it is therefore omitted here for the sake of brevity.

As we know, the product of the two T -transform matrices with the same structures is a T -
transform matrix. By using the induction method, one can easily see that the finite product of T -
transform matrices with the same structures is also a T -transform matrix. Now, according to this
discussion, we immediately obtain the following corollary from Theorem 3.3.

Corollary 3.1. Suppose Xi and X∗i satisfy the assumptions of Theorem 3.3.
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(i) Assume that r̃(x) is decreasing in x,
[

α1 · · · αn

λ1 · · · λn

]
∈ Sn and

[
α∗1 · · · α∗n
λ ∗1 · · · λ ∗n

]
=

[
α1 · · · αn

λ1 · · · λn

]
Tω1 · · ·Tωk ,

where Tωi , i = 1, . . . ,k, have the same structures. Then, we have Xn:n ≥st X∗n:n.

(ii) Suppose r(x) is increasing in x,
[

α1 · · · αn

λ1 · · · λn

]
∈ Tn and

[
α∗1 · · · α∗n
λ ∗1 · · · λ ∗n

]
=

[
α1 · · · αn

λ1 · · · λn

]
Tω1 · · ·Tωk ,

where Tωi , i = 1, . . . ,k, have the same structures. Then, we have X∗1:n ≥st X1:n.

It is of interest to know whether the results of Corollary 3.1 may still hold if the matrices Tωi ,
i = 1, . . . ,k, have not the same structures. The following theorem gives an answer.

Theorem 3.4. Let X1, . . . ,Xn be a set of independent random variables with Xi ∼ ES(αi,λi),
i = 1, . . . ,n. Further, let X∗1 , . . . ,X

∗
n be another set of independent random variables with X∗i ∼

ES(α∗i ,λ
∗
i ), i = 1, . . . ,n.

(i) Suppose that F is DRHR,
[

α1 · · · αn

λ1 · · · λn

]
∈ Sn,

[
α∗1 · · · α∗n
λ ∗1 · · · λ ∗n

]
=

[
α1 · · · αn

λ1 · · · λn

]
Tω1 · · ·Tωi ∈ Sn

for i = 1, . . . ,k−1, k ≥ 2 and[
α∗1 · · · α∗n
λ ∗1 · · · λ ∗n

]
=

[
α1 · · · αn

λ1 · · · λn

]
Tω1 · · ·Tωk ,

then Xn:n ≥st X∗n:n.

(ii) If F is IHR,
[

α1 · · · αn

λ1 · · · λn

]
∈ Tn,

[
α∗1 · · · α∗n
λ ∗1 · · · λ ∗n

]
=

[
α1 · · · αn

λ1 · · · λn

]
Tω1 · · ·Tωi ∈ Sn

for i = 1, . . . ,k−1, k ≥ 2 and[
α∗1 · · · α∗n
λ ∗1 · · · λ ∗n

]
=

[
α1 · · · αn

λ1 · · · λn

]
Tω1 · · ·Tωk ,

then, we have X∗1:n ≥st X1:n.

Proof. Set [
α
( j)
1 · · · α( j)

n

λ
( j)
1 · · · λ

( j)
n

]
=

[
α1 · · · αn

λ1 · · · λn

]
Tω1 · · ·Tω j , j = 1, . . . ,k−1.

Let Y ( j)
1 , . . . ,Y ( j)

n , j = 1, . . . ,k − 1, be the sets of independent random variables with Y ( j)
i ∼

ES(α( j)
i ,λ

( j)
i ), i = 1, . . . ,n, and j = 1, . . . ,k−1.
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(i) From the assumption of the theorem, it follows that[
α
( j)
1 · · · α( j)

n

λ
( j)
1 · · · λ

( j)
n

]
∈ Sn

for j = 1, . . . ,k−1. Using these observations, and the result of Theorem 3.3, it follows that
Xn:n ≥st Y (1)

n:n ≥st · · · ≥st Y (k−1)
n:n ≥st X∗n:n. This completes the proof of Part (i).

(ii) The proof is similar to that of Part (i), and is therefore omitted here.

In the following theorem, we compare parallel systems with independent heterogeneous ES
components when one of the parameters is fixed, and the results are then developed with respect to
the other parameter.

Theorem 3.5. For i = 1, . . . ,n, let Xi and X∗i be two sets of mutually independent random variables
with Xi ∼ ES(αi,λ ) and X∗i ∼ ES(α∗i ,λ ). If ∑

n
i=1 αi ≥∑

n
i=1 α∗i , then for any λ > 0, we have Xn:n ≥lr

X∗n:n.

Proof. For x > 0, the ratio of the density functions of Xn:n and X∗n:n is

fn(x)
gn(x)

=
∑

n
i=1 αi

∑
n
i=1 α∗i

(F(λx))β ,

where β = ∑
n
i=1 αi−∑

n
i=1 α∗i . Because β > 0, fn(x)

gn(x)
is increasing in x. This completes the proof of

the required result.

Remark 3.1. It is worthwhile to note that (α1, . . . ,αn)�w (α∗1 , . . . ,α
∗
n ) implies ∑

n
i=1 αi ≥ ∑

n
i=1 α∗i .

So, the condition ∑
n
i=1 αi ≥∑

n
i=1 α∗i in Theorem 3.5 is weaker than the weak submajorization order.

Therefore, the result of Theorem 3.5 remains true under the weak submajorization order between
shape parameters. In other words, we have the following result:

(α1, . . . ,αn)�w (α∗1 , . . . ,α
∗
n ) =⇒ Xn:n ≥lr X∗n:n; (3.12)

also, it is easy to show that (α1, . . . ,αn)
w
�(α∗1 , . . . ,α∗n ) implies ∑

n
i=1 αi ≤ ∑

n
i=1 α∗i . Then, according

to Theorem 3.5, we have the following result:

(α1, . . . ,αn)
w
�(α∗1 , . . . ,α∗n ) =⇒ Xn:n ≤lr X∗n:n. (3.13)

The following corollary, due to [36], provides some sufficient conditions for comparing the
largest order statistics from two heterogeneous PRHR samples.

Corollary 3.2. Let (X1,X2, . . . ,Xn) be a vector of independent random variables with Xi ∼ Fαi for
i = 1, . . . ,n. Let (X∗1 ,X

∗
2 , . . . ,X

∗
n ) be another vector of independent random variables with X∗i ∼ Fα∗i

for i = 1, . . . ,n. Then,

(α1, . . . ,αn)
w
�(α∗1 , . . . ,α∗n ) =⇒ Xn:n ≤rh X∗n:n. (3.14)
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Note that the result in Theorem 3.5 contains the case when λ = 1, from which we have the
following corollary for the PRHR model, which extends the above results of [36] in the context that
the super-majorization in (3.14) is relaxed to ∑

n
i=1 αi ≥ ∑

n
i=1 α∗i . Moreover, the reverse hazard rate

order in (3.14) is also generalized to likelihood ratio order.

Corollary 3.3. Let (X1,X2, . . . ,Xn) be a vector of independent random variables with Xi ∼ Fαi for
i = 1, . . . ,n. Let (X∗1 ,X

∗
2 , . . . ,X

∗
n ) be another vector of independent random variables with X∗i ∼ Fα∗i

for i = 1, . . . ,n. Then,
n

∑
i=1

αi ≥
n

∑
i=1

α
∗
i =⇒ Xn:n ≥lr X∗n:n. (3.15)

In the next theorem, we compare parallel systems in the case when the two sets of scale param-
eters weakly majorize each other.

Theorem 3.6. Let X1, . . . ,Xn be a set of independent nonnegative random variables with Xi ∼
ES(α,λi), i = 1, . . . ,n. Let X∗1 , . . . ,X

∗
n be another set of independent nonnegative random variables

with X∗i ∼ ES(α,λ ∗i ), i = 1, . . . ,n. If F is DPRHR and x2r̃′(x) is increasing in x, then for any α > 0,

(λ1, . . . ,λn)
w
�(λ ∗1 , . . . ,λ ∗n ) =⇒ Xn:n ≥rh X∗n:n. (3.16)

Proof. Fix x > 0. Then the reverse hazard rate of Xn:n is

r̃Xn:n(x,λλλ ) =
n

∑
i=1

αλir̃(λix) =
α

x

n

∑
i=1

ϕ(λix),

where ϕ(x) = xr̃(x), x ≥ 0. From Lemma 2.2 it suffices to show that, for each x > 0, r̃Xn:n(x,λλλ ) is
Schur-convex and decreasing in λi’s.

By the assumptions, ϕ(x) is decreasing in x, then the reverse hazard rate function of Xn:n is
decreasing in each λi.

Now, from Lemma 2.1, the convexity of ϕ(x) is needed to prove Schur-convexity of r̃Xn:n(x,λλλ ).
Note that the assumption x2r̃′(x)is increasing in x is equivalent to r̃(x)+xr̃′(x) is increasing in x

since [
x2r̃′(x)

]′
= x(2r̃′(x)+ xr̃′′(x)) = x

[
r̃(x)+ xr̃′(x)

]′
,

and r̃(x)+ xr̃′(x) is increasing in x is equivalent to xr̃(x) is convex since

[xr̃(x)]′ = r̃(x)+ xr̃′(x).

Hence, ϕ(x) is convex. This completes the proof of theorem.

letting α = 1 in Theorem 3.6 leads to the following corollary, verified by [16].

Corollary 3.4. Let X1, . . . ,Xn be a set of independent nonnegative random variables with Xi ∼
F(λix), i = 1, . . . ,n, where F is an absolutely continuous distribution function with density function
f . Let X∗1 , . . . ,X

∗
n be another set of independent nonnegative random variables with X∗i ∼ F(λ ∗i x),

i = 1, . . . ,n. If xr̃(x) is decreasing in x and x2r̃′(x) is increasing in x, then,

(λ1, . . . ,λn)
w
�(λ ∗1 , . . . ,λ ∗n ) =⇒ Xn:n ≥rh X∗n:n. (3.17)
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The following two theorems show that under certain conditions on parameters, there exists
reversed hazard rate ordering between Xn:n and X∗n:n.

Theorem 3.7. For i = 1, . . . ,n, let Xi and X∗i be two sets of mutually independent random variables
with Xi ∼ ES(αi,λi) and X∗i ∼ ES(αi,λ

∗
i ). Further, suppose that {ααα ∈ E+,λλλ ,λλλ

∗ ∈ D+} ({ααα ∈
D+,λλλ ,λλλ

∗ ∈ E+}) and let xr̃(x) be decreasing convex function of x. Then,

(λ1, . . . ,λn)
w
�(λ ∗1 , . . . ,λ ∗n ) =⇒ Xn:n ≥rh X∗n:n.

Proof. Fix x > 0. Then the reverse hazard rate of Xn:n is

r̃Xn:n(x,λλλ ) =
n

∑
i=1

αiλir̃(λix) =
1
x

n

∑
i=1

αiλixr̃(λix) =
1
x

n

∑
i=1

αig(λix),

where g(x) = xr̃(x), x ≥ 0. From Lemma 2.2 it suffices to show that, for each x > 0, r̃Xn:n(x,λλλ ) is
Schur-convex and decreasing in λi’s. By the assumptions, g(x) is decreasing in x, then the reverse
hazard rate function of Xn:n is decreasing in each λi.

Note that by the assumptions xr̃(x) is convex in x. So, by Theorem 3.1 b(ii) (Theorem 3.2 a(ii))
of [21], r̃Xn:n(x) is Schur convex. Thus, the result follows from Lemma 2.2.

In the following, we give some new results on the lifetimes of parallel systems in terms of the
usual stochastic order.

Theorem 3.8. Let X1, . . . ,Xn (X∗1 , . . . ,X
∗
n ) be a set of independent nonnegative random variables

with Xi ∼ ES(α,λi) (X∗i ∼ ES(α,λ ∗i )), i = 1, . . . ,n. If F is DPRHR, then

(λ1, . . . ,λn)
p
� (λ ∗1 , . . . ,λ

∗
n ) =⇒ Xn:n ≥st X∗n:n. (3.18)

Proof. The survival function of Xn:n can be written as

F̄Xn:n(t,aaa) = 1−
n

∏
i=1

(F(eait))α (3.19)

where ai = log(λi), for i = 1, . . . ,n. Using Lemma 2.4, it is enough to show that the function
F̄Xn:n(t,aaa) given in (3.19) is Schur-convex and decreasing in ai’s. To prove its Schur-convexity, it
follows from Theorem 3.A.4. in [26] that we have to show that for i 6= j,

(ai−a j)

(
∂ F̄Xn:n

∂ai
− ∂ F̄Xn:n

∂a j

)
≥ 0,

that is,for i 6= j,

α(ai−a j)
n

∏
k=1

(F(eakt))α

(
tea j

f (ea jt)
F(ea jt)

− teai
f (eait)
F(eait)

)
≥ 0. (3.20)

The assumption xr̃(x) is decreasing in x implies that the function teai r̃(eait) is decreasing in ai, for
i = 1, . . . ,n, from which it follows that (3.20) holds. The partial derivative of F̄Xn:n(t,aaa) with respect
to ai is negative, which in turn implies that the survival function of Xn:n is decreasing in ai for
i = 1, . . . ,n. This completes the proof of the required result.
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In accordance with Theorem 3.8, for a parallel system with n independent units following ES
model, the DPRHR property of F and the more heterogeneous in the p-largerer order the scale
parameters is, the stochastically longer lifetime of the system and hence higher reliability will be
achieved.

The above theorem immediately leads to the following corollary.

Corollary 3.5. Let X1, . . . ,Xn be a set of independent nonnegative random variables with Xi ∼
ES(α,λi) (X∗i ∼ ES(α,λ ∗i )), i = 1, . . . ,n. Let X∗1 , . . . ,X

∗
n be i.i.d. random variables with common

distribution. Fα(λ̃x), where λ̃ is the geometric mean of the λi’s. If F is DPRHR, then Xn:n ≥st X∗n:n.

The above corollary gives a lower bound on the survival function of a parallel system with non-
identical components in terms of the one with i.i.d. components when the common scale parameter
is the geometric mean of the scale parameters.

letting α = 1 in Theorem 3.8 leads to the following result proved by Khaledi et al. [11].

Corollary 3.6. Let X1, . . . ,Xn be a set of independent nonnegative random variables with Xi ∼
G(λix), i = 1, . . . ,n, where G is an absolutely continuous distribution function with density function
g. Let X∗1 , . . . ,X

∗
n be another set of independent nonnegative random variables with X∗i ∼ G(λ ∗i x),

i = 1, . . . ,n. Let r̃ be the reverse hazard rate functions of G. If xr̃(x) is decreasing in x, then

(λ1, . . . ,λn)
p
� (λ ∗1 , . . . ,λ

∗
n ) =⇒ Xn:n ≥st X∗n:n. (3.21)

4. Interdependent Variables with Archimedean Copulas

Although in the literature, most researches on stochastic comparison on sample minimums assume
the mutual independence among observations, recently some authors deal with the sample with
dependent random variables. Here, we consider samples of ES random variables with a common
Archimedean survival copula.

Theorem 4.1. Suppose for i = 1, ...,n, Xi ∼ ES(αi,λ ) and X∗i ∼ ES(α∗i ,λ ) share a common

Archimedean survival copula with generator φ . Then, X1:n ≤st X∗1:n if (α1, . . . ,αn)
w
�(α∗1 , . . . ,α∗n ).

Proof. The survival function of X1:n is given by

F̄X1:n(x) = p(Xk > x,1≤ k ≤ n) = φ
( n

∑
i=1

ψ(1− (F(λx))αi)
)
, x > 0. (4.1)

Using Lemma 2.4, it is enough to show that the function −F̄Xn:n(x) is Schur-convex and decreasing
in αi’s. The partial derivatives of F̄X1:n(x) with respect to αi are

∂ F̄X1:n(x)
∂αi

=−
(F(λx))αi log(F(λx))φ ′

(
∑

n
i=1 ψ(1− (F(λx))αi)

)
φ ′(ψ(1− (F(λx))αi))

≥ 0,

for all x > 0.

Thus F̄X1:n(x) is increasing with respect to αi’s. To prove its Schur-concavety, it follows from Theo-
rem 3.A.4. in [26] that we have to show that for i 6= j,

(αi−α j)

(
∂ F̄X1:n(x)

∂αi
− ∂ F̄X1:n(x)

∂α j

)
≤ 0,
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that is, for i 6= j,

− log(F(λx))φ ′
( n

∑
i=1

ψ(1− (F(λx))αi)
)
(αi−α j)

(
(F(λx))αi

φ ′(ψ(1− (F(λx))αi))
− (F(λx))α j

φ ′(ψ(1− (F(λx))α j))

)
≤ 0. (4.2)

Now, let us consider the function g(α) =
(F(λx))α

φ ′(ψ(1− (F(λx))α))
. Taking derivative with respect to

α , we get

g′(α)
sgn
=(F(λx))α log(F(λx))φ ′(ψ(1− (F(λx))α))

+
(F(λx))2α log(F(λx))
φ ′(ψ(1− (F(λx))α))

φ
′′(ψ(1− (F(λx))α))≥ 0.

Thus, g(α) is increasing with respect to α from which it follows that (4.2) holds. This completes
the proof of the required result.

Theorem 4.2. Suppose, for XXX ∼ ES(α,λλλ ,φ1) and XXX∗ ∼ ES(α,λλλ ∗,φ2), φ1 or φ2 is log-convex, and

ψ2 ◦φ1 is super-additive. Then, Xn:n ≥st X∗n:n if (i) (λ1, . . . ,λn)
p
� (λ ∗1 , . . . ,λ

∗
n ) and F is DPRHR, or

(ii) (λ1, . . . ,λn)
w
�(λ ∗1 , . . . ,λ ∗n ) and F is DRHR.

Proof. Xn:n and X∗n:n have their respective distribution functions, for x≥ 0,

FXn:n(x) = φ1
( n

∑
i=1

ψ1((F(λix))α)
)
= J(λλλ ,α,x,φ1), (4.3)

FX∗n:n
(x) = φ2

( n

∑
i=1

ψ2((F(λ ∗i x))α)
)
= J(λλλ ∗,α,x,φ2). (4.4)

We only prove the case that φ1 is log-convex, and the other case can be finished similarly.

(i) Since φ1 is decreasing, we have

∂J(λλλ ,α,x,φ1)

∂ log(λi)
= αxλir̃(λix)(F(λix))α

φ ′1
(

∑
n
i=1 ψ1((F(λix))α)

)
φ ′1
(
ψ1((F(λix))α)

) ≥ 0,

for all x > 0,

That is, −J(λλλ ,α,x,φ1) is decreasing in log(λi) for i = 1, . . . ,n. Furthermore, for i 6= j,

∂J(λλλ ,α,x,φ1)

∂ log(λi)
− ∂J(λλλ ,α,x,φ1)

∂ log(λ j)
=

αφ
′
1
( n

∑
i=1

ψ1((F(λix))α)
)
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(
xλir̃(λix)

φ1(ψ1((F(λix))α))

φ ′1
(
ψ1((F(λix))α)

) − xλ j r̃(λ jx)
φ1(ψ1((F(λ jx))α))

φ ′1
(
ψ1((F(λ jx))α)

)).
Note that the log-convexity of φ1 implies the decreasing property of φ1

φ ′1
. Since

ψ1((F(λx))α) is decreasing in λ > 0, then
φ1(ψ1((F(λx))α))

φ ′1
(
ψ1((F(λx))α)

) is increasing in λ > 0.

Also the DPRHR property of F implies that xλ r̃(λx) is decreasing in λ > 0, and thus

xλ r̃(λx)
φ1(ψ1((F(λx))α))

φ ′1
(
ψ1((F(λx))α)

) is increasing in λ > 0. So, for i 6= j,

(λi−λ j)

(
∂J(λλλ ,α,x,φ1)

∂ log(λi)
− ∂J(λλλ ,α,x,φ1)

∂ log(λ j)

)
≤ 0.

Then Schur-convexity of −J(λλλ ,α,x,φ1) follows from Theorem 3.A.4. in [26]. Here it

should be noted that, for two vectors λλλ and λλλ
∗, we have (λ1, . . . ,λn)

p
� (λ ∗1 , . . . ,λ

∗
n )⇐⇒

(log(λ1), . . . , log(λn))
w
� (log(λ ∗1 ), . . . , log(λ ∗n )). According to Lemma 2.2 (λ1, . . . ,λn)

p
�

(λ ∗1 , . . . ,λ
∗
n ) implies −J(λλλ ,α,x,φ1)≥−J(λλλ ∗,α,x,φ1). On the other hand, since ψ2 ◦φ1 is

super-additive by Lemma 2.5, we have J(λ ∗,α,x,φ1)≤ J(λ ∗,α,x,φ2). So, it holds that

J(λλλ ,α,x,φ1)≤ J(λ ∗,α,x,φ1)≤ J(λλλ ∗,α,x,φ2).

That is, Xn:n ≥st X∗n:n.
(ii) We omit its proof due to the similarity to that of Part (i).

letting α = 1 in Theorem 4.2 leads to the following corollary for scale model, verified by Li et
al. [25].

Corollary 4.1. Suppose, for XXX ∼ S(λλλ ,φ1) and XXX∗ ∼ S(λλλ ∗,φ2), φ1 or φ2 is log-convex, and ψ2 ◦φ1

is super-additive. Then, Xn:n ≥st X∗n:n if (i) (λ1, . . . ,λn)
p
� (λ ∗1 , . . . ,λ

∗
n ) and F is DPRHR, or (ii)

(λ1, . . . ,λn)
w
�(λ ∗1 , . . . ,λ ∗n ) and F is DRHR.

5. Examples and Applications

As the very popular fault tolerant structure, the k-out-of-n system has been widely applied in indus-
trial engineering and military systems. Particularly, the 1-out-of-n system and the n-out-of-n system
correspond to the parallel system and series systems, respectively. In section 3, we carry out stochas-
tic comparisons of lifetime of the parallel system and series systems arising from independent ES
components in the sense of various stochastic orderings including the usual stochastic, reversed haz-
ard rate and likelihood ratio orderings. In the following subsections, we present some distributions
for which our results are applicable.

5.1. Generalized exponential distribution

To fit a model to lifetime data sets, it is observed in the literature that the generalized exponential
distribution can be used as an alternative to the gamma, Weibull, and log-normal distributions. So, it
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is of interest to consider this distribution as the lifetimes of components of reliability systems. The
cumulative distribution function of the GE distribution is

G(x) = (1− e−λx)α , x > 0,α > 0,λ > 0.

We denote this distribution by GE(α,λ ). It follows the ES model by letting the underlying distri-
bution in the ES family be F(x) = 1− e−x,x ≥ 0. Clearly, F is IHR and IRHR. So, the condition
of Theorem 3.1-3.4 holds. So the result of this Theorems simply yield results for series and parallel
systems with independent heterogeneous generalized exponential components. As a consequence,
this results is a generalization of Corresponding result due to [1].

The following corollary, verified by Balakrishnan et al. [1], follows immediately from Theorem
3.5.

Corollary 5.1. Let X1, . . . ,Xn be independent random variables with Xi ∼GE(αi,λ ) and X∗1 , . . . ,X
∗
n

be another set of independent random variables with X∗i ∼ GE(α∗i ,λ ), i = 1, ...,n. If ∑
n
i=1 αi ≥

∑
n
i=1 α∗i , then for any λ > 0, we have Xn:n ≥lr X∗n:n.

From Theorem 3.6 and the fact that F is DPRHR and x2r̃′(x) is increasing in x, see lemma 2.1 of
[12], we readily obtain the following corollary that generalizes the corresponding result in Theorem
10 (ii) of [1]. In particular the majorization assumption is relaxed to the super-majorization.

Corollary 5.2. Let X1, . . . ,Xn be independent random variables with Xi ∼ GE(α,λi) and X∗1 , . . . ,X
∗
n

be another set of independent random variables with X∗i ∼ GE(α,λ ∗i ), i = 1, ...,n. Then for any
α > 0,

(λ1, . . . ,λn)
w
�(λ ∗1 , . . . ,λ ∗n ) =⇒ Xn:n ≥rh X∗n:n. (5.1)

The following corollary, verified by Kundu et al. [21], follows immediately from Theorem 3.7.

Corollary 5.3. For i = 1, . . . ,n, let Xi and X∗i be two sets of mutually independent random variables
with Xi ∼ GE(αi,λi) and X∗i ∼ GE(αi,λ

∗
i ). Further, suppose that {ααα ∈ E+,λλλ ,λλλ

∗ ∈ D+} ({ααα ∈
D+,λλλ ,λλλ

∗ ∈ E+}). Then,

(λ1, . . . ,λn)
w
�(λ ∗1 , . . . ,λ ∗n ) =⇒ Xn:n ≥rh X∗n:n.

Theorem 3.8 can be applied to the GE distribution, as proved in theorem 10 (i) of [1].

Remark 5.1. Khaledi and Kochar [12], proved special case of Theorem 3.8 when the baseline
distribution in the ES model is exponential and α = 1.

5.2. Generalized gamma distribution

Recall that a random variable X has a generalized gamma distribution, denoted by X ∼ GG(p,q),
when its density function has the following form

g(x) =
p

Γ( q
p)

xq−1e−xp
, x > 0,

where p,q > 0 are the shapes parameters. The importance of this distribution lies in its flexibility
in describing lifetime distributions ensuring their applications in survival analysis and reliability
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theory. It includes many important distributions like exponential (p = q = 1), Weibull (p = q) and
gamma (p = 1) as special cases. It is IHR when p ≥ 1,q ≥ 1. [11] proved that for X ∼ GG(p,q),
xr̃(x) is a decreasing function of x and x2r̃′(x) is an increasing function of x when p < 1. So we
apply the result of this paper when F is a generalized gamma distribution which includes Weibull,
gamma and exponential random variables as special cases. The result derived here strengthens and
generalizes some of the results known in the literature.

5.3. Other distributions

A random variable X is said to have power-generalized Weibull distribution, if its survival function
is

F̄(x) = e1−(1+tν )1/γ

, t,ν ,γ > 0.

It is DRHR when ν ≤ γ,ν ≤ 1, IHR when ν ≥ γ,ν ≥ 1. So, the condition of Theorem 3.1-3.4 holds.
As [11] have shown, the power-generalized Weibull distribution satisfy the conditions of Theorem
3.8. Most of the other parametric families of practical importance have a scale parameter, such as
Burr and half-normal distribution and the conditions of this paper can be easily checked for them.

5.4. Auction theory

In practice, it is of great interest for auctioneers to have a good understanding on the impact of
the dependence among the bids. Our theoretical results in Section 4 throw some new light into
this concern. For bids following ES model and coupled by Archimedean copulas, Theorem 4.2
tells that the final price in the FPA with less homogeneous and less positive dependent bids will
be stochastically larger. From another perspective, this suggests the auctioneer be very cautious in
releasing information because the dependence and homogeneity on bids strongly associate with the
information and may harm the final price.

6. Conclusions

In this paper, for the first time, we have considered series and parallel systems with independent
heterogeneous exponentiated scale components. These comparisons are made with respect to usual
stochastic, reversed hazard rate and likelihood ratio orderings. We apply these results when F is
a generalized exponential, power-generalized Weibull and generalized gamma distribution which
includes Weibull, gamma and exponential random variables as special cases. We also conducted
stochastic comparison on the smallest (largest) order statistics from ES samples with Archimedean
survival (Archimedean) copulas. The results of the paper extend some known results in the literature
pertaining to the scale and exponentiated family of distributions.
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