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To find the change point of a normal process monitored by an X̄ control chart, the first and most important step
is to find a good estimate of the change point. Different from all the previous studies in which the MLE of the
change point is computed from a conditional likelihood function given the signal time of the X̄ control chart,
in this paper we also derive the MLE of the change point from the complete likelihood function. Then, the two
MLEs are compared through a series of simulations based on two criteria, MSE and a new proposed criterion.
The new criterion is just the average number of points in time, ordered according to their likelihood, at which
the process should be examined to find the change point. The results show that our estimator is superior to the
usual MLE which was used in previous studies and this superiority is shown better by our new criterion, which
is more rational, when a control chart is used.
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1. Introduction

Statistical process control (SPC) charts are commonly used for detecting the presence of distur-
bances in a process. The primary function of SPC charts is that an out-of-control signal will be trig-
gered when the process disturbances have occurred in the process. In most situations, it is assumed
that the quality characteristic of a product follows a normal distribution. In this article, we will
consider the Shewhart X̄ control chart, the most commonly used statistical process control chart in
industry. The control limits for a Shewhart X̄ control chart is as follows,

UCL = µ0 + kσ0

LCL = µ0− kσ0,
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where µ0 and σ0 are the mean and standard deviation of the normal process, when it is under
control. It is usually assumed that k = 3, although it can be identified in light of the specified type I
error (i.e., α).

When the mean of the normal process which is monitored by an X̄ control chart changes at an
unknown time, referred to as a change point, it takes some time for control chart to detect the change
and make a signal. The main goal of estimating the change point when a control chart is used, is to
identify the time at which the disturbances are introduced into the process. Throughout this paper,
we refer to this time as the true change point. Using this fact, a reasonable criterion for estimating
the change point, can be based on the number of the points in time (NPT) at which the process
should be examined to find the true change point. Obviously this criterion depends on the method
which is used to search the process and find the true change point. The typical method (TM) is to
search for the true change point starting from the initial signal time. If the root causes cannot be
identified at the initial signal time T ; the searching process may proceed at time T −1. This process
should continue until the true change point is found.

Two other intuitive methods were proposed by Dehghan Monfared and Lak (2015) to find the
true change point, which have different NPTs, and corresponding to each, a loss function is defined.
The average of each one of these two loss functions, defines a risk function. It is shown that how
this fact can be used to propose a new criterion for the efficiency of the MLE of the change point.

In their paper, Samuel, et al. (1998) addressed the issue of estimating the change point of a nor-
mal process. Pinatiello and Samuel (2001) used exponentially weighted moving average (EWMA)
and Cusum charts and MLE to estimate the change point of a process. Shao and Hou (2004) pro-
vided some statistical properties for the change point estimators. In addition, Shao and Hou (2006)
derived the change point estimators in the case of the S chart and MLE are used in a gamma process.
Later Shao, et al. (2006), used an X̄ control chart and MLE to estimate the change point of a Gamma
process, also, in Machine Learning (ML) approach for the change point problems, see Cheng and
Cheng (2008) and Shao and Hsu (2009). Shao and Hou (2013a) applied an integrated approach of
neural network and analysis of variance to identify a change point in an industrial process. Shao and
Hou (2013b) used a two- stage hybrid scheme to estimate a change point for a multivariate process.
Hou, et al. (2013) used a combined MLE and Generalized P chart approach to estimate the change
point of a multinomial process.
All the above studies assume that the signal time of the control chart, denoted by T, is fixed and
use a conditional likelihood function to derive the MLE of the change point. In addition to the usual
MLE, which is computed from a conditional likelihood given the signal time T, here we also con-
sider a case in which T is a random variable and based on a complete likelihood function, which
contains the information of the signal time T about the change point, the MLE of the change point
is derived. We also compare the two MLEs of the change point based in two criteria, the MSE and a
new proposed criterion which is based on the NPT of a suitable method for finding the true change
point. We show that, in this case, the MSE is not a good criterion while our proposed criterion
performs quite well.

2. The Model

This study assumes the process is initially in control, and the sample observations come from a
normal distribution with a known mean, µ0 and a known standard deviation, σ0. However, after
an unknown point in time τ , a disturbance is introduced into the process and starting from the
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point in time τ + 1 (known as the process change point) it changes the process mean from µ0 to
µ1 = µ0 +δσ0/

√
n, where n is the subgroup size and δ is the unknown magnitude of the change. It

is also assumed that once the parameter µ0 changed, it remains at the new level of µ1 until the root
causes of the disturbance have been identified and removed.
Let Xi j denote the jth observation in subgroup i with normal distribution N(·,·). That is,

Xi j

iid
∼ N(µ0,σ

2
0 ), i = 1,2, . . . ,τ

j = 1,2, . . . ,n,

and

Xi j

iid
∼ N(µ1,σ

2
0 ), i = τ +1, . . . ,T

j = 1,2, . . . ,n,

where n is the subgroup sample size (the size of a sample drawn at time i) and T is the signal
time that the subgroup mean exceeds one of the X̄ control chart’s limits.The notation

iid
∼ stands for

independent and identically distributed.
In previous studies it is assumed that the value of T is known, but in application one takes a

sample at time and investigate weather the process is under control or not. The sampling continues
until a signal time happens and process out of control. Therefore, T is not known and random, ratio-
naly.
Also, in past studies, conditional on T , they obtained the MLE for parameters in X̄ control
chart by, µ̂1 = ¯̄Xτ = (T − τ)−1

∑
T
i=τ+1 X̄i, the average of the T − τ most recent subgroups and

τ̂ = argmaxτ

{
(T − τ)( ¯̄xτ − µ0)

2
}
, for example see, Dehghan Monfared and Lak (2013). In the

next section, using this rational assuming, T is random, we estimate the unknown parameters.

2.1. Unconditional MLE

In Section 2, we describe that signal time is random and it is a rational assumption, therefore T is
also a random variable. To find its distribution, first we find α(µ1), the probability of each subgroup
mean being out of control limits, after the process mean changes to µ1.

α(µ1) = Pµ1

(
X̄−µ0

σ0/
√

n
> 3

)
+Pµ1

(
X̄−µ0

σ0/
√

n
<−3

)
= Pµ1

(
X̄−µ1 +µ1−µ0

σ0/
√

n
> 3

)
+Pµ1

(
X̄−µ1 +µ1−µ0

σ0/
√

n
<−3

)
= P

(
Z +

∆µ

σ0/
√

n
> 3

)
+P

(
Z +

∆µ

σ0/
√

n
<−3

)
= Φ

(
−3+

∆µ

σ0/
√

n

)
+Φ

(
−3− ∆µ

σ0/
√

n

)
.

Given that a change in the process mean have been occurred at an unknown time τ + 1 and using
the independence property of the subgroups, the probability mass function of T is,

h(t|τ) = (1−α(µ1))
t−τ−1

α(µ1), t = τ +1,τ +2, · · · .
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Assuming xi = (xi1, . . . ,xin), i = 1, . . . ,T , the joint distribution of the observations, i.e. xi s and
T is,

f (x1, . . . ,xt , t|τ,µ1) =
τ

∏
i=1

n

∏
j=1

f (xi j)
t

∏
i=τ+1

n

∏
j=1

f (xi j|µ1)h(t|τ)

= (2πσ
2
0 )
− nt

2 exp
{
− n

2σ2
0

( t

∑
i=1

x̄2
i −2µ0

τ

∑
i=1

x̄i + τµ
2
0

− (t− τ) ¯̄x2
τ +(t− τ)× (µ1− ¯̄xτ)

2
)}

×
(
1−α(µ1)

)(t−τ−1)
α(µ1),

where in the last expression ¯̄xτ = 1
t−τ

t

∑
i=τ+1

x̄i. Throughout the paper, if τ = 0, the values of the

product
τ

∏
i=1

and the sum
τ

∑
i=1

are defined as 1 and 0, respectively.

To find the MLE of the parameters τ and µ1 it suffices to maximize the logarithm of the like-
lihood function with respect to these parameters. The logarithm of the likelihood function (apart
from a constant) is

l(τ,µ1) = logL(τ,µ1|x) =−
n

2σ2
0

{
−2µ0

τ

∑
i=1

x̄i + τµ
2
0 − (t− τ) ¯̄xτ

2

+ (t− τ)(µ1− ¯̄xτ)
2
}
+(t− τ−1) log

(
1−α(µ1)

)
+ log

(
α(µ1)

)
. (2.1)

There are two unknown parameters in the log-likelihood function: τ and µ1. If the change point
τ were known, the MLE of µ1, i.e µ̂ , is obtained by maximizing l(τ,µ1) as a function of µ1. To do
this, we set the first partial derivative of l(τ,µ1) with respect to µ1 equal to zero; that is,

l′(τ,µ1) =
∂ l(τ,µ1)

∂ µ1
= − n

σ2
0
(t− τ)(µ1− ¯̄xτ)− (t− τ−1)

α ′(µ1)

1−α(µ1)

+
α ′(µ1)

α(µ1)
= 0.

Solving this equation can’t be done analytically, so the Newton Raphson iterative algorithm is used.
For our equation the algorithm is as follows,

µ
[i]
1 = µ

[i−1]
1 −

l′(τ,µ [i−1]
1 )

l′′(τ,µ [i−1]
1 )

, i = 1,2, · · · .

The algorithm starts with arbitrary initial value µ
[0]
1 and proceeds until a sufficiently accurate value

is reached. Using this method, for each τ , the MLE of the µ1, shown as µ̂1(τ) is computed for each
τ .

Substituting this back into equation (1), we get
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l?(τ) = l(τ, µ̂1(τ)) =−
n

2σ2
0

{
−2µ0

τ

∑
i=1

x̄i + τµ
2
0 − (t− τ) ¯̄xτ

2

+ (t− τ)(µ̂1(τ)− ¯̄xτ)
2
}
+(t− τ−1) log

(
1−α(µ̂1(τ))

)
+ log

(
α(µ̂1(τ))

)
.

It then follows that the value of τ that maximizes the log-likelihood function is,

τ̂ = argmax
τ
{l?(τ)}.

That is, τ̂ is the value of τ in the range τ = 0,1, . . . ,T − 1 which maximizes l?(τ). Due to
complicated nature of this function, it has to be maximized in τ numerically, as we have done in
Section 4.

3. A new Criterion for the efficiency of the MLE of the change point

Using an estimate of the change point at hand, starting from the estimated value, a search for find-
ing the true change point should be initiated. In fact the main purpose of estimating the change
point is to determine the time at which the disturbances effect the process. A common criterion for
examining estimators is the Mean Square Error (MSE). This criterion is a risk function which is
the expectation of quadratic loss function. This loss function is based on the distance between the
unknown parameter and its estimate. But, in our problem a more natural loss function is the number
of the points in time at which the process should be examined to find the true change point.

The following example shows that it is possible a closer estimate to the true change point may
have a weaker performance based on this new loss function.

Example. Suppose that at time T = 104 the control chart triggers a signal and the true change
point is τ + 1 = 100. If we have two estimates τ̂1 + 1 = 97 and τ̂2 + 1 = 104. Although τ̂1 + 1 is
closer to τ + 1 = 100 than τ̂2 + 1, but starting from τ̂1 + 1 = 97, we may examine the process at
points in time: 97,98,96,99,95,100 or 97,96,98,95,99,94,100 to find the true change point. In
other words in average 6.5 points should be checked to get the true change point τ +1 = 100. While
starting from τ̂2+1= 104, we may examine the process at the points in time: 104,103,102,101,100
to find 100 as the true change point. In this case the process should only be checked at 5 points in
time.

To find the true time of the change in the process mean or the change point, two algorithms
were proposed by Dehghan Monfared and Lak (2015). The first one, namely Chronological-ordered
method (COM), can be applied to any estimate of the change point while the second algorithm
called Likelihood-Ordered Method (LOM), can be employed exclusively for MLE. These methods
are described briefly in the following subsections.

3.1. Chronologically-Ordered Method

The first method is based on the intuitive strategy the more the point is close to the estimate of
the change point the more likely to be the true change point. Note that, unless τ̂ + 1 = τ + 1, the
change point is overestimated or underestimated. When it is overestimated (τ̂ +1 > τ +1), to find
the true change point, the process should be examined at the points in time: τ̂ +1, τ̂, τ̂−1, . . . until
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the special cause of the process disturbance is found at τ + 1, and in the case of underestimation,
this is done by examining the process at the points in time: τ̂ + 1, τ̂ + 2, τ̂ + 3, . . . . But in practice
it is unknown that weather the change point is overestimated or underestimated. Thus, a reasonable
strategy for finding the true change point would be examination of the process at the points in time:
τ̂ +1, τ̂, τ̂ +2, τ̂−1, . . . until the special cause of the process disturbance is found at τ +1.

Note that the points which are the same distance from τ̂ +1, like τ̂ and τ̂ +2, are exchangeable
in this algorithm. In other words, for finding the true change point, we should first examine the
process at the estimated change point time, then at points in time which are one time unit away
from the estimated change point and so on.

3.2. Likelihood-Ordered Method

Another method to find the true change point is solely can be used for MLE of the change point. In
this method the points in time are examined in order of their likelihood. That is, a point which has a
larger likelihood has more priority to be examined as a possible change point. In this case, the loss
function is,

L(τ̂,τ) =
T

∑
i=1

iI(t(i) = τ), (3.1)

where t(1), t(2), · · · , t(T ) are the points 0,1, · · · ,T −1, decreasingly ordered by their likelihoods and
I(·) is the indicator function, note that τ̂ = t(1).

In fact each of these two methods, when it is used with the MLE, identifies a path which starts
from the MLE of the change point and passes through the true change point. Obviously, the sooner a
path get us to the true change point the better the path is. Dehghan Monfared and Lak (2015) showed
that for all values of δ , LOM has smaller risk than COM. Thus another criteria for the efficiency of
the MLE of the change point can be proposed as the risk function of LOM (the average length of
the shorter path which is identified by LOM). In the next section this new criteria for the efficiency
of the MLE of the change point along with MSE criteria is applied to compare the efficiency of
conditional and unconditional MLE of the change point.

4. Comparing Two MLEs

In this section, the efficiency of two MLEs of the change point, i.e. conditional and unconditional
MLE are evaluated, through a series of simulations. When the X̄ control chart signals which the
mean of the process has changed, both of these MLEs are computed. A Monte Carlo simulation
study was conducted to study the performance of these two estimators. Suppose n= 4, sample obser-
vations are randomly generated from standard Normal distribution for subgroups 1,2, . . . ,τ . Then,
starting with subgroup τ +1, observations were randomly generated from N(δ ,1) until the X̄ con-
trol chart triggers a signal. For each of the values of τ = 100,200,400 and δ = 0.5,1,1.5,2,2.5,3,
this procedure is repeated a total of 1000 times. For each simulation run, both estimators and their
respective LOM loss functions are computed. The mean of the LOM loss function of each MLE
of τ is just the estimated risk function of the MLE of τ . The average values of τ̂(ML), the MLE of
τ and the signal time T , denoted by ¯̂τ(ML) and T̄ respectively, along with LOM the estimated risk
functions of conditional and unconditional MLEs of τ , are given in table 1.

We consider that for each fixed δ , for τ = 100,200,400, while conditional MLE has non con-
stant bias and standard deviation, the bias and standard deviation of unconditional MLE are almost
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constant. In addition the LOM risk of unconditional MLE, except for small δ , is almost constant
but for unconditional MLE is non constant. In addition, based on the MSE (Figure 1):

For τ = 100,200,400, conditional MLE outperforms unconditional MLE for small values of δ

while for other values conditional MLE is outperforms by unconditional MLE.
Based on LOM the estimated risk function, for τ = 100,200,400, unconditional MLE outper-

forms conditional MLE for all values of δ .

Table 1. The mean of the signal time T, unconditional MLE (UNMLE) and condi-
tional MLE (CONMLE) of the change point along with the estimated risk function
of each of two MLEs, shown as Run and Rcon respectively, and their standard devia-
tions for different values of δ . (subgroup sizen = 4.)

δ

τ .5 1 1.5 2 2.5 3
T̄ 255.47 144.39 114.98 106.12 103.20 101.98

(4.87) (1.34) (0.46) (0.18) (0.08) (0.04)
¯̂τ(UNMLE) 114.68 101.98 100.84 100.42 100.18 100.07

(1.00) (0.22) (0.11) (0.05) (0.03) (0.02)

100 ¯̂τ(CONMLE) 103.8 99.99 99.93 99.92 99.54 99.6
(0.73) (0.26) (0.15) (0.09) (0.15) (0.15)

Run 17.79 4.91 2.87 1.80 1.42 1.23
(0.62) (0.18) (0.12) (0.04) (0.03) (0.02)

Rcon 17.91 5.14 3.01 1.96 1.54 1.34
(0.67) (0.23) (0.16) (0.1) (0.08) (0.05)

T̄ 359.71 244.15 215.07 206.22 203.3 202.03
(5.18) (1.34) (0.46) (0.18) (0.09) (0.05)

¯̂τ(UNMLE) 215.13 202.08 200.86 200.43 200.15 200.12
(0.98) (0.22) (0.10) (0.05) (0.03) (0.02)

200 ¯̂τ(CONMLE) 203.35 200.2 199.75 199.83 199.42 199.63
(0.80) (0.20) (0.16) (0.19) (0.22) (0.12)

Run 19.11 5.03 2.78 1.80 1.47 1.22
(0.73) (0.18) (0.08) (0.04) (0.04) (0.02)

Rcon 20.83 5.4 2.93 1.84 1.6 1.33
(0.89) (0.26) (0.14) (0.05) (0.08) (0.05)

T̄ 557.39 441.47 415.32 406.36 403.23 401.97
(5.23) (1.24) (0.45) (0.18) (0.08) (0.04)

¯̂τ(UNMLE) 416.44 402.66 400.83 400.42 400.17 400.06
(1.09) (0.23) (0.10) (0.05) (0.03) (0.02)

400 ¯̂τ(CONMLE) 402.11 400.29 399.08 399.75 399.54 398.92
(1.06) (0.31) (0.46) (0.21) (0.14) (0.46)

Run 21.90 5.57 2.74 1.83 1.44 1.22
(1.18) (0.23) (0.09) (0.05) (0.03) (0.02)

Rcon 26.20 6.84 3.46 1.99 1.54 1.61
(1.59) (0.56) (0.4) (0.10) (0.06) (0.22)

5. Conclusion

In this study, two MLEs of the change point, when implementing an X̄ control chart, were com-
puted. The first MLE of the change point was computed from the conditional likelihood function
of the change point given the signal time T. Almost all the previous papers used this method to
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Fig. 1. Left: The estimated risk functions of UNMLE (solid curve) and CONMLE (broken curve). Right: The MSE of
UNMLE (solid curve) and CONMLE (broken curve).(From above to the bottom: true change point τ = 100,200,400 and
subgroup size n = 4.)

compute the MLE of the change point. The second MLE of the change point is computed by maxi-
mizing complete (unconditional) likelihood function of the change point. It is expected the second
MLE of the change point be more efficient than the first one because for computing the second MLE
the extra information of the signal time T is also used. But paradoxically, when the MSE criterion
is applied to compare the two MLEs, for small δ (shift in the mean of the process) the CONMLE
of the change point outperforms the UNMLE of the change point. We introduced and applied a
new criterion called LOM risk function, the paradox is resolved and based in this new criterion the
unconditional MLE outperforms conditional MLE for all values of δ . Thus, using the MSE criterion
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in such a problem may be misleading. The method we used here to compare conditional and uncon-
ditional MLE estimates of the change point can be used with other control charts. In this paper, we
used the X̄ control chart to monitor a normal process. There are other types of control charts (for
example, CUSUM and EWMA charts) which could be considered and the comparison be done. In
addition, the study can be done for non-normal processes like gamma process.

Appendix: Comparing methods of finding the true change point
Mohammad E. Dehghan Monfared and Fazlollah lak

Fig. 2. Left: The estimated risk functions of TM (dotted curve), COM (broken curve) and LOM (solid curve)
when unconditional likelihood is used. Right: The estimated risk functions of TM (dotted curve), COM
(broken curve) and LOM (solid curve) when conditional likelihood is used. τ = 100 and subgroup size
n = 4.)

Mohammad E. Dehghan Monfared and Fazlollah lak

Fig. 2. Left: The estimated risk functions of TM (dotted curve), COM (broken curve) and LOM (solid curve)
when unconditional likelihood is used. Right: The estimated risk functions of TM (dotted curve), COM
(broken curve) and LOM (solid curve) when conditional likelihood is used. τ = 100 and subgroup size
n = 4.)

Fig. 2. Left: The estimated risk functions of TM (dotted curve), COM (broken curve) and LOM (solid curve) when
unconditional likelihood is used. Right: The estimated risk functions of TM (dotted curve), COM (broken curve) and
LOM (solid curve) when conditional likelihood is used. τ = 100 and subgroup size n = 4.)

Figure 2 shows a comparison between different methods for finding true change point as it is
done by Dehghan Monfared and Lak (2015). As seen in figure 2, for both cases, i.e. conditional and
unconditional likelihood, LOM outperforms the two other methods.
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