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Abstract 

This research looks at an ultra-low power subthreshold-operated silicon neuron circuit designed with qualitative 
neuronal modeling. One technical challenge to future implementation of such circuits is parameter tuning—a 
problem stemming from temperature sensitivity of subthreshold-operated MOSFETs and the uniqueness of 
individual circuits in a neuronal network due to transistor variation. This research proposes a fully automated 
parameter tuning algorithm that combines two heuristic approaches to search for appropriate circuit parameters 
over a range of temperatures. The algorithm can tune the circuit to behave as a Class I or Class II neuron. 
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1. Introduction 

Analog silicon neurons, electronic circuits that mimic 
the electrophysiological characteristics of neuronal 
cells, may in the future be used as fundamental building 
blocks of neuromorphic technologies like brain-mimetic 
computers. These circuits operate in continuous time, 
consume low power, and are expected to be 
implemented in massively parallel networks that are 
fundamentally different from digital transistor logic 
circuits1. The circuit used in this research is an ultra-low 
power analog silicon neuron designed with the 
techniques of qualitative modeling—an approach which 
seeks to reduce the complexity of ionic conductance 
models by describing the same dynamics with fewer 
variables2. Such a model allows for replication of a wide 
variety of spiking dynamics in neuronal cells, including 
Class I and Class II in Hodgkin’s classification3, with a 
less complex low power circuit. Power consumption is 
further reduced by operating the circuit’s metal-oxide-

semiconductor field-effect transistors (MOSFETs) in 
their subthreshold regime4. 

The large number of circuit parameter voltages, the 
temperature sensitivity of subthreshold-operated 
MOSFETs, and the problem of transistor variation 
among circuits of equivalent design means that effective 
parameter tuning to achieve consistent neuron-like 
dynamics is a significant challenge. A parameter tuning 
algorithm that addresses these issues will be necessary 
for future implementation of these circuits in large scale 
networks. 

This research is inspired by positive results in [5] in 
which the Differential Evolution (DE) algorithm was 
used to tune the parameter voltages of a conductance-
based silicon neuron circuit. The DE algorithm is an 
evolutionary algorithm which begins with random 
solution vectors, in this case vectors of circuit parameter 
voltages, evaluates their performance with a cost 
function, and passes on elements of vectors with good 
performance to the next generation6. 
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In [7], we presented a script which pairs the Spectre 
circuit simulator with optimization algorithms to 
automatically search for optimum circuit parameter 
voltages over a range of temperatures. Two heuristic 
approaches were used to improve upon a previous trial-
and-error based tuning method. In this paper, we present 
a multistage tuning algorithm which combines those 
two heuristic methods with consideration given to their 
merits and drawbacks, and adds an additional pretuning 
stage to make the algorithm completely automated. Our 
new algorithm eliminates the need for trial-and-error, 
only requires input of benchmark characteristics, and 
can tune the circuit to behave as a Class I or Class II 
neuron over a range of temperatures. 

2. Circuit Description 

The silicon neuron circuit is divided into a v-block and 
an n-block which each integrate the currents from 
transconductance circuit components over a capacitor. 
Variables v and n represent membrane potential and 
abstracted ionic activity and are coded by subtracting 
the voltage over their respective capacitors from Vdd. 
The system equations are as follows: 
 
𝐶𝑣

𝑑𝑑
𝑑𝑑

= 𝑓𝑣(𝑣) − 𝑔𝑣(𝑣) + 𝐼𝑎𝑎 − 𝑟(𝑛) + 𝐼stim   (1) 
 

𝐶𝑛
𝑑𝑑
𝑑𝑑

= 𝑓𝑛(𝑣) − 𝑔𝑛(𝑣) + 𝐼𝑎𝑎 − 𝑟(𝑛)     (2) 
 
The current-voltage relationships for fx(v), gx(v) (x=v,n), 
and r(n) are sigmoidal curves. A detailed description of 
these circuits is given in [2]. Iax (x=v,n) are 
transconductance amplifiers used as constant current 
sources and Istim is an externally applied stimulus 
current. Transconductance amplifiers TAV and TAN use 
a voltage clamp method to draw the nullclines—curves 
on which the system equations equal zero—which are 
used to describe the dynamics of the silicon neuron8. All 
transistors in the silicon neuron circuit are operated in 
their subthreshold regime, yielding desirable 
exponential current-voltage characteristics and power 
consumption as low as 3 nW.  

3. Multistage Parameter Tuning Algorithm 

Our algorithm requires the user to input the benchmark 
circuit characteristics: the nullcline structure, circuit 
behavior detailed in Sec. 3.3, and current-voltage curves 
of the Iax and r(n) circuits (x=v,n) at 27°C. The user then 
selects the target temperature that circuit parameter 
voltages are generated for. 

Circuit simulations were conducted in the Cadence 
software environment with the Spectre circuit simulator 
on two X5570 processors (2.9 GHz, 8 threads). 

3.1. Stage I: Pretuning 

As listed in Table 1, parameter voltages Iax_Vb and 
rn_Vm scale the current-voltage characteristics of the Iax  
and r(n) circuits (x=v,n). The first stage of the algorithm 
uses Differential Evolution to find the optimum value of 
these parameters at the target temperature. The cost 
function is the mean absolute difference of the current-
voltage curve resulting from a given parameter to the 

 Table 1. Spectre Circuit Parameters (x=v,n)  
 Circuit Spectre Parameter Function  
 fx(v) fx_Vb scaling  
  fx_Vdlt offset  
 gx(v) gx_Vm scaling  
 r(n) rn_Vm scaling  
 Iax Iax_Vb scaling  
  Iax_Vin fine tuning  
     

Fig. 1. Block diagram of silicon neuron circuit, reprinted from 
[7] 
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current-voltage curve of the circuit with benchmark 
settings at 27°C. 

𝑓(𝑥) ≜ 1
𝑘
∑ |𝐼𝑖(𝑥) − 𝑏𝑖|𝑘
𝑖=1  (3) 

x is the parameter value for a given simulation; Ii(x) 
represents each point on the current-voltage curve 
yielded by a given parameter value; bi represents each 
corresponding point on the benchmark curve; and v = 0 
V when k = 1 and v = 1 V when k = 101. For each of 
these three circuits the DE algorithm is used once, 
requiring about 1.5 minutes and 130 iterations. 

3.2. Stage II: Nullcline tuning 

The second stage of the algorithm uses the DE 
algorithm to tune the nullclines to match the benchmark 
nullclines at 27°C in the range of 250–500 mV for Class 
I and 300–450 mV for Class II. Spectre simulations of 
the silicon neuron circuit’s nullcline mode are run with 
the input being a vector of circuit parameters. The 
parameters for Class I are gv_Vm, fx_Vb, and Iax_Vin 
(x=v,n). The parameters for Class II are gv_Vm, fn_Vb, 
and Iax_Vin (x=v,n). The roles of these parameters are 
listed in Table 1. gn_Vm and the scaling factors for the 
Iax circuits from the pretuning stage are kept constant, 
and fv_Vb is kept constant in Class II mode. The r(n) 
circuit is set to zero in the nullcline mode and is not 
directly evaluated. 

The cost function is the magnitude of the vector of 
the mean absolute differences of the v and n nullclines 
from their respective benchmark nullclines. 

𝑔(𝐱) ≜

��1
𝑘
∑ |𝑣𝑖(𝐱) − 𝑏𝑖|𝑘
𝑖=1 �

2
+ �1

𝑘
∑ |𝑛𝑖(𝐱) − 𝑐𝑖|𝑘
𝑖=1 �

2
 (4) 

vi(x) and ni(x) represent the points on the output v and n 
nullcline curves for parameter settings x; bi and ci 
represent the corresponding points on the benchmark v 
and n nullclines at 27°C; v = 250 V when k = 1 and v = 
500 V when k = 151 for Class I; and v = 300 V when k 
= 1 and v = 450 V when k = 151 for Class II. 
Differential Evolution for this stage of the algorithm 
typically requires 16 thousand nullcline mode 
simulations and 8 hours of calculation time. 

As reported in [7], the DE algorithm accurately 
replicated the benchmark nullclines at a variety of 
temperatures, but did not yield accurate transient 

behavior, suggesting the need for an additional tuning 
stage. 

3.3. Stage III: Tuning transient behavior 

The final stage of the algorithm uses rn_Vm from Stage 
I and gv_Vm, fn_Vb, and Iax_Vin (x=v,n) from Stage II 
as the center of a 5 × 5 search space by adding +/– 0.5 
and +/–1 mV to each of these five parameter values. A 
brute force approach is then used to evaluate each of the 
55 = 3125 combinations of parameters in this search 
space by running transient simulations of the circuit. 
The circuit is then subjected to 5 and 10 pA sustained 
stimuli and the spiking frequency is evaluated using 
data from an 800 ms time period. 

The cost function evaluates each parameter set by 
calculating the magnitude of the difference vector 
between these two simulated circuit behaviors j(x) and 
their benchmark values b, a vector calculated from 
simulation results with a parameter set which yields 
typical Class I behavior at 27°C. 
 

𝐣(𝐱) = � 5 pA stimulus response
10 pA stimulus response� , 𝐛 = �17.91

36.87� 

ℎ(𝐱) ≜ ‖𝐣(𝐱) − 𝐛‖ (5) 
 

Class II neurons are characterized by the sudden 
onset of periodic spiking when subject to an adequately 
strong sustained stimulus. The cost function in Class II 
mode evaluates a vector of the circuit’s frequency 
response to 5, 7.5, 10, and 12.5 pA sustained stimuli. b 
again was calculated from simulation results with a 
parameter set which results in typical Class II behavior 
at 27°C. 

 

𝐣(𝐱) = �

5 pA stimulus response
7.5 pA stimulus response
10 pA stimulus response

12.5 pA stimulus response

� , 𝐛 = �

0
22.08
30.21
35.3

� 

 (6) 
 

Stage III concludes with a polishing step which 
interpolates the optimum parameter set between the 
elements of the original search space. The entire stage 
requires about 4 hours of calculation time to run all the 
transient circuit simulations. Increasing the search space 
exponentially increases calculation time, thus 
illustrating the need for nullcline tuning in Stage II. 
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4. Results 

The algorithm was run in Class I and Class II modes for 
2° to 47°C in 5° steps and the results are listed in Table 
2. For Class I, the circuit displayed behavior closest to 
the benchmark in the range of 7° to 47°C. 2° did not 
yield neuron-like behavior. The threshold current Ith is 
the minimum current required for a 500 µs pulse 
stimulus to generate an action potential. The threshold 
current ranged from 289.5 to 145.5 pA and descended 
roughly as temperature increased. Class II does not 
exhibit threshold-like behavior so this category was not 
recorded. 

In Class II mode, transient behavior nearly identical 
to the benchmark was observable for 32° and 37°C. At 
7°, 12°, and 22°C the 10 pA and 12.5 pA sustained 
stimuli induced spiking at a similar frequency to the 
benchmark, but the 7.5 pA response decayed after a few 
iterations. A simplified version of the algorithm which 
does not contain the Iax_Vb tuning step in Stage I 
yielded behavior nearly identical to the benchmark at 
22°, suggesting that slight modifications to the 
algorithm may improve the decaying problem for 7–
22°C. 

5. Discussion 

The multistage heuristic tuning algorithm considers the 
merits and drawbacks of the DE algorithm-based 
nullcline tuning and brute force transient tuning 
approaches as noted in [7] and combines them into a 
hybrid approach which in simulation can effectively 
tune the silicon neuron circuit to behave as a Class I or 
Class II neuron over a range of temperatures. The next 
step will be to implement a version of this algorithm 
with the actual silicon neuron circuit using LabVIEW or 
Python. 

This algorithm could also be effective in dealing 
with issues of transistor variation in a network of silicon 
neurons, since it can find unique parameter sets which 
may yield similar nullcline structure among individual 
members of a network. Future silicon neuron circuits 
may be designed with on-chip feedback mechanisms 
which automatically adjust parameter voltages based on 
the results of a tuning algorithm. 
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 Table 2. Algorithm results with benchmark behavior highlighted in grey. “X” indicates non-neuron-like behavior 
and “D” indicates decaying response. 

 

  Temperature (°C) 2 7 12 17 22 27 32 37 42 47  
 

Class I 
Ith(pA) X 289.5 248.5 202 164.5 172.0 147.5 145.5 147.0 148.5  

 5 pA response (Hz) X 17.91 17.91 17.91 17.91 17.91 17.91 17.91 17.91 17.91  
 10 pA response (Hz) X 36.87 36.87 36.87 36.87 36.87 36.87 36.87 36.87 36.87  
 

Class II 

5 pA response (Hz) 0 0 0 0 0 0 0 0 0 0  
 7.5 pA response (Hz) 22.0 D D D D 22.1 22.1 22.1 0 0  
 10 pA response (Hz) 29.5 30.3 30.6 30.8 30.6 30.2 30.1 30.2 0 0  
 12.5 pA response (Hz) 35.1 35.3 35.4 35.5 35.4 35.3 35.4 35.3 0 0  
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