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Abstract 

Caenorhabditis  elegans is a small worm which is approximately 1 mm in length. The present study proposes an 
estimation method for frictional force using locomotion information obtained from video analysis of actual worms. 
The results indicate that the body model driven by the estimated frictional force can trace the locomotion of the 
worm within a low error level of 4% of the body length. The proposed method can be applied to analyze the 
relationship between friction and gait control. 
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1. Introduction 

Caenorhabditis elegans is a small soil-dwelling 
worm with a slender translucent body composed of 
around 1,000 cells. It is approximately 1 mm in length 
and about 5.0 µg in weight (Figure 1(a)). Its neural 
network, which is composed of only 302 neurons, 
allows the processing of environmental information 
such as temperature and chemical gradients so that the 
worm can act in response to its surroundings. Thanks to 
the small scale of its neural network, C. elegans has 

become a favored model organism for the analysis of 
neuronal mechanisms underlying information 
processing, especially since White et al. revealed a 
connective structure between its neurons and muscle 
cells.1 

In this context, the mechanism of gait control is an 
interesting target among various life phenomena 
because commands generated by neural networks can be 
easily observed through locomotion. Accordingly, the 
mechanisms of information processing in C. elegans can  

Journal of Robotics, Networking and Artificial Life, Vol. 4, No. 1 (June 2017) 32–40
___________________________________________________________________________________________________________

32

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).



be investigated by recording its behavior and examining 
the internal states of the neural network. Even better, 
recently, dopamine was identified as a key chemical2 
intermediating the distinctive gait changes observed 
when the worm swims in water and crawls on agar3,4. It 
was also revealed that dopamine-related changes are 
induced by mechanical stimuli2. However, for the 
reason of both experimental conditions and  
technological limits, it has been difficult to measure the 
amount of forces between the body and environments  
without considering of effects of its behavior. As a 
result, the input for its neural network system remains 
unclear. 

Computer simulation provides a potential solution to 
this problem because the worm's thrust is generated by 
reaction forces based on the frictions between its body 
and environments in the absence of other external 
forces, and can be calculated using motion equations. 
The body dynamics model of C. elegans, which at first 
has been proposed by Niebur and Erdos5, was able to 
simulate the worm's undulatory locomotion so that a 
model worm could travel as fast as a real one. As 
friction cannot be measured from an actual worm, the 
friction coefficients included in the model were 
estimated from the friction measured between the glass 
fiber and agar6. Recently, more precise friction-
coefficients in the gelatin solution and water were 
calculated by Berri et al. and Sznitman et al. based on 
the principles of fluid dynamics7~9. However, previous 
methods have limitations in terms of the range of 
environments in which they can be applied to. An 
algorithm to determine friction independent of 

environmental conditions is therefore needed to support 
estimation of the mechanical stimuli affecting on C. 
elegans. 

In this paper, the authors propose a body dynamics 
model incorporating the considerations of dynamic and 
viscous friction. An estimation method for friction 
coefficients based on the model is then proposed. As 
this method requires only locomotion information 
obtained from video analysis of worms, it enables us to 
estimate frictions regardless of the environment and the 
worm's behavior. Chapter 2 describes the body 
dynamics model of C. elegans and the estimation 
method for environmental frictions. Chapter 3 covers 
verification of the proposed algorithm and reports on the 
results of environmental friction estimation. Chapter 4 
discusses the relationship between translational force 
and friction force, and Chapter 5 details the conclusion 
and outlines future works. 

2. Materials and Methods 

When C. elegans moves on a solid surface such as 
an agar plate or swims in liquid, it is exposed to 
different environmental drag forces. As these forces are 
the basis of propulsion, different drag characteristics or 
strengths produce different propulsive movements. Drag 
force can therefore be derived by observing the motion 
of worms to solve dynamic problems. The following 
sections describe the materials and methods used to 
record worm motions, and highlights the algorithms 
used to estimate drag force. 

2.1. Strains and culture 

The C. elegans wild-type Bristol N210 and the 
Escherichia coli OP50 strain were obtained from the 
Caenorhabditis Genetics Center. Using standard 
methods10 worms were grown at 20°C on 6-cm non-
treated petri plates  (IWAKI 60 mm/ Non Treated Dish, 
AGC Techno Glass Co., Ltd., Shizuoka, Japan)  
containing 10 ml of nematode growth medium (NGM) 
agar spread with E. coli (food). Well-fed worm at the 
young adult stage were used in all assays. 

2.2. Sample preparation 

A 6-cm plates containing 4 ml of NGM agar for 
assay were prepared on the same day of experiments. 
The plate for the crawling assay (plate A) was 
uncovered and placed on a clean bench for 

 
Fig 1. Body dynamics model of C.elegans 
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approximately 1h to dry up excess fluid from the 
surface. The plate for the swimming assay (plate B) was 
not dried up and was added 300 µl of S basal buffer11. A 
worm was picked up from a culture plate and washed 
twice in a few drops of S basal buffer. Immediately after 
wash, a worm was transferred to an assay plate A or B. 

2.3. Rigid link model 

To estimate the drag forces acting between C. 
elegans and its environment, the worm's body was first 
approximated using the N rigid link model shown in 
Figure 1 (c), which also illustrates its coordinate 
configuration. The motion of the model is restricted to 
the two-dimensional x-y plane. The links l2 - lN-1 were 
connected with adjacent links via rotational joints to 
allow rotation around the z-axis, and the head link l1 and 
tail link lN had one free end and a joint respectively 
connected to links l2 and lN-1. Using this model, the 
relationship between drag and motion can be derived 
from Newton-Euler-type motion equations as shown 
below. 

𝐼(𝒒) �
𝑞0
𝒒̈
̈
� + ℎ(𝒒, 𝒒̇) + 𝑔(𝒒) = �0𝝉� −�𝑱𝑗𝑇𝑭𝑗

𝒋

,   (1) 

𝐼𝑔(𝒒)𝒓̈𝑔 + ℎ𝑔(𝒒, 𝒒̇) + 𝑔𝑔(𝒒) = �𝐹𝑗
𝑗

,                 (2) 

where 𝒒 = (𝑞1, 𝑞2, … 𝑞𝑁−1)T ∈ ℝ𝑁−1  is a vector of 
local bending angles, 𝒓 = (𝑥,𝑦)T and 𝑞0 denotes the tip 
position and its posture angle for the head link related to 
the global coordinate as shown in Figure 1. The terms 
𝐼(𝒒) , 𝐼𝑔(𝒒)  on the left-hand side are inertial forces, 
ℎ(𝒒, 𝒒̇) , ℎ𝑔(𝒒, 𝒒̇)  are Coriolis forces and centrifugal 
forces, and 𝑔(𝒒) , 𝑔𝑔(𝒒)  are gravity forces. The first 
term  𝝉 ∈ ℝ𝑁−1  on the right-hand side is the torque 
driving each link, and the second term represents 
friction, where 𝑱𝑗𝑇   is the Jacobean matrix of the j-th 
joint with a representative point. 𝑭𝑗 = �𝑓𝑗,𝑡 , 𝑓𝑗,𝑛�

T
  

represents the drag force acting on the gravity point of 
each joint, and can be described in arbitrary form 
depending on the surrounding environment. In this 
study, drag force was modeled using the properties of 
Coulomb friction and viscous drag in a Newtonian fluid 
as follows: 

𝑓𝑗,𝑑 = −𝜇𝑑
𝑣𝑗,𝑑

�𝑣𝑗,𝑑�
− 𝜂𝑑𝑣𝑗,𝑑,                            (3) 

where  𝑑 ∈ (𝑡,𝑛)  denotes the tangential and normal 
directions related to the link, 𝑣𝑗,𝑑 are the velocities at the 
gravity point of link j, 𝜇𝑑 is the coefficient of Coulomb 
friction, and 𝜂𝑑 is the viscous drag coefficient. 

Equation (2) indicates that the drag coefficients and 
torque 𝝉 driving each joint can be derived from local 
bending angles and the related velocities and 
accelerations (𝒒, 𝒒̇, 𝒒̈) and translational acceleration 𝒓̈𝑔,  
which can be determined from video analysis. Based on 
this equation, an algorithm for friction coefficient 
estimation is proposed below. 

2.4. Friction estimation algorithm 

The motion equations (1) and (2) can be solved for 
drag coefficients given the motion information (𝒒, 𝒒̇, 𝒒̈, 
𝒓̈𝑔). Among these values, the local bending angle 𝒒 and 
the position 𝒓𝑔  can be determined by recording the 
motion of a worm and analyzing the resulting video, and 
the related time derivations can be used to determine 
velocity and acceleration. The information obtained can 
then be used to solve the motion equations for the drag 
coefficients in relation to each video. However, there 
are two problems in the implementation of this 
calculation. 

Firstly, it is an ill-posed problem because only N+2 
coupled equations can be derived from Equations (1) 

 
Fig. 2. Image processing 
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and (2), while there are four unknown drag coefficients 
plus N-1 unknown torque values (𝝉 ∈ ℝ𝑁−1). To solve 
this problem, the proposed algorithm involves 
simultaneous analysis of two different motions of a 
worm placed in the same environment in which 
identical drag coefficients are assumed. In this manner, 
the number of unique coupled equations can be doubled 
without increasing the number of unknown drag 
coefficients. 

Secondly, the drag coefficients calculated from only 
one sampling can be significantly affected by video 
analysis error. To reduce this impact, the proposed 
algorithm involves the solution of a motion equation for 
𝒓̈𝑔  and 𝑞0  for the time duration T with different drag 
coefficients. The coefficients that generate the paths 
closest to those of the actual worm are then explored by 
minimizing the following evaluation function: 

𝐸 =
1

2𝑙(𝑡max + 1)
��� ||𝒙𝑖

𝑗(𝑡) − 𝒓𝑖
𝑗(𝑡)||

2

𝑗=1

𝑙

𝑖=1

𝑇

𝑡=0

,        (4) 

Where 𝒙𝑖
𝑗 represents the position of the i-th evaluation 

point on the worm, 𝒓𝑖
𝑗  represents the corresponding 

position on the rigid-link body model, and subscript j 
denotes an individual worm. 

The proposed algorithm is applied to estimate the 
drag coefficients for a worm swimming in liquid and 
crawling on an agar surface. The proposed algorithm 
consists of four blocks as outlined below. 

Block 1: Video analysis 

To analyze the body form of C. elegans in crawling 
and swimming, the worm on an assay plate (A for 
crawling and B for swimming) was video-recorded 
using a digital camera EXILIM EX-F1 (CASIO 
Computer Co., Ltd., Tokyo, Japan) mounted on a 
stereomicroscope for approximately 10 seconds at 300 
frames per second. The resolution of each frame was 
512 x 384 pixels. Distinct worms picked up from a 
culture plate were used for crawling assays and 
swimming assays. The body form in crawling and 
swimming of C. elegans was analyzed off-line based on 
the previous method12 as shown in Figure 2. Briefly, 
each frame of the video was processed using the 
following procedures: (i) binarization, (ii) denoising, 
(iii) skeletonizing, and (iv) division of body line into the 
13 parts. After image processing, time-series data 
concerning with the body form were obtained using the 
following procedures: (v) length-scale calibration, (vi) 

acquisition of the x- and y-coordinates of each point on 
the body, and (vii) calculation of values concerning with 
the body form such as the relative angle between 
adjacent dividing points. Video analyses described 
above were carried out using the following software: 
Wriggle Tracker (Library Co. Ltd., Tokyo, Japan) for 
procedures (i)-(iv) and Move-tr/2D (Library Co. Ltd., 
Tokyo, Japan) for procedures (v)-(vii). 

Block 2: Selection of drag coefficient 

In this block, a set of coefficients is selected in three 
phases as described below. 
[Phase 1] 

In Phase 1, drag coefficients are selected from the 
set (𝜇𝑛, 𝜇𝑡 ,𝜂𝑛, 𝜂𝑡) ∈ {(𝑁1Δ𝜇,𝑁2Δ𝜇,𝑁3𝜂,𝑁4𝜂)| 
𝑁1,𝑁2,𝑁3,𝑁4 = 0, 1,⋯ ,𝑁max }  based on iterative 
alteration of 𝑁1,𝑁2,𝑁3,𝑁4. 

After the search for all combinations is complete, 
d1 % of the drag coefficients �𝜇𝑛

𝐸1,𝑎 , 𝜇𝑡
𝐸1,𝑎 , 𝜂𝑛

𝐸1,𝑎 , 𝜂𝑡
𝐸1,𝑎� 

with smaller evaluation values (Equation (4) are 
selected, and the iteration proceeds to Phase 2, where 
𝑎 = 1, 2, … ,𝑑1(𝑁max + 1)4/100. 
[Phase 2] 

In Phase 2, better drag coefficients are sought from 
the set selected in Phase 1. The search is carried out 

with the set of (𝜇𝑛
𝐸1,𝑎 + 𝑁1 �

Δ𝜇
2
� , 𝜇𝑡

𝐸1,𝑎 + 𝑁1 �
Δ𝜇
2
� ,

𝜂𝑡
𝐸1,𝑎 + 𝑁1 �

Δ𝜂
2
� , 𝜂𝑡

𝐸1,𝑎 + 𝑁1 �
Δ𝜂
2
�) where 𝑁1~4 =

{−1,0,1}  . After the search for all combinations is 
complete, 𝑑2 %  of the drag coefficients 

�𝜇𝑛
𝐸2,𝑏 , 𝜇𝑡

𝐸2,𝑏 , 𝜂𝑛
𝐸2,𝑏 , 𝜂𝑡

𝐸2,𝑏� with smaller evaluation values 
(Equation (4)) are selected, and the iteration proceeds to 
Phase 3, where 𝑏 = 1, 2, … , 3𝑑1𝑑2(𝑁max + 1)4/10000. 
[Phase 3] 

In this phase, the generalized reduced gradient 
method13 is applied for the selection of drag coefficients 

using�𝜇𝑛
𝐸2,𝑏 , 𝜇𝑡

𝐸2,𝑏 , 𝜂𝑛
𝐸2,𝑏 , 𝜂𝑡

𝐸2,𝑏�  as initial values so that 
the friction coefficients with the smallest evaluation 
values are calculated. 

Block 3: Calculation of Motion Equations 

In this block, calculation for the path of two rigid-
link body models in the time span T s is performed with 
the friction coefficients selected in Block 2. Calculation 
to solve Equations (1) and (2) for q0, r is carried out 
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using ADAMS (MSC Software Corporation, Tokyo, 
Japan) multi-body dynamics simulator. 

Block 4: Evaluation of Drag Coefficients 

In Block 4, evaluation is performed for drag 
coefficients by substituting the paths calculated in Block 
3 into an evaluation function (Equation (4)), and the 
iteration returns to Block 2. 

3. Simulation Experiments 

As a way of verifying the performance of the 
proposed body dynamics model and the estimation 
algorithm for friction coefficients, testing was 
performed to determine whether the algorithm enabled 
estimation of artificially preset friction coefficients. 
Such coefficients were then estimated for worms 
crawling on agar and swimming in a drop of water. 

3.1.  Verification 

The locomotion of the body model was simulated 
using Equations (1) and (2) with artificially preset 
friction coefficients and time-dependent joint angles. 

The paths determined from this simulation were then 
used with the proposed algorithm for friction coefficient 
estimation. Finally, the errors observed between the 
preset and estimated friction coefficients were 
calculated to verify the performance of the algorithm. 
Here, time-dependent joint angles with the following 
four patterns were chosen: 𝑞𝑖+1 − 𝑞𝑖 = 0.4sin(5𝑡 −
0.6𝑖), 0.6 sin(5𝑡 − 0.6𝑖) , 0.4 sin(5𝑡 − 0.6𝑖) + 0.1,  
0.6 sin(5𝑡 − 0.6𝑖) + 0.1 which are respectively denoted 
as Locomotion 1~4. In addition, 10 sets of friction 
coefficients (F1~F10) were chosen as uniform random 
numbers in the range of [0,1] for dynamic friction 
coefficients and [0, 0.01] for viscous friction 
coefficients. The locomotion pair of 1 and 2 was 
simulated with the friction coefficients of F1~F5 and the 
other pair (Locomotion 3 and 4) was simulated with the 
friction coefficients of F5~F10. The parameters of the 
body dynamics model and the proposed estimation 
algorithm are shown in Table 1. 

Figure 3 shows the friction coefficient estimation 
results and the related percentage errors against the 
preset values. Figure 3(b) shows that the average 
percentage errors were less than 2% with a standard 
deviation of 2%. Figure 4 shows an example result for 
the paths of Joint 7 as well as average path errors for all 
simulations performed. It can be seen that the average 
error was 1.9 × 104 ± 1.1 × 10−4 mm, which indicates 
that the proposed algorithm is capable of generating 

Table 1 Parameters used in simulation 
tmax 5 s Δ𝜇 1.0× 10−1 
l 3 Δ𝜂 1.0× 10−3 
m 3.84× 10−7 g 𝑑1 1.0 % 
Nmax 10 𝑑2 0.2 % 
 

 
Fig. 3. Estimated results of friction coefficients 

 

 
Fig. 4. Estimated paths 
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Fig. 5. Locomotion of C. elegans 
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locomotion values with errors smaller than 2.9 ×
10−2 % in relation to the worm’s length. 

3.2. Estimation of friction coefficients of actual 
worms 

Friction coefficients for actual worms were 
estimated using video of their movement on agar and in 
a drop of water (Figures 5). Each of the time-dependent 
joint angles determined from image processing was 
smoothed using a second-order Butterworth low-pass 
filter (high cutoff frequency: 5 Hz) for denoising. The 

analysis times for crawling and swimming were 
respectively set as tmax=4 s, 1 s, and the other parameters 
were the same as those used in the verification 
simulation.  

Figures 6 and 7 show the values of evaluation 
function (Equation (4)) acquired from swimming and 
crawling simulation, respectively. Here, the evaluation 
function represents the errors between the paths of the 
models and  that of the actual worms. The average path 
error of crawling simulation was about 0.02 mm (2 % of 
the worm's length), and the average path error of 
swimming simulation was 0.05 mm (4 % of the worm’s 
length). Figure 8 shows the paths of seventh joint in 
crawling and swimming simulation. These outcomes 
indicate that each of the simulated path fitted worm 
paths well. Figures 9 and 10 show friction coefficients 
estimated from eight video images for crawling and 
eight for swimming, with the numbers under each 
picture distinguishing individual worms. It can be seen 
that the estimated friction coefficients differed greatly 
even for the same environments. In particular, in Figure 
9(A1) and (A3) representing situations in which friction 
coefficients were estimated from the same worm 
crawling on the same agar plate, the viscous friction 
coefficient for the normal direction shown in (A1) was 
much larger than that shown in (A3). The next section 
discusses this friction coefficient variability. 

4. Discussion 

This section discusses the cause of variances found 
in the estimated friction coefficients A1, A2 and A3 
(Fig. 10) or the same worm on the same agar plate. 

 

 
Fig. 6. Resulted value of evaluation function of 

crawling simulation 

 
Fig. 7. Resulted value of evaluation function of 

swimming simulation 

 
Fig. 8. Paths of seventh joint 
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Fig. 10. Estimated friction coefficients (water) 

 To compare the effects of different friction 
coefficients adopted for the same joint motion, the time-
dependent joint angles qA1(t) extracted from the 
locomotion of A1 were substituted into Equations (1) 
and (2), and paths with the friction coefficients of A2 
and A3 were calculated. Figure 11 shows paths resulting 
from simulation under the time-dependent joint angles 
qA1(t) and the friction coefficients A2 and A3. The 
errors observed between the actual and simulated 
worm's paths are also shown in Figure 12(b). These 
results indicate that the average path error was about 4% 
of the worm's length even when different friction 
coefficients (A1, A2 and A3) were used. Figure 12(a) 
highlights the friction force at each link accumulated at 
the point of the head tip. The right-hand side of 
Equation (2) shows this calculation. From the figure, it 
can be seen that the total friction generated from friction 
coefficient A1 showed a strong correlation and similar 
values to that generated from friction coefficients A2 
and A3. As the total friction reactive forces correspond 

to the propulsion forces, this result indicates that the 
proposed algorithm with an evaluation function defined 
by path errors can be used to estimate propulsion force. 

In the previous studies regarding the dynamic 
modeling of C. elegans, it was reported that a worm's 
path can be determined from the ratio between the 
normal and tangential friction coefficient.5,7 Indeed, the 
friction coefficient ratio is a dominant factor in 
determining worm paths. However, according to the 
simulation performed here, identical locomotion cannot 
be generated if the same ratio but different friction 
coefficients are adapted. Figure 13 shows locomotion 
paths observed when the dynamic friction coefficients 
were kept at a constant ratio (2µt = µn) and the viscous 
friction coefficient was set to 0 (ηt= ηn =0). The results 
demonstrate that there were path differences depending 
on the value of µn, even though the dynamic friction 
coefficients were kept at a constant ratio. This suggests 
that if image processing on actual worms can be carried 
out with a high degree of accuracy, friction coefficients 

 
Fig. 9. Estimated friction coefficients (agar) 
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can be uniquely determined because verification 
simulation under artificially preset configurations as 
described in Section 3.1 enabled the estimation of 
friction coefficients close to actual values with an 
acceptable level of accuracy. 

Finally, the effect of friction in different 
environments was quantified. Figure 14 shows the 
average RMS value of the total friction forces as 
calculated from the crawling and swimming simulation 
results. The result of a t-test to determine the RMS 
between crawling and swimming showed a significant 
difference between the two (p<0.001). Fig. 15 indicates 
that worms experience stronger friction forces when 
swimming than when crawling. Using results obtained 
from the proposed estimation algorithm may allow to 
clarify the underlying mechanisms of gait control8 at the 
friction level. 

5. Conclusion and Future Works 

This paper proposed a method for estimating friction 
coefficients based on a body dynamics model and video 
images of C. elegans. The study verified that the 
proposed algorithm can be used to estimate friction 
coefficients under artificially preset configurations, and 
the results of experiments using actual worms 
confirmed that the model can track worm paths with 
small errors. The algorithm can be used to estimate true 
friction coefficient values under ideal noise-free 
conditions. Although estimation results were affected by 
noise contamination from image processing, the 
propulsion forces affecting locomotion paths could be 
estimated. 

 
Fig. 13. Paths under the same friction coefficient 

ratio 

 
Fig. 14. Average RMS 

 
Fig. 11. Comparison of trajectories (agar) 

 
Fig. 12. Comparison of friction force 
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In future works, the authors plan to improve the 
robustness of the proposed method to support the 
calculation of time-dependent friction changes acting on 
worms, and will analyze the underlying mechanisms of 
gait control against environmental factors. 
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