
A parameter optimization method for Digital Spiking Silicon Neuron model 
 

Takuya Nanami 
Institute of Industrial Science, University of Tokyo 

Tokyo, Japan 

Filippo Grassia 
LTI Lab., University of Picardie Jules Verne  

Saint-Quentin, France 

Takashi Kohno 
Institute of Industrial Science, University of Tokyo 

Tokyo, Japan 
nanami@sat.t.u-tokyo.ac.jp, kohno@sat.t.u-tokyo.ac.jp 

 

 

 

Abstract 

DSSN model is a qualitative neuronal model designed for efficient implementation in a digital arithmetic circuit. In 
our previous studies, we extended this model to support a wide variety of neuronal classes. Parameters of the DSSN 
model were hand-fitted to reproduce neuronal activity precisely. In this work, we studied automatic parameter 
fitting procedure for the DSSN model. We optimized parameters of the model by the differential evolution 
algorithm in order to reproduce waveforms of the ionic-conductance models and reduce necessary circuit resources 
for the implementation. 
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1. Introduction 

A wide variety of neuronal models have been used in 
silicon neuronal networks because of the trade-off 
between reproducibility of neuronal activities and 
computational efficiency. For example, ionic-
conductance models can reproduce a neuronal activity 
accurately but demands enormous computational 
resources in large-scale implementations. In contrast, 
integrate-and-fire based models such as the LIF and 
Izhikevich models [1] can be implemented with less 
resource, because they approximate a spiking process by 
the resetting of the state variables. However, they have 
reduced reproducibility of complex neuronal activities. 
For example, these models assume fixed maximum 
membrane potentials during the spike process, whereas 
the spike intensity is nonuniform in the nervous system 
[2]. The DSSN model [3] is a qualitative neuronal 
model designed for efficient implementation in a digital 
arithmetic circuit. In our previous studies [4][5], we 
extended the DSSN models to support various neuronal 
activities; regular spiking, fast spiking, intrinsically 

bursting, low-threshold spiking, elliptic bursting, and 
parabolic bursting. 
To reproduce a variety of spiking properties in neurons, 
appropriate parameter sets for neuronal models have to 
be found. The relationship between the values of the 
parameters and the behavior of the model is generally 
complex, and it is difficult and time-consuming to find 
an appropriate parameter set. Automatic parameter 
fitting procedures have been studied as a solution to this 
problem. Parameters for Hodgkin-Huxley-type models 
have been tuned automatically in [6] and [7]. Pospischil 
et al [8] reproduced regular and fast spiking neuron 
classes by simulated annealing based optimization 
method using a cost function composed of the firing rate 
and the adaptation time. Buhry et al. [9][10] compared 
several heuristic algorithms for automatic parameter 
estimation on a Hodgkin-Huxley-type model, where the 
differential evolution algorithm had a best performance.  
They also applied the algorithm to a neuromimetic 
analog integrated circuit. 
In this work, we applied the differential evolution 
algorithm to parameter fitting of the DSSN model in 
regular and fast spiking settings, because it shares its 
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mathematical structures with Hodgkin-Huxley-type 
models. Regular-spiking (RS) is a most typical classes 
of cortical neurons and is characterized by spike-
frequency adaptation; the spike frequency decreases 
over time in response to a constant stimulus input. 
Conversely, Fast-spiking (FS) neurons maintain firing at 
a constant frequency. Parameters were optimized to 
reproduce waveforms of the ionic-conductance models 
in [8] and reduce the circuit resource requirements for 
implementation. 
The remainder of this paper is organized as follows. 
Section 2 introduces our neuron model, differential 
evolutional algorithm, details of our parameter 
optimization procedure, and GPU-based implementation. 
The result is shown in Section 3. Section 4 summarizes 
the work and suggests ideas for future. 

2. Method 

2.1. Digital Spiking Silicon Neuron model 
The 3-variable DSSN model is a qualitative neuron 
model that can simulate several classes of neuronal 
activities by Euler's method with fixed point operation 
including RS and FS [4]. Equations for regular and fast 
spiking are given by 
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where 𝑣 corresponds to the membrane potential, and 𝑛 
and 𝑞 are the fast and slow variables, respectively, that 
abstractly describe the activity of the ion channels. 
Parameter 𝐼0 is a bias constant and 𝐼𝑠𝑠𝑠𝑠  represents the 
input stimulus. Parameters ∅, ε, and τ control the time 
constants of the variables. Parameters, 𝑎𝑥 , 𝑏𝑥 , and 𝑐𝑥 , 
where 𝑥 is 𝑓𝑓, 𝑓𝑓, 𝑔𝑔, 𝑔𝑔, ℎ𝑛, or ℎ𝑝, are constants that 
adjust the nullclines of the variables. All of the variables 

and constants in this qualitative model are purely with 
no physical units. A cubic shaped 𝑣-nullcline is a key to 
replicate the spiking dynamics in qualitative models. 
Because multipliers are resource-consuming in a digital 
arithmetic circuit, the DSSN model adopts a piecewise 
quadratic function for the 𝑣 -nullcline so that its 
numerical integration step requires only one 
multiplication between variables. The architecture of the 
DSSN circuit was explained in our previous study [11]. 
 
2.2. Differential evolution algorithm 
Differential evolution (DE) algorithm [12] is a popular 
heuristic method to solve optimization problems using a 
real number function. It is characterized by its mutation 
process that uses geometrical location of whole 
population. In the following, we explain each step in the 
DE algorithm. We define 𝑥𝑘𝑖 (𝑗) as the gene j of the i th 
individual of the k th generation. 
 Initialization 
We generate M-dimensional parameter vectors 𝑥0𝑖  
(𝑖 = 0, … , N − 1), where N and M are the number of the 
individuals and parameters of the DSSN model. 
Parameter vectors are chosen randomly within the 
boundary constraints of the DSSN model. 
 Mutation 
We generate new parameter vector 𝑥𝑚𝑚𝑚𝑖  as follows: 

∀𝑖 = 1, . . . , N, 𝑥𝑚𝑚𝑚𝑖 = 𝑥𝑘𝑟1 + 𝐹 ∙ (𝑥𝑘𝑟2 − 𝑥𝑘𝑟3), 
where r1, r2, and r3 are integer randomly chosen  from 
[0, N − 1]. F is usually set to 0.5. 
 Crossover 
We generate new parameter vectors  𝑥𝑐𝑐𝑐𝑐𝑐𝑖  that inherit 
genes of 𝑥𝑚𝑚𝑚𝑖  with a probability CR. 

∀𝑖 = 1, … , N, ∀𝑗 = 1, . . . , M, 

𝑥𝑐𝑐𝑐𝑐𝑐𝑖 (𝑗) = �
𝑥𝑚𝑚𝑚
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where CR is usually set to 0.5. 
 Selection 
A selection is conducted by comparing the cost function 
values of 𝑥𝑘𝑖  and 𝑥𝑚𝑚𝑚𝑖 , respectively, as follows: 

∀𝑖 = 1, . . . , N, 

𝑥𝑘+1𝑖 = �
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where  𝑓(𝑥) returns the value of the cost for parameter 
vector 𝑥. 
A set of procedures including mutation, crossover, and 
selection is repeated for 10000 times, and the parameter 
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vector that produces the lowest value in the cost 
function is finally adopted. 

2.3. Parameter optimization procedure 

The DSSN model for RS and FS classes has 24 
parameters, exploring whose spanning space is not 
realistic with average computing power available to 
those who are not specialized in high performance 
computing (HPC). To reproduce the dimension of the 
parameter space to be explored by the DE algorithm, we 
first explored the parameters that control the dynamics 
of the fast state variables 𝑣 and 𝑛  to fit the spike 
generation mechanism. Then, the parameters related to 
the slow state variable 𝑞  were determined to fit the 
adaptation of the spike-frequency. 
In the DSSN model’s equation, some parameters are a 
coefficient of a variable. In its circuit implementation, a 
multiplication between a coefficient and a state variable 
was realized by shifters and adders, and we need a 
larger number of couples of an adder and a shifter as the 
number of digits with value 1 in the fixed point 
representation of the coefficient increases. Parameters 
were optimized for not only reproducing waveforms of 
the ionic-conductance model but also reducing the 
circuit size. 
In the procedure to determine the parameters that 
control the dynamics of the two fast variables, we fixed 
𝑣 -nullcline to facilitate parameter exploration while 
considering the dynamics of the spike generation 
process. It does not severely restrict the dynamical 
property of the model, because the relation between the 
𝑣- and 𝑛- nullclines is one of the major factors that rule 
the dynamical structures in our neuronal model. We 
defined the cost function as follows: 

𝑓1(𝑥) = 𝑓w(𝑥) + 𝑘1𝑓b1(𝑥), 
where 𝑓w(𝑥) is a square error between the waveforms of 
the DSSN model with parameter vector 𝑥 and a target 
waveform. The target waveform was calculated by a 
fast subsystem of the DSSN model in our previous 
study [4], which is tuned to reproduce mathematical 
structure of the ionic conductance model in [8]. Note 
that minimum and maximum values of waveforms are 
normalized to 0 and 1 for comparison. Function 𝑓b1 is a 
number of digits with value 1 in the binary fixed-point 
expression of the coefficients in 𝑥 . Constant 𝑘1  is to 
balance this couple of cost functions. Parameters that 
control the dynamics of the fast variables were  

 
Figure 1: Waveforms of the ionic-conductance model (red) 
and the DSSN model (blue) in response to a weak (left) and 
strong (right) step stimulus input. (a)-(c) corresponds to 
regular spiking neuron cells. (d) and (e) corresponds to fast 
spiking neuron cells. 
 
determined to minimize the cost function 𝑓1 by the DE 
algorithm. 
The remaining parameters related to slow variable 𝑞 
were determined to reproduce the spike frequency 
adaptation. The cost function is 

𝑓2(𝑥) = 𝑓s(𝑥) + 𝑘2𝑓b2(𝑥), 
where 𝑓s(𝑥) is a square error between spike timings of 
the DSSN model with a parameter vector 𝑥 and that of 
the target ionic-conductance model in response to a step 
stimulus. Function 𝑓b2 is a number of digits with value 1 
in the binary fixed-point expression of the coefficients 
in 𝑥, and  𝑘2 is a constant to balance this couple of cost 
functions. 
The DE algorithm is known to be compatible with 
parallel computation schemes because of its intrinsic 
parallel structure. We accelerated the calculation by the 
Graphic processing unit (GPU) to obtain better 
parameter solution by executing a larger number of DE 
steps in a time period. The calculation of the cost 
function, in which the differential equations are solved 
by the Euler’s method for thousands of times, was 
parallelly processed on a GPU. GPU (NVIDIA Tesla 
K40) –based implementation for calculating cost 
functions of 214 parameter vectors consumed 1.578[s], 
and it was about six times faster than a single-thread 
program on Xeon E5-2670 CPU, which consumed 
9.51[s]. 
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Figure 2: 𝐶𝑉 − 𝐿𝑉  characteristics of the ionic-conductance 
model (red) and the DSSN model (blue). 
 
Table. 1 : Device Utilization. The labels (a)-(e) correspond to 
those in Fig.1. 

 
 

3. Result 

We found five parameter sets with which the DSSN 
model reproduces the activities of the ionic-conductance 
models for three RS and two FS cells whose 
characteristics are slightly different from each other (Fig. 
1). 
We evaluated the similarity of the spiking patterns 
between the ionic-conductance model and the DSSN 
model by calculating 𝐶𝑉  and 𝐿𝑣  [13] that are statistics 
for the spike sequence while changing the stimulus 
intensity (Fig. 2). They are defined as follows: 

𝐶𝑉 = �
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�(𝑇 − 𝑇�)2/𝑇�
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where 𝑇𝑖  denotes the 𝑖 th interspike interval, 𝑇�𝑖  is the 
average of 𝑇𝑖 , and n  is the number of spikes in the 
sequence. Both models' simulation results draw similar 
curves on the 𝐶𝑉 − 𝐿𝑉 plane for each cell. The similarity 
of these characteristics will be estimated based on the 
requirements specified by the circuits' applications.. The 
results in Figs. 1 and 2 were obtained by numerical 
integration with the Euler's method (dt = 2−13 s) where 
each variable was expressed by 18-bit fixed point with 
14-bit fraction part. The same results are expected to be 
observed in the following FPGA implementation, 
because this condition is the same as our VHDL codes. 

We compiled the DSSN models for Virtex-7 
XC7VX690T FPGA using Xilinx Vivado Design Suite. 
Device utilization is listed in Table 1. In the column 
labeled (f) and (g), the resource usage for RS and FS 
settings in [4] is shown. The requirement for LUTs was 
reduced down to less than half in all the settings. 

4. Conclusion 

In this work, we developed a parameter optimization 
method for the DSSN model on the basis of the DE 
algorithm. By splitting the optimization process in 24-
dimentional parameter space into two steps, we could 
find parameter sets with which the DSSN model 
reproduces the characteristics activities of RS and FS 
cells without using special HPC systems. Cost functions 
𝑓𝑏𝑏 (𝑥 = 1, 2) were introduced so that the circuit size is 
reduced. We also confirmed qualitative similarity 
between the ionic-conductance model and the DSSN 
model by measuring statistics for the spike timing. In 
our future work, we will improve this optimization 
method to cover above other neuron classes. 
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