
The Scheduling of Resources in Program
Architecture

Ling Tang
Dept. Information Science and Technology, Criminalistics School

 East China University of Political Science and Law
 Shanghai, China, 201620

 E-mail: ausflug163@163.com

Abstract—As a programmer, there are some difficulty in
resource scheduling. Most of them are caused by inappropriate
acquiring and releasing resources among concurrent transactions.
The author analyzes the resource scheduling problem caused by
inappropriate usage of synchronization mechanism, and then
provides several methods to resolve this problem from different
perspectives. These methods can provide some guidelines for
computer programmers and the way to solve resource scheduling
problem.

Keywords—Resource Scheduling; Message; DeadLock; Service
Buffer

I. INTRODUCTION
Procedure-Based [1] and Object-Oriented [2] Programming

are the most classical programming models. They divide the
whole system into a series of procedures or objects. The
procedures and objects can be called and re-used easily to
complete the whole system flow. But such models only focus
on the static information (system composition), each
component executes according to pre-defined schedule. This
doesn’t well adapt to the dynamical characteristic of system
transactions.

To resolve the above insufficiency, Event-Based
Programming (EBP) [3, 4] model is brought out. It is also
called Event-Driven Programming. The essential of this model
is event and its handling. For understanding conveniently,
event is also called as message.

Generally, in any system which based on EBP model,
message is triggered by some request; message processing is
performed by a component. The processing ability of the
component has upper limit, so it can only handle more or less
limited messages at the same time. As to those messages
which haven’t been handled in time, they are buffered in an
explicit or implicit Message-Queue.

Besides, the message processing provided by the
component has to be performed in an executing context.
Normally, such context is provided by a process (or thread) in
nowadays major operation systems. Thus the messages are
processed by processes/threads one by one circularly. The
group of these processes/threads is called as Service-Buffer.

II. THE RESOURCE ALLOCATION PROBLEM
The resource allocation problem is because of the

confliction of the acquired resources. In EBP model, the
processes in Service-Buffer are also a kind of resource; such
resource needs to be acquired at first before handling messages.
Considering a set of transactions, each one has two messages
handled in sequence. In the first message, a resource is required,
and in the second message, the resource is released.

Furthermore, assuming there are three same transactions T1,
T2 and T3 are executed concurrently. There are two processes
in the Service-Buffer: P1 and P2. This is shown in Fig. 1.

Fig. 1. Resource allocation problem sketch

The execution procedure is described as below:

1) When T1, T2 and T3 are started, all of them send
Message1 to Message-Queue;

2) P1 obtains T1-Message1 to process;
3) P2 obtains T2-Message1 to process;
4) When P1 handles T1-Message1, it acquires R

successfully;
5) When P2 handles T2-Message1, it can’t acquire R, so it

must wait there;
This work is supported by National Social Science Foundation of China

(No.11BFX125).
This work is supported by National Important Social Science Foundation of
China (No. 14ZDB147)

Service-Buffer
Message-Queue

T3-Message1

P1 P2

T2-Message1

T1-Message1

T1-Message2

Process
is

blocked

Wait for
releasing R

Tim
e

T2-Message1

T1-Message1

Acquire R

Send T1-
Message2

T3-Message1

Wait R

Wait R

Process
is

blocked

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

2017 International Conference on Education, Economics and Management Research (ICEEMR 2017)
Advances in Social Science, Education and Humanities Research (ASSEHR), volume 95

458

6) When P1 finishes processing T1-Message1, it sends T1-
Message2 for triggering the next step of the transaction;

7) Then P1 continues to choose the next message T3-
Message1 from the Message-Queue and process it;

8) But because R hasn’t been released, P1 can’t acquire R
either when it handles T3-Message1. So P1 can do
nothing but only wait there;

9) At this time, all processes in the Service-Buffer are
waiting for R, but the message T1-Message2 which
releases R can’t be processed by any process.
Accordingly, the system falls into resource dead lock
state.

If we treat the processes in Service-Buffer as another kind
of resource, for the above transactions, the acquiring sequence
of the resources is shown as Fig. 2.

Fig. 2. Resource acquiring sequence schematic

It can be found that there are two opposite resource
acquiring sequences:

1) Acquiring R after acquiring process.
2) Acquiring process after acquiring R.

Such a resource contention problem can be similarly
promoted to the systems of larger scale: if there are N
processes in the Service-Buffer, when the concurrency for
acquiring some resources reaches N+1, the resource-contention
problem can be triggered.

Therefore, as an implicit resource, the processes which
handle the messages conflicts with the explicit resource R, and
this finally causes resource dead lock. There are two points of
essence leading to this phenomenon:

Firstly, the operations of acquiring and releasing resource
are performed in the process of two different messages. In the
period between the two messages, all processes in the Service-
Buffer may be blocked on acquiring resources; thereby the
message for releasing the resources can’t be scheduled by an
available process.

Secondly, a process can’t schedule the other message once
it is blocked on acquiring resources.

RAG (Resource Allocation Graph) is often used to describe
how the resources are acquired by concurrent transactions. A
RAG is composed by nodes and edges. Nodes include
resources and requesters. Edges represent the relationship
between resources and requesters. An edge from resource to
requester means the resource is held by the requester; and an
edge from requester to resource means the requester is waiting
for the resource. So if some edges form a loop in the graph,
then it means there is dead lock in the corresponding resource
allocation scenario.

In the above procedure, its RAG is represented as formula
(1) (SB means the processes in Service-Buffer):

};RT3-T3,SB-R,T2-T2,SB-SB,T1-T1,R-{Edge

;}SB,R{Resource};3T,2T,1T{Request

>>>>>>=
==

 (1)

Apparently this RAG forms a loop, which implies dead-lock.

All in all, when designing and implementing the Event-
Based Programming based systems, it must be very cautious
when acquiring exclusive resources, the confliction with
service processes must be considered carefully.

III. METHODS
In general, causing resource dead lock must satisfy four

necessary conditions [5]: 1.Mutual exclusive; 2.Hold and wait;
3.Non-preemption; 4.Circular wait.

To resolve the resource dead lock problem, one of the four
conditions must be broken. The method to handle resource
dead lock can be categorized into three types [5]: 1.Prevent
dead lock; 2.Avoid dead lock; 3.Detect and relieve dead lock.

The 3rd category of method needs to relieve the dead lock
by terminating some attending processes when detecting the
dead lock. The transaction logic needs special processing to
adapt to being suddenly terminated during execution, this
brings huge complexity into the programming design, thus it
can’t be commonly used in various system. So our proposed
solutions mainly focus on the first and second category of
methods. There are mainly three resolutions being promoted as
follows:

1) Constrain release point of resource
2) Bind message handler
3) Multiple level message-queues

A. Constrain Release Point of Resource
This method requires that, if a resource is acquired when

handling a message; the resource must be released in the same
message processing step. Apparently, this method can make
sure that the process isn’t acquired after acquiring the resource,
thus the dead lock could not happen. This is a method of
preventing dead lock.

By this method, there won’t be the scenario that service
processes are all blocked on the resource, since the resource
must be able to be released after being acquired. But the
restriction of acquiring and releasing a resource in one message
is too strict, because a complicate transaction may have a lot of
processing work after acquiring a resource. This work may be
not suitable to be implemented in one message. For example,
after acquiring a resource, a transaction may want to do a series
of asynchronous I/O, and the resource cannot be released
unless the I/O is finished. To meet this requirement, the
message processing must wait for I/O’s completion, so the
service process keeps being occupied and cannot serve other
messages. This affects the system concurrency and throughput
severely. This method actually constrains the asynchronous
feature of EBP based system. Therefore, it can only apply to
simple systems which don’t have high throughput requirement.

Sequence 1:
Process->R Sequence 2: R->Process

Acquire
Process

Resource

Handle

Message
1,

Acquire
R

Send
Message

2

Release
Process
Resourc

e

Acquire
Process

Resource

Handle
Message2
, Release

R

Release
Process

Resource

Advances in Social Science, Education and Humanities Research (ASSEHR), volume 95

459

B. Bind Message Handler
This method means when a process handles a message,

once a resource is acquired; the process is bound with the
transaction which sends the message. Then all afterward
messages which are sent in this transaction must be handled by
this process, until the message which releases the resource is
processed. While a process is bound with some transaction, it
cannot handle the other messages which belong to other
transactions and need to acquire some resources. In this way,
this method also makes sure it won’t appear that process is
acquired after acquiring the resource. Because the process has
been bound with the transaction, the process is always
available after acquiring the resource. This is shown in Fig. 3.

Fig. 3. Bind message handler process

1) When transactions T1, T2, T3 are started, all of them
send Message1 to Message-Queue;

2) P1 obtains T1-Message1 to process;

3) P2 obtains T2-Message1 to process;

4) When P1 handles T1-Message1, it acquires R
successfully;

5) Once R is acquired, P1 is bound to T1, so P1 can only
handle T1’s messages;

6) When P2 handles T2-Message1, it can’t acquire R, so
it must wait there;

7) When P1 finishes processing T1-Message1, it sends
T1-Message2 for triggering the next step of the transaction;

8) P1 continues to choose the next message from the
Message-Queue, since P1 is bound to T1, so P1 can’t choose
T3-Message1, but it has to choose T1-Message2;

9) When P1 handles T1-Message2, R could be released;

10) Then P2 could be woken up and acquire R
successfully; no dead lock could happen.

When P2 is blocked on waiting for R, the RAG at that
moment is described as formula (2).

};SPT3-R,T2-T2,SB-T1,SB-T1,R-{Edge

;}SB,R{Resource};3T,2T,1T{Request

>>>>>=
== (2)

Apparently, there isn’t any loop in this RAG, so the
deadlock is impossible. The basic idea of this method is
reserving the process which holds the resource, to make sure
that the resource can be released in this process. This looks
similar to A. But the difference is that, this method doesn’t
make constraint to how to acquire and release the resource. The
resolution is resolved in the system architecture layer, the
actual transaction won’t see any special processing (i.e., the
logic of how the message is handled need not special
processing). Therefore, this method belongs to the method of
avoiding dead lock.

But in the period when the process is bound, it can’t handle
other transactions’ messages which need to acquire resources,
so this method also constrains the concurrency and throughput
of the systems. But comparing with A, even after binding in
this method, actually the process can still handle those
messages which don’t need to acquire resources, so its
concurrency and throughput are better than A.

C. Multiple Level Message-Queues
The above-mentioned two methods focus on ensuring the

messages of acquiring and releasing resources can be handled
in the same process. But this requirement is too strict. Actually
it is only necessary that the message of releasing resource
could be handled by some process, it is not a requirement that
the process must be as same as the one which acquires the
resource.

In order to achieve this, this method defines dedicated
Message-Queue and Service-Buffer for the messages which
acquire resources. Still considering the example in section II,
because Message1 needs to acquire R, Message-Queue2 and
Service-Buffer2 are defined dedicatedly for handling the
messages which needs to acquire R. This is shown in Fig. 4.

Fig. 4. Principles of multiple level message-queues

Service-Buffer1

Service-Buffer2 Message-
Queue2

T1-
Message1

P3

Message-
Queue1

T2-
Message1

T3-
Message1

P1 P2

T1-Message2

Tim
e

T1-
Message2

Release R

T1-
Message1

Acquire R

Send T1-
Message2

T2-
Message1

Wait R

Acquire R

Service-Buffer
Message-Queue

T3-Message1

P1 P2

T2-Message1

T1-Message1

T1-Message2

Process
is

blocked

It is handled at
first since P1 is

bound to T1

Tim
e

T2-Message1

Acquire R

T1-Message1

Acquire R, Bind
P1 to T1

Send T1-
Message2

T1-Message2

Release R

Wait R

Advances in Social Science, Education and Humanities Research (ASSEHR), volume 95

460

1) Assuming there is only one process P3 in Service-
Buffer2.

2) When transaction T1, T2 and T3 start, they all send
Message1 to Message-Queue2;

3) Then P3 processes T1-Message1 at first, it can acquire R
successfully and send T1-Message2;

4) Then P3 processes T2-Message1, but since R has been
acquired by T1-Message1, P3 has to wait;

5) But because T1-Message2 doesn’t need to acquire R, T1-
Message2 isn’t handled by Service-Buffer 2, but by
Service-Buffer1 instead;

6) So T1-Message2 is sent to Message-Queue1, the process
in Service-Buffer1 can handle T1-Message2;

7) Then R can be released properly;
8) Then P3 is woken up and R could be acquired properly.

When P3 is blocked on waiting for R, the RAG at that
moment is described as formula (3).

};SB2T3-R,T2-T2,SB2-SB1,T1-T1,R-{Edge

;}2SB,1SB,R{Resource};3T,2T,1T{Request

>>>>>=
== (3)

So there isn’t any loop in this RAG either, the dead lock
won’t happen. In this way, because all messages which acquire
R are handled by Service-Buffer2, the processes in Service-
Buffer1 are never blocked by R; therefore the messages for
releasing R can always be handled properly.

Ideally, each single resource needs to specify with a
corresponding Message-Queue and Service-Buffer. A large
scale system may use many resources, it isn’t reasonable to
specify Message-Queues and Service-Buffers for every
resource. As an optimization, it can be defined according to the
categories of the resources. For example, some transactions
acquire the resource R in Message1 and release R in Message2.
But some other transactions acquire the resource S in Message1
and release S in Message2. Meanwhile, if there isn’t any
relationship between R and S, i.e., there isn’t any transaction
which needs to acquire R and S simultaneously, then R and S
can be considered into the same category, they can be handled
with the same Message-Queue and Service-Buffer.

Nevertheless, if some transactions acquire S after acquiring
R, then R and S should be considered in different categories,
they can’t share the same Message-Queue and Service-Buffer,
or the resource dead lock can be triggered.

Resources are categorized depending on how the resources
are acquired. At first, resources level is introduced as the
following definition:

1) Within a transaction, before a resource is released, if
there isn’t any other resource being acquired, its level is
1;

2) Within a transaction, before a resource is released, if
there is N resources being acquired, its level is N+1;

3) For one specific resource, if different transactions give
different levels, the maximum one is chosen as the
resource’s level;

4) For the resource in point 3, if its level is changed from X
to Y in some transaction, then increase the levels of the

resources which have larger level in this transaction by Y-
X.

So eventually, each level corresponds to one category, all
resources have the same level are divided into one same
category. And each category is specified with a unique
Message-Queue and Service-Buffer.

It is worth mention that in the recent years, operating
system academic circles promote a Servant/Exe-Flow Model
based operating system [6]. Its synchronization mechanism is
as similar as the above method. In this operating system, the
saving for the thread’s contexts is performed by an object
named Mini-Port. Because this operating system natively
supports the similar synchronization mechanism, the EBP
architecture implementation based on this operating system
won’t cause the dead-lock problem.

IV. CONCLUSIONS
This thesis discusses the resource contention problem when

using Event-Based Programming model, and promotes three
detailed solutions against this problem.

The first method is very simple, but it does strict limitation
on how resources are used, so it can’t adapt to asynchronous
scenario, the performance and applicability are poor. The other
two methods require no restriction, so they could be applied to
any scenario. The second method binds some processes. This
decreases the concurrency, so its performance isn’t as good as
the others. The third method needs to categorize the resources,
and more memory is required for extra Message-Queues and
Service Buffers.

EBP model has the benefit of loosely coupled architecture;
this makes it easily be used in a complex and large systems.
But the more complex of the systems, the harder the dead-lock
issue described in this paper is perceived. It is even possible
that the dead-lock issue is caused by the interaction among
multiple system components. So if the dead-lock issue can be
considered in the system design phase, and can be eliminated
by using the solutions described in this paper, then the stability
and robustness of the system can be highly improved.
Depending on the concrete appliance scenario, different
solution described above could be chosen.

REFERENCES
[1] URL:https://en.wikipedia.org/wiki/Procedural_programming
[2] URL:https://en.wikipedia.org/wiki/Object-oriented_programming
[3] Ted Faison, Event-Based Programming, Apress, 2006.
[4] Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Mazières, et

al., “Event-driven Programming for Robust Software”, In Proceedings of
the 10th workshop on ACM SIGOPS, 2002.

[5] Tang Zi-ying, Zhe Feng-ping, Tang Xiao-dan, Computer Operating
System, XiAn: XIDIAN UNIVERSITY PRESS, 2000. (In Chinese)

[6] Gong Yu-chang, Zhang Ye, Li Xi, Chen Xiang-lan, “The Kernel Design
of A Novel Component Based Operating System”, Journal of Chinese
Computer Systems, 2008. (In Chinese)

Advances in Social Science, Education and Humanities Research (ASSEHR), volume 95

461

	I. Introduction
	II. The Resource Allocation Problem
	III. Methods
	A. Constrain Release Point of Resource
	B. Bind Message Handler
	C. Multiple Level Message-Queues

	IV. Conclusions
	References

