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Cornélio Procópio, PR, Brazil

eabarros@utfpr.edu.br

Jorge Alberto Achcar

Universidade de São Paulo, Departamento de Medicina Social, FMRP/USP
Ribeirão Preto, SP - Brazil

achcar@fmrp.usp.br

Josmar Mazucheli
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This paper presents estimates for the parameters included in long-term mixture and non-mixture lifetime mod-
els, applied to analyze survival data when some individuals may never experience the event of interest. We
consider the case where the lifetime data have a three-parameter Burr XII distribution, which includes the pop-
ular Weibull mixture model as a special case. Classical and Bayesian procedures are used to get point estimates
and confidence intervals for the unknown parameters. We consider a general survival model where the scale
and shape parameters of the Burr XII distribution are dependent of some covariates. To illustrate the proposed
methodology, we consider an application considering a leukaemia data set where the proposed model gives
better fit for the data when compared to other existing models.
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1. Introduction

A long-term survivor mixture model, also known as standard cure rate model, assumes that the
studied population is a mixture of susceptible individuals, who experience the event of interest
and non-susceptible individuals that will never experience it. These individuals are not at risk with
respect to the event of interest and are considered immune, non-susceptible or cured [1]. Differ-
ent approaches, parametric and non-parametric, have been considered to model the proportion of
immunes and interested readers can refer, for example, to Boag (1949), Berkson and Gage (1952),
Haybittle (1965), Farewell (1982, 1986), Meeker (1987), Gamel et al. (1990), Ghitany and Maller
(1992), Copas and Heydari (1997), Ng and McLachlan (1998), De Angelis et al. (1999), Peng
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and Dear (2000), Sy and Taylor (2000), Balakrishnan and Pal (2013). Following Maller and Zhou
(1996), the standard cure rate model assumes that a certain fraction p in the population is cured or
never fail with respect to the specific cause of death or failure, while the remaining fraction (1− p)
of the individuals is not cured, leading to the survival function for the entire population written as:

S(t) = p+(1− p)S0(t), (1.1)

where p ∈ (0,1) is the mixing parameter and S0(t) denotes a proper survival function for the non-
cured group in the population. Considering a random sample of lifetimes (ti,δi, i = 1, . . . ,n), under
the assumption of right censored lifetime, the contribution of the ith individual for the likelihood
function is:

Li = [ f (ti)]
δi [S (ti)]

1−δi , (1.2)

where δi is a censoring indicator variable, that is, δi = 1 for an observed lifetime and δi = 0 for a
censored lifetime.

From the mixture survival function, (1.1), the probability density function is obtained from
f (ti) =− d

dt S(ti) and given by:

f (ti) = (1− p) f0 (ti) , (1.3)

where f0 (ti) is the probability density function for the susceptible individuals. Substitution of the
mixture density (1.3) and survival function (1.1) in the standard likelihood function (1.2) yields
the likelihood for the long-term survivor mixture model:

Li = [(1− p) f0 (ti)]
δi [p+(1− p)S0 (ti)]

1−δi . (1.4)

Thus, the log-likelihood considering all observations is given by:

l = r log(1− p)+
n

∑
i=1

δi log f0 (ti)+
n

∑
i=1

(1−δi) log [p+(1− p)S0 (ti)] , (1.5)

where r = ∑
n
i=1 δi is the number of uncensored observations. Common choices for the survival func-

tion S0 (t) , in (1.1), are the exponential and Weibull distributions. Recently, the exponentiated expo-
nential distributions was considered by [16] and [17]. Peng et al. (1998) investigated the use of a
generalized Fisher-Snedecor distribution as baseline for S0 (t). The generalized Fisher-Snedecor dis-
tribution is a supermodel that includes the most popular survival models as particular cases, such as
the exponential, Weibull, log-normal, among others. Yamaguchi (1992) considered the generalized
log-gamma distribution for the mixture cure rate model in the context of accelerated failure-time
regression models. The Gompertz distribution was considered by Gieser et al. (1998), while the
exponentiated Weibull and exponentiated exponential distributions were considered, respectively,
by Bolfarine and Cancho (2001) and Kannan et al. (2010). The Conway-Maxwell Poisson cure rate
model was proposed by Rodrigues et al. (2009a) as an alternative to the cure rate model discussed
by Yin and Ibrahim (2005). Shao and Zhou (2004) proposed a mixture parametric model for survival
data with long-term survivors considering the Burr XII distribution.

An alternative to a long-term survivor mixture model is the long-term survivor non-mixture
model suggested by [26–28] which defines an asymptote for the cumulative hazard and hence for
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the cure fraction. The survival function for a non-mixture cure rate model is defined as:

S (t) = p1−S0(t), (1.6)

where, like in (1.1), p ∈ (0,1) is the mixing parameter and S0(t) denotes a proper survival function
for the non-cured group. Observe that if the probability of cure is large, then the intrinsic survival
function S (t) is large — S0 (t) will be large which implies in F0 (t) = 1−S0 (t) small. Larger values
of F0 (t) at a fixed time t imply lower values of S (t). This model was derived under the threshold
model for tumor resistance (cancer research) where, F0 (t) refers to the distribution of division time
for each cell in a homogeneous clone of cells. The non-mixture model (1.6) or the promotion time
cure fraction has been used by Lambert et al. (2007, 2010) to estimate the probability of cure
fraction in cancer lifetime data.

From (1.6), the survival and hazard function for the non-mixture cure rate model can be written,
respectively, as:

S (ti) = exp [log(p)F0 (ti)] (1.7)

and

h(ti) =− log(p) f0 (ti) . (1.8)

Since f (t) = h(t)S (t), the contribution of the ith individual for the likelihood function is given
by:

Li = h(ti)
δi S (ti) (1.9)

that is:

Li = [− log(p) f0 (ti)]
δi exp [log(p)F0 (ti)] . (1.10)

Considering a random sample of lifetimes (ti,δi, i = 1, . . . ,n) the log-likelihood is:

l = r log [− log(p)]+
n

∑
i=1

δi log f0 (ti)+ log(p)
n

∑
i=1

[1−S0 (ti)] , (1.11)

where, as before, r = ∑
n
i=1 δi.

A Bayesian formulation of the non-mixture cure rate model is given in Chen et al. (1999). A
model which includes a standard mixture model for cure rate was considered in Yin and Ibrahim
(2005). Rodrigues et al. (2009b) extended the long-term survival model proposed by Chen et al.
(1999).

In this paper, considering the Burr XII distribution, we compare the performance of the mixture
and non-mixture cure fraction formulation when the scale and shape parameters are dependent of
covariates. The Burr XII distribution provides more flexibility than the Weibull distribution which
could be a special case of the Burr XII distribution if its parameters are extended to a limiting case.
It is also important to point out that the Burr XII distribution is mathematically tractable with a
closed form for its cumulative distribution function.

The paper is organized as follows: in Section 2, we introduce the likelihood function assum-
ing the Burr XII distribution distribution for the susceptible individuals; in Section 3, we present a
Bayesian analysis assuming the mixture and non-mixture models in presence or absence of covari-
ates; in Section 4, we present an application with the leukaemia data of Kersey et al. (1999) in
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various aspects of statistical inference, in particular, the comparison between the effects of the allo-
geneic and autologous treatments; finally in Section 5, we introduce some comments and remarks.

2. The Burr XII Distribution Cure Model

Burr (1942) suggested a number of cumulative distributions, where the most popular one is the
so-called Burr XII distribution, whose three-parameter probability density function is given by:

f0 (t | µ,α,λ ) =
α

µα
tα−1

[
1+λ

(
t
µ

)α]−(1+ 1
λ )

, (2.1)

where µ > 0 is the scale parameter; α > 0 and λ > 0 are shape parameters. For λ →+0 we have the
Weibull distribution as a particular case. The hazard function of a Burr XII distribution is decreasing

if α ≤ 1 and is unimodal with the mode at t = (α−1)1/α

µ−1λ 1/α
when α > 1. The three-parameter Burr XII

distribution is much more flexible than the standard two-parameter Weibull distribution. Rodriguez
(1977) showed that the possible combination of skewness and kurtosis covers a two-dimensional
area in the skewness-kurtosis plane for the Burr XII distribution, but is restricted to a curve for the
Weibull distribution. Some typical shapes of the three-parameter Burr XII distribution are shown in
Figure 1.

From (2.1), the distribution and survival functions are written, respectively, by:

F0 (t | µ,α,λ ) = 1−
[
1+λ

(
t
µ

)α]− 1
λ

S0 (t | µ,α,λ ) =
[
1+λ

(
t
µ

)α]− 1
λ

. (2.2)

From (2.2), the Burr XII model in the presence of long-term survivors or immunes has a proba-
bility density function, a distribution function and a survival function given, respectively, as follows:

f (t | θ) = (1− p)
α

µα
tα−1

[
1+λ

(
t
µ

)α]−(1+ 1
λ )

, (2.3)

F (t | θ) = (1− p)

{
1−
[

1+λ

(
t
µ

)α]− 1
λ

}
, (2.4)

S (t | θ) = p+(1− p)
[

1+λ

(
t
µ

)α]− 1
λ

, (2.5)

where θ = (µ,α,λ , p), µ is the scale parameter, α and λ are shape parameters and p is the pro-
portion of immunes or non-susceptible. Suppose the data are of the form (ti,δi), i = 1, . . . ,n, where
δi = 1 if ti is uncensored and δi = 0 otherwise and that f (ti) is given by (2.3). Under the assumption
of right censored lifetime, the observed full likelihood function is:

L(θ | t,δ ) = L1 (θ | t,δ )×L2 (θ | t,δ ) (2.6)
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Fig. 1. Behavior of probability density functions considering different shapes values of the three-parameter Burr XII
distribution (µ = 1).

such that the log-likelihood terms, l j (θ | t,δ ) = log [L j (θ | t,δ )] , j = 1,2, are given, respectively,
by:

l1 (θ | t,δ ) = r log(1− p)+ r log(α)− rα log(µ)+(α−1) t̃− (2.7)(
1+

1
λ

) n

∑
i=1

δi log(Ai)

and:

l2 (θ | t,δ ) =
n

∑
i=1

(1−δi) log
{

p+(1− p)A
− 1

λ

i

}
, (2.8)

where r = ∑
n
i=1 δi, t̃ = ∑

n
i=1 δi log(ti), Ai = 1+Bi and Bi = λ

(
ti
µ

)α

.
Given the observed lifetime data, (ti,δi), i = 1, . . . ,n, and defining l (θ | t,δ ) = logL(θ | t,δ ),

the maximum likelihood estimates for θ = (µ,α,λ , p), denoted by θ̂ =
(

µ̂, α̂, λ̂ , p̂
)

, are obtained
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by solving, for example using the Newton-Raphson method, the following likelihood equations:

∂

∂ µ
l (θ | t,δ ) = − rα

µ
+

α
(
1+ 1

λ

)
µ

n

∑
i=1

δiBi

Aα
i

+
(1− p)α

λ µ

n

∑
i=1

A
−(1+ 1

λ
)

i Bi

p+(1− p)A
− 1

λ

i

= 0 (2.9)

∂

∂α
l (θ | t,δ ) = r

α
− r log(µ)+ t̃−

(
1+

1
λ

) n

∑
i=1

δiBi log
(

ti
µ

)
Ai

− (1− p)
λ

n

∑
i=1

A
−(1+ 1

λ
)

i Bi log
(

ti
µ

)
p+(1− p)A

− 1
λ

i

= 0 (2.10)

∂

∂λ
l (θ | t,δ ) = 1

λ 2

n

∑
i=1

δi log(Ai)−
λ +1

λ 2

n

∑
i=1

δiBi

Ai
+

(1− p)
λ 2

n

∑
i=1

A
− 1

λ

i

[
log(Ai)−BiA−1

i

]
p+(1− p)A

− 1
λ

i

= 0 (2.11)

∂

∂ p
l (θ | t,δ ) = − r

1− p
+

n

∑
i=1

1−A
− 1

λ

i

p+(1− p)A
− 1

λ

i

= 0 (2.12)

Under the non-mixture formulation and using (2.2), the probability density function, the distri-
bution function and the survival function are given respectively by:

f (t | θ) = − log(p)
α

µα
tα−1

[
1+λ

(
t
µ

)α]−(1+ 1
λ )

p

{
1−
[
1+λ

(
t
µ

)α]− 1
λ

}
(2.13)

F (t | θ) = 1− p

{
1−
[
1+λ

(
t
µ

)α]− 1
λ

}
, (2.14)

S (t | θ) = p

{
1−
[
1+λ

(
t
µ

)α]− 1
λ

}
. (2.15)

In this case, the log-likelihood function for the non-mixture Burr XII cure model can be written
as:

l (θ | t,δ ) = r log [− log(p)]+ r log(α)− rα log(µ)+(α−1) t̃− (2.16)(
1+

1
λ

) n

∑
i=1

δi log(Ai)+ log(p)
n

∑
i=1

(
1−A

− 1
λ

i

)

where, again, r = ∑
n
i=1 δi, t̃ = ∑

n
i=1 δi log(ti), Ai = 1+Bi and Bi = λ

(
ti
µ

)α

.
Differentiating (2.16) with respect to µ , α , λ and p setting the results equal to zero we have:

∂

∂ µ
l (θ | t,δ ) = − rα

µ
+

α
(
1+ 1

λ

)
µ

n

∑
i=1

δiBi

Ai
− α log(p)

λ µ

n

∑
i=1

A
−(1+ 1

λ
)

i Bi = 0 (2.17)

∂

∂α
l (θ | t,δ ) = r

α
− r log(µ)+ t̃−

(
1+

1
λ

) n

∑
i=1

δiBi log
(

ti
µ

)
1+Bi

+
log(p)

λ

n

∑
i=1

A
− 1

λ

i Bi log
(

ti
µ

)
(1+Bi)

= 0 (2.18)

∂

∂λ
l (θ | t,δ ) = 1

λ 2

n

∑
i=1

δi log(Ai)−
λ +1

λ 2

n

∑
i=1

δiBi

1+Bi
− log(p)

λ 2

n

∑
i=1

A
− 1

λ

i

[
log(Ai)−

Bi

Ai

]
= 0 (2.19)

∂

∂ p
l (θ | t,δ ) = r

p log(p)
+

1
p
− 1

p

n

∑
i=1

A
− 1

λ

i = 0 (2.20)
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The equation (2.20) can be solved algebraically for p, giving:

p̂(µ,α,λ ) = exp

 n

∑
i=1

δi

A
− 1

λ

i −1

 . (2.21)

To obtain µ̂ , α̂ and λ̂ , we substitute p̂(µ,α,λ ) into the equations (2.17), (2.18) and (2.19)
and solve for µ , α and λ using numerical methods. The 100× (1−ψ)% confidence intervals for
µ , α , λ and p can be obtained from the usual asymptotic normality of the maximum likelihood
estimators with Var(µ̂), Var(α̂), Var(λ̂ ) and Var(p̂) estimated from the inverse of the observed
Fisher information matrix, that is, the inverse of the matrix of negative second derivatives of the
log-likelihood function locally at µ̂ , α̂ , λ̂ and p̂.

In the presence of one covariate xi, i = 1, . . . ,n, we can assume a link function for µ , α , λ and
p, that is, log(µi) = β0+β1xi, log(αi) = α0+α1xi, log(λi) = γ0+γ1xi and log

(
pi

1−pi

)
= η0+η1xi,

where xi, for example, taking the value 0 if individual i is in the treatment group 1 or the value 1
if individual i is in the treatment group 2. In this way, we can have interest in test the following
hypothesis: H0 : β1 = 0 (no treatment effect in the susceptible patients), H0 : α1 = 0 (no treatment
effect in the shape of the lifetime distribution), H0 : γ1 = 0 (no treatment effect in the shape of the
lifetime distribution) or H0 : η1 = 0 (no treatment effect in the proportion of cured individuals).

3. A Bayesian Analysis

For a Bayesian analysis of the mixture and non-mixture models introduced in Section 1, we assume
an prior uniform distribution defined in the interval (0,1), U (0,1), for the probability of cure p
and Gamma(0.001,0.001) prior distributions for the scale parameter µ and shape parameters α

and λ , where Gamma(a,b) denotes a gamma distribution with mean a/b and variance a/b2. We
further assume prior independence among p, µ , α and λ . Observe that we are using approximately
non-informative priors for the parameters of the models.

In the presence of a covariate vector x = (x1, . . . ,xk)
′

affecting the parameters µ and α , but not
affecting the shape parameter λ , let us assume the following regression model,

µi = β0 exp(β1x1i + · · ·+βkxki) and αi = α0 exp(α1x1i + · · ·+αkxki) . (3.1)

Assuming the mixture and non-mixture models introduced in Section 1, let us consider a gamma
prior distribution Gamma(0.001,0.001) for the regression parameters β0 and α0 and a normal prior
distribution N (0,100) for the regression parameters βl and αl , l = 1, . . . ,k, where N

(
µ,σ2

)
denotes

a normal distribution with mean µ and variance σ2. We also assume prior independence among the
parameters.

Posterior summaries of interest are obtained from simulated samples for the joint posterior dis-
tribution using standard Markov Chain Monte Carlo (MCMC) methods as the Gibbs sampling algo-
rithm [35] or the Metropolis-Hastings algorithm [36].

4. An Application

In this section we analyze a leukaemia data set consisting of 90 observations introduced by Kersey
et al. (1987) and reproduced by Maller and Zhou (1996). In this data 46 patients were treated by
allogeneic transplant (Group I) and the other 44 by autologous transplant (Group II). The survival
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time refers to the number of days to recurrence of leukaemia for patients after one of the two treat-
ments. The medical problems of interest include: the existence of “cured” patients (who will never
suffer a recurrence of leukaemia) and the estimation of their proportion; the failure distributions of
susceptible patients; and comparison between the effects of the two treatments.

From expressions (2.7), (2.8) and (2.16), we get the estimates presented in Tables 1 and 2 —
the maximum likelihood estimates for mixture and non-mixture models, respectively. In Tables 3
and 4, we have the inference results considering the Bayesian approach for mixture and non-mixture
models, respectively.

We also have in Tables 1 and 4, the AIC (Akaike information criterion) and the Monte Carlo
estimates of DIC (Deviance Information Criterion) used as a discrimination criterion for different
models. Smaller values of AIC and DIC indicates better models. A brief introduction to AIC and
DIC is presented at Appendix A.

The maximum likelihood estimates were obtained in SAS/NLMIXED procedure, [37], by
applying the Newton-Raphson algorithm. To obtain the Bayesian estimates we have used MCMC
(Markov Chain Monte Carlo) methods available in SAS software 9.2, SAS/MCMC [38]. A single
chain has been used in the simulation of samples for each parameter of both models considering
a “burn-in-sample” of size 15,000 to eliminate the possible effect of the initial values. After this
“burn-in” period, we simulated other 200,000 Gibbs samples taking every 100th sample, to get
approximated uncorrelated values which result in a final chain of size 2,000. Usual existing con-
vergence diagnostics available in the literature for a single chain using the SAS/MCMC procedure
indicated convergence for all parameters.

Table 1. Maximum likelihood (standard error) estimates for µ , α , λ and p in each group — mixture model.

Group µ̂ α̂ λ̂ p̂ AIC

I
171.15
(112.77)

1.3824
(0.6862)

1.4245
(3.0362)

0.2050
(0.1894)

497.2

II
110.33

(19.7609)
3.2248
(1.0359)

1.5414
(1.0503)

0.2006
(0.06142)

457.2

Table 2. Maximum likelihood (standard error) estimates for µ , α , λ and p in each group — non-mixture model.

Group µ̂ α̂ λ̂ p̂ AIC

I
321.81
(178.20)

1.2938
(0.6086)

1.3991
(5.5520)

0.2119
(0.2522)

497.3

II
146.08

(31.8094)
3.0038
(0.8740)

1.6820
(1.4796)

0.2002
(0.06260)

457.4
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Table 3. Posterior means (standard deviation) for µ , α , λ and p in each group — mixture model.

Group µ̂ α̂ λ̂ p̂ DIC

I
170.2

(15.5727)
1.3224
(0.3386)

1.5235
(1.2280)

0.2046
(0.0984)

495.3

II
114.4

(22.5142)
3.2585
(1.1278)

1.8328
(1.3489)

0.2073
(0.0622)

457.3

Table 4. Posterior means (standard deviation) for µ , α , λ and p in each group — non-mixture model.

Group µ̂ α̂ λ̂ p̂ DIC

I
302.0

(60.1777)
1.3200
(0.2091)

1.1538
(0.5350)

0.2497
(0.0673)

494.0

II
158.4

(25.4148)
2.7506
(0.5098)

1.3057
(0.4480)

0.2141
(0.0603)

455.8

In Figure 2, we have the plots of the estimated survival functions based on the maximum like-
lihood estimates considering mixture and non-mixture models in presence of cure fraction and the
plot of the non-parametric Kaplan-Meier estimate for the survival function [39]. We also have in
Figure 2, the plot of the estimated survival function based on the Weibull and Burr XII distributions
not considering the cure fraction modeling.
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Fig. 2. Fitted models for the data.

From the fitted survival models (see, Figure 2), we conclude that the survival times are very
well fitted by the mixture and non-mixture cure fraction models. Also from Figure 2, we conclude
that the Burr XII distributions not considering the cure fraction modeling is better fitted than the
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Weibull distributions not considering the cure fraction modeling, this shows that Burr XII distri-
butions with three parameters is more flexible than the Weibull distribution. From the results of
Tables 1 — 4, using classical or Bayesian inference approaches give similar results; the obtained
DIC discrimination values from both models also give similar results.

We can also consider a binary variable related to the different groups where x1i = 1 for Group
II and 0 for the Group I. Then we assume the regression models given in (3.1). For these regression
models we consider three cases: model without covariates (Model 1), regression model for µ (Model
2) and regression model for µ and α (Model 3).

In Tables 5 and 6 we have the maximum likelihood estimates for regression models considering
mixture and non-mixture models, respectively. In Tables 7 and 8, we have the inference results con-
sidering the Bayesian approach for regression models considering mixture and non-mixture models,
respectively.

Table 5. Maximum Likelihood Estimates (MLE) and Standard Error estimates (SE) for regression models — mixture
model.

Model Parameter MLE SE 95% Confidence Interval

Model 1

µ̂

α̂

λ̂

p̂

120.94
2.1418
1.7671
0.2135

23.9370
0.4924
0.9948
0.05406

(73.3850;168.49)
(1.1635;3.1201)
(−0.2092;3.7433)
(0.1061;0.3210)

Model 2

α̂

λ̂

p̂
β̂0

β̂1

1.7451
0.8798
0.2306
182.19
−0.3782

0.4172
0.7466
0.04861
66.5977
0.3185

(0.9162;2.5741)
(−0.6035;2.3630)
(0.1340;0.3272)
(49.8834;314.50)
(−1.0109;0.2546)

Model 3

λ̂

p̂
β̂0

β̂1

α̂0

α̂1

1.5246
0.2003
167.73
−0.4165

1.4043
0.8268

0.8963
0.05370
57.7851
0.3060
0.3375
0.2451

(−0.2560;3.3051)
(0.09359;0.3070)
(52.9296;282.53)
(−1.0245;0.1915)
(0.7338;2.0747)
(0.3399;1.3136)
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Table 6. Maximum Likelihood Estimates (MLE) and Standard Error estimates (SE) for regression models — non-mixture
model.

Model Parameter MLE SE 95% Confidence Interval

Model 1

µ̂

α̂

λ̂

p̂

177.16
2.0748
2.3927
0.2024

41.2033
0.4643
1.9924
0.06668

(95.3025;259.02)
(1.1523;2.9972)
(−1.5656;6.3509)
(0.06989;0.3348)

Model 2

α̂

λ̂

p̂
β̂0

β̂1

1.7262
0.9231
0.2292
270.27
−0.3783

0.3497
0.9830
0.05031
97.1221
0.3037

(1.0314;2.4209)
(−1.0298;2.8761)
(0.1293;0.3292)
(77.3201;463.22)
(−0.9816;0.2250)

Model 3

λ̂

p̂
β̂0

β̂1

α̂0

α̂1

1.6699
0.2003
316.98
−0.7733

1.3190
0.8211

1.3020
0.05569
125.46
0.3558
0.2892
0.2480

(−0.9167;4.2565)
(0.08969;0.3110)
(67.7352;566.22)

(−1.4802;−0.06655)
(0.7444;1.8935)
(0.3284;1.3138)

Table 7. Posterior Means (PM) and Standard Deviation (SD) for regression models — mixture model.

Model Parameter PM SD Credible Interval

Model 1

µ̂

α̂

λ̂

p̂

122.6
2.1934
2.2280
0.2009

28.7453
0.5451
1.3879
0.0632

(77.2546;194.9)
(1.2602;3.4459)
(0.3819;5.9824)
(0.0646;0.3176)

Model 2

α̂

λ̂

p̂
β̂0

β̂1

1.8272
1.3434
0.2173

174.9
−0.3018

0.4815
1.1575
0.0593
52.0182
0.2916

(1.0778;2.9824)
(0.0332;4.5494)
(0.0851;0.3261)
(81.5222;277.9)
(−0.8292;0.3199)

Model 3

λ̂

p̂
β̂0

β̂1

α̂0

α̂1

1.7100
0.2005

175.8
−0.4070

1.4214
0.8004

1.0094
0.0528
52.2661
0.2806
0.3461
0.2449

(0.3734;4.1672)
(0.0997;0.3093)
(88.4162;298.2)
(−0.9384;0.1674)
(0.8879;2.2550)
(0.3295;1.2986)
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Table 8. Posterior Means (PM) and Standard Deviation (SD) for regression models — non-mixture model.

Model Parameter PM SD Credible Interval

Model 1

µ̂

α̂

λ̂

p̂

191.3
2.0741
3.4496
0.1879

47.1324
0.4720
3.0633
0.0668

(118.4;309.2)
(1.2757;3.0983)
(0.2589;12.2087)
(0.0432;0.3062)

Model 2

α̂

λ̂

p̂
β̂0

β̂1

1.6350
1.3797
0.2170
295.4

−0.3886

0.2545
1.8359
0.0674
9.5409
0.1929

(1.1474;2.1417)
(0.00255;7.8565)
(0.0482;0.3320)
(276.6;313.4)

(−0.7404;0.0111)

Model 3

λ̂

p̂
β̂0

β̂1

α̂0

α̂1

1.6695
0.2044
338.9

−0.7833
1.2762
0.7752

1.1204
0.0499
15.2548
0.1830
0.2040
0.2432

(0.1919;4.6356)
(0.1049;0.3055)
(308.1;356.9)

(−1.1088;−0.4185)
(0.9006;1.7011)
(0.2887;1.2575)

Different model selection methods to choose the most adequate model could be adopted under
the Bayesian paradigm [40]. We consider the Deviance Information Criterion (DIC) which is specif-
ically useful for selecting models under the Bayesian approach, where samples of the posterior dis-
tribution for the model parameters are obtained by using MCMC methods (see, Appendix Appendix
A).

In Bayesian context using MCMC methods, we have used the DIC (Appendix A) given auto-
matically by the SAS software, in place of the usual AIC criteria used in classical approach (see,
Table 9). Other proposal has been indicated in the literature [41–43].

Table 9. Discrimination criterion.

Model
Mixture Model Non-Mixture Model
DIC AIC DIC AIC

Model 1 959.5 959.7 958.2 959.7
Model 2 959.8 960.5 958.7 960.5
Model 3 949.5 950.4 948.7 950.6

From the results of Table 9, we conclude that Model 3 (regression model for µ and α) is better
fitted by the data. Since DIC is a little bit smaller considering the non-mixture Model 3 when
compared to the other models, we use this model to get our final inferences of interest. From Table
8 and using the non-mixture Model 3, we conclude that the parameters β1 and α1 have significant
treatment effect in the ratio of susceptible patients.

Journal of Statistical Theory and Applications, Vol. 16, No. 2 (June 2017) 150–164
___________________________________________________________________________________________________________

161



5. Concluding Remarks

Usually in the analysis of lifetime data we could have the presence of a cure fraction, where a
proportion of the patients will never experiment the event of interest, in many cases, death of the
patient. To analyze this kind of data, we could use different existing parametric formulations, as
mixture and non-mixture models. These formulations, usually assume standard existing distribu-
tions as the Weibull, log-normal or exponential distributions for the susceptible individuals. The
use of a Burr XII distribution with mixture or non-mixture cure rate could be of great interest in
applications since this model has a great flexibility of fit as compared to other standard lifetime dis-
tributions. Computationally, especially using the Bayesian paradigm, the obtained results are very
similar as observed in the application introduced in Section 4. The great advantage of the mixture
model is related to the simple interpretations, especially for medical researchers, where we have the
proportion of cured and non-cured individuals given directly in the survival function expression.
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Appendix A. Deviance Information Criterion

The deviance can be expressed as,

D(θ) =−2logL(θ | y)+ c, (A.1)

where L(θ | y) is the likelihood function for the unknown parameters in θ given the observed data
y and c is a constant not required for comparing models.

Spiegelhalter et al. (2002), defined the DIC criterion by,

DIC = D(θ̂)+2nD, (A.2)

where D(θ̂) is the deviance evaluated at the posterior mean θ̂ and nD is the effective number of
parameters in the model, namely nD = D̄−D(θ̂), where D̄ = E[D(θ)] is the posterior deviance
measuring the quality of the goodness-of-fit of the current model to the data. Smaller values of DIC
indicate better models. Note that these values could be negative.

Another commonly used measure of goodness-of-fit is the Akaike information criterion (AIC)
[45, 46] given by,

AIC =−2logL(θ̂ | y)+2p, (A.3)

where L(θ̂ | y) is the maximized likelihood value and p is the number of parameters in the model.
Smaller values of AIC indicate better models.
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