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Abstract 

In the development of the aging society, it is important for patients with hemiplegia to introduce adaptive welfare 
equipment. However, it is difficult to determine the suitable reference signal for each person. In this study, the 
design of a data-oriented cascade control system based on Kansei is proposed. In the proposed control system, there 
are two controllers which are a data-driven controller and a fixed controller. In particular, a data-driven controller 
determines the suitable reference signal based on Kansei.  

Keywords: PID controller, Data-driven controller, Kansei, off-line learning. 

1. Introduction 

In the development of aging society, it is important for 
patients with hemiplegia to introduce the adaptive 
welfare equipment. However, it is difficult to support 
them by using general welfare equipment because there 
are a lot of individual disabilities. Therefore, an 
adaptive welfare equipment is required in near future. 
Nevertheless, it is difficult to determine the suitable 
reference signal for each person. In this study, the 
design of a data-oriented cascade control system based 
on Kansei is proposed. In the proposed control system, 
there are two controllers which are a data-driven 
controller1 and a fixed controller. In particular, a 
data-driven controller1 determines the suitable reference 
signal of a welfare equipment based on Kansei. 

2. Schematic figure of the proposed control 
system 

Fig. 1 shows the schematic figure of the proposed 
control system. It is difficult for the patient with 
hemiplegia to move their foot by only torque τ𝐵. Hence, 

in the proposed scheme, the Ankle Foot Orthosis2 
(AFO) supports torque 𝜏𝐴. In this paper, Kansei signal 
is defined as walking comfortable  y(𝑡)  whose 
maximum value is 1. Note that it is important to 
estimate reference signal of brain 𝑟𝜃1(𝑡)  because 
𝑟𝜃1(𝑡) is unknown. Therefore, a data-base controller 
(primary controller) is applied to calculate the estimated 
reference signal w(𝑡). 

3. Controlled object 

Fig.2 shows the schematic figure of tow vertical joint 
manipulator is shown as leg model. 𝐼1, 𝐼2 are ankle’s 
and knee’s moment of inertia, respectively. 𝑚0,𝑚1,𝑚2 
are weight of upper body, lower leg and femur, 
respectively. 𝐿1, 𝐿2  are the length of lower leg and 
femur, and 𝑙1, 𝑙2 are the length of gravitational center 
of lower leg and femur, respectively. The torque 
𝜏1 and 𝜏2 are corresponding to angle 𝜃1 and 𝜃2 . The 
equation of walking motion is expressed as follows: 

�𝐼1 + 𝐼2 + 𝑚0𝐿12 + 2𝑚02𝐿1𝑙2𝐶(𝜃2) 𝐼2 + 𝑚02𝐿1𝑙2𝐶(𝜃2)
𝐼2 + 𝑚02𝐿1𝑙2𝐶(𝜃2) 𝐼2

� �𝜃1̈
𝜃2̈
� 

+ �
−𝑚02𝐿1𝑙2𝐶(𝜃2) ⋅ (2𝜃̇1𝜃2̇ + 𝜃22̇)

𝑚02𝐿1𝑙2𝐶(𝜃2) ⋅ 𝜃12̇
� 
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+ �
(𝑚1𝑙1 + 𝑚02𝐿1)𝐶(𝜃1) + 𝑚02𝑙2𝐶(𝜃1 + 𝜃2)

𝑚02𝑙2𝐶(𝜃1 + 𝜃2) � 𝑔 = �
𝜏1
𝜏2�,

      

(1) 
where 𝐶(𝜃)  and 𝑚02  denote 𝐶(𝜃) = 𝑐𝑐𝑐𝑐  and 
𝑚02 = 𝑚0 + 𝑚2, respectively. 
 In addition, Kansei signal y(𝑡) in Fig. 1 is expressed 
as the following equation based on Weber-Fechner law3: 

𝑦(𝑡) =
1

1 + log�1 + 𝑒𝜃(𝑡)�
          (2) 

𝑒𝜃(𝑡) = 𝑟𝜃1(𝑡) − 𝜃1(𝑡),              (3) 
where 𝑟𝜃1(𝑡) is reference signal of 𝜃1(𝑡). 

4. Design of a data-driven controller in outer 
loop as primary controller 

4.1. Control law of a primary PID controller 

The primary controller in Fig. 1 is designed as a 
data-driven controller1 because the Kansei is nonlinear 
in equation (2). The primary controller is defined as 
follows: 

𝛥𝛥(𝑡) = 𝐾𝐼𝜀(𝑡) − 𝐾𝑃𝛥𝛥(𝑡) − 𝐾𝐷𝛥2𝑦(𝑡)     (4) 
     𝜀(𝑡) ≔ 𝑟(𝑡) − 𝑦(𝑡),                     (5) 

where 𝐾𝑃, 𝐾𝐼 and 𝐾𝐷 are proportional gain, integral 
gain and derivative gain, respectively. 𝛥 denotes a 
difference operator. Note that the controller of AFO in 

inner loop is designed as the following fixed PD 
controller. 

𝜏𝐴(𝑡) = 𝐾𝑃2𝑒(𝑡) + 𝐾𝐷2Δ𝑒 (𝑡)             (6) 
 𝑒(𝑡) ≔ 𝑤(𝑡) − 𝜃1(𝑡),                    (7) 

where 𝐾𝑃2 and 𝐾𝐷2 respectively are proportional gain 
and derivative gain. 

4.2. Design procedure of a data-driven control 

[STEP 1] Create an initial database. 
The database is constructed by the following 
information vector: 

𝝓(𝑗) ≔ [𝝓�(𝑗),𝑲(𝑗)]   (𝑗 = 1,2,⋯ ,𝑁)        (8) 
  𝝓�(𝑗) ≔ [𝑟(𝑡 + 1), 𝑟(𝑡), 𝑦(𝑡),⋯ , 𝑦�𝑡 − 𝑛𝑦 + 1�,   
          𝑤(𝑡 − 1),⋯ ,𝑤(𝑡 − 𝑛𝑤)]            (9) 

 𝑲(𝑗) ≔ [𝐾𝑃(𝑡), 𝐾𝐼(𝑡), 𝐾𝐷(𝑡)],                (10) 
where 𝑁 denotes the number of data. 
[STEP 2] Calculate distance and select neighbors’ data. 
The distance between query 𝝓�(𝑡) and 𝝓�(𝑗) is 
calculated by using the following L1–norm: 

𝑑 �𝝓�(𝑡),𝝓�(𝑗)� = � �
𝝓�𝑙(𝑡) − 𝝓�𝑙(𝑗)

max𝝓�𝑙(𝑚) − min𝝓�𝑙(𝑚)
�

𝑛𝑦+𝑛𝑤+1

𝑙=1

. (11) 

(𝑗 = 1,2, ,⋯ , 𝑁)       
𝝓�𝑙(𝑗) denotes the 𝑙th element of query  𝝓�(𝑗). 
max𝝓�𝑙(𝑚) is a maximum value of the 𝑙th element in 
database. In contrast, min𝝓�𝑙(𝑚) is a minimum value 
of the 𝑙th element. In addition, the number of neighbors’ 
data 𝑘 are selected, which data are based on smallest 
distance value 𝑑. 
[STEP 3] Calculate control parameters. 
Control parameters are calculated by using the 
following Linearly Weighted Average (LWA): 

𝑲(t) = �𝑤𝑖𝑲(𝑖)
𝑘

𝑖=1

,   �𝑤𝑖

𝑘

𝑖=1

= 1,         (12) 

where 𝑤𝑖  is the weight parameter corresponding to the 
𝑖 th information vector 𝝓�(𝑖)   in the selected 
neighbors’ data. It is calculated by the following 
equation: 

𝑤𝑖 =
1/(1 + 𝑑𝑖)

∑ {1/(1 + 𝑑𝑖)}𝑘
𝑖=1

.           (13) 

The off-line learning method is described in next 
section. 

 

Fig. 3. Block diagram of the FRIT. 

 

 

Fig. 1.  Schematic figure of the proposed control system. 

 
Fig. 2.  Leg model: two vertical joint manipulators. 

Journal of Robotics, Networking and Artificial Life, Vol. 4, No. 1 (June 2017) 14–17
___________________________________________________________________________________________________________

15



4.3. Fictitious Reference Iterative Tuning: FRIT 

Fig. 3 shows a block diagram of the FRIT4. FRIT is a 
scheme to calculate control parameters directly from 
closed-loop data which are input 𝑤0(𝑡), output 𝑦0(𝑡). 
𝑤0(𝑡) is given by the following equation: 
𝛥𝑤0(𝑡) = 𝐾𝐼𝑒0(𝑡) − 𝐾𝑃𝛥𝑦0(𝑡) − 𝐾𝐷𝛥2𝑦0(𝑡), (14) 

where 𝑒0(𝑡) = 𝑟̃(𝑡) − 𝑦0(𝑡).  𝑟̃(𝑡)  is derived as 
follows: 
           𝑟̃(𝑡) = [𝛥𝑤0(𝑡) + 𝐾𝑃𝛥𝑦0(𝑡) 

  +𝐾𝐼𝑦0(𝑡) + 𝐾𝐷𝛥2𝑦0(𝑡)]/𝐾𝐼.  (15) 
In addition, the user-specified reference model is 
expressed by the following equation: 

𝑦�𝑚(𝑡) =
𝑧−1𝑃(1)
𝑃(𝑧−1) 𝑟̃(𝑡),            (16) 

where 𝑦�𝑚(𝑡) is reference model output and 𝑃(𝑧−1) is 
the user-specified polynomial.  

4.4. Off-line learning method in Data-Driven 
Control scheme by using FRIT 

In this section, an off-line learning method is described 
by using FRIT. Firstly, the number of neighbors’ data 𝑘 
is selected and 𝑲𝑜𝑜𝑜(𝑡) is calculated by equation (12) 
by using closed-loop data 𝑤0(𝑡) and 𝑦0(𝑡). Next, the 
following steepest descent method is utilized to modify 
the control parameters: 

𝑲𝑛𝑛𝑛(𝑡) = 𝑲𝑜𝑜𝑜(𝑡) − 𝜼
𝜕𝜕(𝑡 + 1)
𝜕𝑲(𝑡)

        (17) 

𝜼 = [𝜂𝑃, 𝜂𝐼, 𝜂𝐷], 
where 𝜼  denotes the learning ratio and  𝐽(𝑡)  is 
defined as the following error criterion: 

𝐽(𝑡) ≔
1
2
𝜖(𝑡)2                (18) 

𝜖(𝑡) ≔ 𝑦0(𝑡) − 𝑦�𝑚(𝑡).          (19) 
The each partial differential of equation (17) are 
expanded as follows: 
𝜕𝜕(𝑡 + 1)
𝜕𝐾𝑃(𝑡)

=
𝜕𝜕(𝑡 + 1)
𝜕𝑦�𝑚(𝑡 + 1)

𝜕𝑦�𝑚(𝑡 + 1)
𝜕𝑟̃(𝑡)

𝜕𝑟̃(𝑡)
𝜕𝐾𝑃(𝑡)

  =
𝜖(𝑡 + 1)𝑃(1)𝛥𝑦0(𝑡)

𝐾𝐼𝑜𝑜𝑜(𝑡)
𝜕𝜕(𝑡 + 1)
𝜕𝐾𝐼(𝑡)

=
𝜕𝜕(𝑡 + 1)
𝜕𝑦�𝑚(𝑡 + 1)

𝜕𝑦�𝑚(𝑡 + 1)
𝜕𝑟̃(𝑡)

𝜕𝑟̃(𝑡)
𝜕𝐾𝐼(𝑡)

  =
𝜖(𝑡 + 1)𝑃(1)𝛤(𝑡)

𝐾𝐼𝑜𝑜𝑜(𝑡)2
  

𝜕𝜕(𝑡 + 1)
𝜕𝐾𝐷(𝑡)

=
𝜕𝜕(𝑡 + 1)
𝜕𝑦�𝑚(𝑡 + 1)

𝜕𝑦�𝑚(𝑡 + 1)
𝜕𝑟̃(𝑡)

𝜕𝑟̃(𝑡)
𝜕𝐾𝐷(𝑡)

=
𝜖(𝑡 + 1)𝑃(1)𝛥2𝑦0(𝑡)

𝐾𝐼𝑜𝑜𝑜(𝑡) ⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

,     (20) 

Where 𝛤(𝑡) is given by the following equation: 
 
 

𝛤(𝑡) = −Δ𝑤0(𝑡) − {𝐾𝑃𝑜𝑜𝑜(𝑡) + 𝐾𝐷𝑜𝑜𝑜(𝑡)}𝑦0(𝑡) 
      +{𝐾𝑃𝑜𝑜𝑜(𝑡) + 2𝐾𝐷𝑜𝑜𝑜(𝑡)}𝑦0(𝑡 − 1) 

            −𝐾𝐷𝑜𝑜𝑜(𝑡)𝑦0(𝑡 − 2).             (21) 
Hence, equation (17) and (20) show that control 
parameters can be learned off-line by using closed-loop 
data. 

5. Numerical Example 

In this section, the effectiveness of the proposed 
scheme is verified. The physical parameters5,6 in Fig. 2 
are set as follows: 𝐼1 = 0.44[kg ⋅ m2], 𝐼2 = 0.72[kg ⋅
m2], 𝑚1 = 3.26[kg] , 𝑚2 = 7.00[kg], 𝐿1 = 0.42[m] , 
𝐿2 = 0.42[m] , 𝑙1 = 0.24[m] , 𝑙2 = 0.24[m] , 
𝑔 = 0.98[m/s2], 𝜼 = [104, 10−3, 104].  

Fig. 4 shows the walking trajectories corresponding to 
Fig. 2 by using a fixed PID controller instead of a 
primary controller. The dotted red line denotes the 
reference walking trajectory of brain. Walking support  

 

Fig. 4.  Walking trajectories by using fixed PID controller as 
primary controller. 

 

 

 

 

 

 

 

 

Fig. 5. Trajectories of Kansei signal 𝑦(t) and ankle angle 
𝜃1(t) corresponding to Fig. 4.  
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Fig. 6. Walking trajectories by using the proposed scheme. 

 

 

 

 

 

 

 

 

Fig. 7. Trajectories of Kansei signal 𝑦(t) and ankle angle 
𝜃1(t) corresponding to Fig. 6.  

 

 

 

 

 

 

 

 

Fig. 8. Trajectories of PID gains corresponding to Fig. 6. 

 

 

does not worked well in Fig. 4 because the blue solid 
line does not follow the red reference signal. Therefore, 
the Kansei signal 𝑦(𝑡) is not kept around 1 in Fig. 5. 
Moreover, a fixed PID controller cannot estimate the 
reference signal well because 𝑤(𝑡) does not follow 
𝑟𝜃1(𝑡). 

 

6. Conclusion 

In contrast, the walking trajectories of Fig. 6 by using 
the proposed scheme is better than Fig. 7. The 
effectiveness of the proposed scheme is shown by 
keeping approximately 𝑦(𝑡) = 1  in Fig. 7. The 
estimated reference signal 𝑤(t) follows 𝑟𝜃(t) using a 
data-driven controller, and PID gains in Fig. 8 are 
adjusted effectively. 

In this paper, the field of welfare equipment has been 
focused and the scheme based on the data-oriented 
Kansei feedback has been proposed to support each 
person adaptively. In the proposed scheme, reference 
signal of a brain was estimated by using a data-driven 
controller and it supports walking well. The proposed 
scheme has been verified by numerical example. In the 
future, experimental result will be considered. 

This work was supported by JSPS KAKENHI Grant 
Number 16K14285. 
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