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Abstract 

In this paper, we investigate the sensor localization problem and present Stochastic Radio Interferometric 
Positioning System with Unsynchronized Modulated Signals (SRIPS_UMS). Previous radio interferometric 
positioning methods have limitations include (1) strict hardware requirements for Received Signal Strength 
Indicator (RSSI) circuitry (2) time synchronization problem between distributed hardware. SRIPS_UMS overcomes 
these by using unsynchronized interferometric modulated signals. Its viability and advantages are demonstrated 
through mathematical models and extensive simulations. Further, the ongoing hardware implementation based on 
CC2420 is presented. 

Keywords: sensor localization; radio interferometric positioning system; unsynchronized; CC2420 

1. Introduction 

Wireless Sensor Networks (WSN) have been attracting 
explosive interest from both academia and industry.1, 2 
Sensors have been deployed all over the world to collect 
and process vast amounts of data for various of civilian 
and military applications, such as smart city, weather 
sensing, and earthquake monitoring. Many wireless 
network applications depend on location information to 
get the context of the measured data or to provide 

support to network services (e.g. routing). Localization 
can also be a stand-alone application, such as navigation 
and target tracking. Sensor localization problem is one 
of the fundamental issues in WSN. Most traditional 
localization systems, such as Global Positioning System 
(GPS), are not suitable for WSN because sensors are 
resource-constrained.3, 4 Compared with most existing 
localization systems, a qualified localization scheme for 
WSN additionally needs to have good scalability and 
low CPU/power/memory consumption. 
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In this paper, we focus on localization in static 
Wireless Sensor Networks in outdoor environment. 
Most current localization solutions are based on 
Received Signal Strength (RSS)5, 6, 7 using an indicator 
of RSS called Received Signal Strength Indicator 
(RSSI) that is available on most sensor radio chips. 
However, much calibration and maintenance work are 
required and its accuracy is not always satisfactory. 
Other methods relying on Time Difference of Arrival 
(TDOA), Time of Flight (TOF), and Angle of Arrival 
(AOA) are more accurate than the RSS methods but 
need expensive specialized hardware.8, 9 As a result, 
sensor localization remains a challenging problem. 

Compared with the above localization methods, 
Radio Interferometric Positioning Systems (RIPS) offer 
high accuracy and long range simultaneously, without 
the requirement of special hardware. RIPS yields an 
average localization error of 3 cm within an area with a 
160 m radius in outdoor environment.10 Many efforts 
have been made to improve RIPS.11, 12, 13, 14, 15 However, 
it is still difficult to implement RIPS algorithms on 
existing hardware: 
• Many current radio chips have changed the design 

of RSSI circuitry. 
• Resolution requirement of time synchronization 

cannot be achieved by many current sensor 
hardware. 

• Mica2 is proven to be appropriate for RIPS/SRIPS 
implementation, but it is too old and is not available 
in the market now. 

• Advanced sensors with direct phase measurement 
are not available in production. 

• ZigBit with proper micro controller and radio chip 
is not supported in existing products; some pins 
may be not connected and neither Contiki nor 
TinyOS support it. 

• None of the sensors supported by the latest version 
of Contiki and TinyOS has been proved. 

Over the last decade, researchers have been focusing 
on improving RIPS with unmodulated signals with the 
ignorance of the fact that modulated signals with close 
carrier frequencies can still interfere with each other. 
Many experiments based on different sensor platforms 
have been conducted to study and model the 
interference phenomenon caused by concurrent packet 
transmissions in low-power sensor networks.16, 17, 18 
Moreover, it has been demonstrated in theory that RIPS 
using synchronized interferometric modulated signals is 
capable of positioning targets in the same way as 

previous RIPS methods utilizing unmodulated signals, 
with more benefits such as saving switching time.15 

In this paper, we present Stochastic Radio 
Interferometric Positioning System with 
Unsynchronized Modulated Signals (SRIPS_UMS) − a 
variant of Stochastic RIPS14 and Stochastic RIPS with 
Modulated Signals15 that makes previous RIPS methods 
possible on existing hardware. Previous RIPS methods 
require sensor hardware to be able to continuously 
report RSS value, such as found on the CC1000.19 They 
cannot be implemented on current mainstream hardware 
such as CC242020 and CC2520,21 which instead report 
an average RSS value in every 128 us. Another problem 
is that previous methods using interferometric 
modulated signals require microsecond-level time 
synchronization on senders that is very hard to be 
realized on many sensor platforms. We need an 
innovative algorithm that can operate on the new-
generation RSSI circuitry and also has much lower time 
synchronization requirements. Our improved algorithm 
SRIPS_UMS makes this possible and its viability is 
demonstrated theoretically through mathematical 
models and simulations. Direct Sequence Spread 
Spectrum Offset-Quadrature Phase Shift Keying (DSSS 
O-QPSK) modulation is used by many mainstream 
radio chips.20, 21, 22 This modulation method is also 
utilized in mathematical models and simulations of this 
paper. In the hardware implementation plan, Zolertia 
Z123 with radio chip CC2420 is used. Hardware 
requirements for different RIPS methods are listed in 
Table 1. 

Table 1.  Hardware Requirements for RIPS Methods 

 SRIPS SRIPS_MS SRIPS_UMS 
Average RSS   √ 
Real-time RSS √ √  
Unmodulation √   

 
The major contributions of our work are: 

• We introduce an innovative radio interferometric 
positioning system called SRIPS_UMS and 
theoretically demonstrate that it can be 
implemented on current mainstream radio chips 
that do not support previous RIPS methods. 

• To the best of our knowledge, we are the first to 
utilize unsynchronized modulated signals for radio 
interferometric positioning and demonstrate its 
viability in theory. 
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• We theoretically demonstrate that it is not 
necessary for SRIPS_UMS to synchronize senders 
in time or to synchronize senders with receivers in 
time. Those time offsets almost have no affect on 
the positioning accuracy. 

• We design a hardware implementation plan to 
implement a prototype of SRIPS_UMS. 

The remainder of the paper is structured as follows. 
In section 2, we introduce SRIPS_UMS, including its 
mathematical models, related simulation results, and 
preliminary evaluation. In section 3, further simulation 
results and discussions are presented. Then in section 4 
we show a hardware implementation plan based on 
CC2420. Finally, conclusions are given in section 5. 

2. Stochastic Radio Interferometric Positioning 
System with Unsynchronized Modulated 
Signals 

SRIPS_UMS utilizes radio interferometry of two 
unsynchronized modulated signals with nearby carrier 
frequencies to generate a composite signal with low 
frequency envelope for position estimation.  

In this section, some problems of previous RIPS 
methods are first introduced. To solve these problems, 
we come up with SRIPS_UMS. Then we present the 
mathematical models and some preliminary evaluation 
results of SRIPS_UMS. Mathematical models are 
described in details to demonstrate the viability of 
SRIPS_UMS in theory, including signal modulation, 
signal propagation, signal interference, composite signal 
mix-down process, RSSI sampling, phase offset 
calculation, range, and positioning algorithm. A set of 
phase offsets are needed so that the positioning 
algorithm can converge to localize the target. 

SRIPS_UMS is a combination of the SRIPS model 
and the SRIPS_MS model. SRIPS model uses 
unmodulated signals while SRIPS_MS model and 
SRIPS_UMS model are based on modulated signals. 
SRIPS_UMS model improves SRIPS_MS model by 
getting rid of the need to synchronize senders in time to 
microsecond resolution. 

2.1. Hardware limitations  

2.1.1 RSSI circuitry 

One important hardware requirement for previous RIPS 
methods, including SRIPS_MS, is that the RSSI 

circuitry of receivers should be capable of reporting 
RSS values continuously. However, many current radio 
chips have abandoned this and instead only expose an 
average RSS value over 128 us. Although an obvious 
phase offset exists for actual RSS signals at the two 
receivers, the measured RSS-time curves are almost the 
same in phase due to the average process of RSSI 
circuitry. This will cause huge errors in estimating the 
target’s position. There is an urgent need to improve 
traditional RIPS methods by resolving this problem. 

2.1.2 Time synchronization 

It has been demonstrated in theory that if senders are 
synchronized with receivers in microsecond accuracy, 
phase offset of RSS signals can be directly obtained 
from RSS values continuously measured by receivers15 
(as shown in Fig. 1). However, when the time 
synchronization requirement cannot be met, this 
relationship breaks up and a new strategy is needed, 
which is another motivation for us to come up with the 
following mathematical models using unsynchronized 
modulated signal for positioning a target. 

 
Fig. 1.  Phase Offset Calculation with Time Synchronization 

2.2. Mathematical models of SRIPS_UMS 

At least four sensors are needed to position a target, 
with two as senders and the remaining ones as receivers. 
Only the target’s position is unknown. Denote senders 
as A and B and receivers as C and D. D is the target. Let 
X be either A or B, and Y be either C or D. Denote the 
clock time of receivers as 𝑡 and the clock time of 
senders as 𝑡𝑋. 𝑓𝑋 is the carrier frequency of sender X 
and 𝑎𝑋 is the signal amplitude. 

Assumptions for mathematical models: 
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• Two receivers are synchronized in time and are 
listening simultaneously. 

• Two senders are sending a same symbol sequence 
continuously. 

• Symbol sequence is randomly formed from symbol 
0~15. 

• Senders are operating on the same channel in one 
phase offset measurement round. 

• Two radios tuned to the same channel still have 
small and stable carrier frequency difference 
𝑓𝐴 − 𝑓𝐵 in a short period (let 𝑓𝐴 > 𝑓𝐵).14 

• Carrier frequency difference 𝑓𝐴 − 𝑓𝐵 is less than 2 
KHz.10  

2.2.1 DSSS O-QPSK modulation with half-sine chip 
shaping 

The modulation format in our mathematical models is 
DSSS O-QPSK with half-sine chip shaping, which is 
equivalent to Minimum-Shift Keying (MSK) 
modulation in mathematics.  

In radio chip CC2420, each symbol (4 bits) is spread 
using the IEEE 802.15.4 spreading sequence to 32 chips 
and each chip is transmitted alternately in the I and Q 
channels.20 One symbol period is 16 us. As shown in 
Fig. 2, the DSSS O-QPSK modulated signal is a 
summation of two signals available on I channel and Q 
channel respectively. 

 

Fig. 2.  DSSS O-QPSK Modulated Signal 

For DSSS O-QPSK, the mathematical expression 
for the generated signal 𝑆𝑚𝑚𝑚(𝑡𝑋) is: 

 
𝑆𝑚𝑚𝑚(𝑡𝑋) = cos(2𝜋𝑓𝑋𝑡𝑋 + 𝑏𝑘(𝑡𝑋) 𝜋𝑡𝑋

2𝑇
+ 𝜑𝑘(𝑡𝑋)) (1) 

 
, where 𝑡𝑋 = 0 means the starting point when the sender 
X begins to send symbol sequence. 𝑏𝑘(𝑡𝑋) is +1 or -1 
over time, and 𝜑𝑘 (𝑡𝑋) is 0 or 𝜋 over time. The value of  
𝑏𝑘(𝑡𝑋) and 𝜑𝑘 (𝑡𝑋) are controlled by chip values 
transmitted on I channel and Q channel. 

2.2.2 Signal propagation 

Denote the phase introduced by distance as 𝜑𝑑. When 
the signal propagates for a wavelength in space, its 
phase changes for 2𝜋. The changed phase is in 
proportion to the travel distance. The signal received at 
distance d can be expressed as: 

 

𝑆𝑟𝑟𝑟 = cos �2𝜋𝑓𝑋𝑡𝑋 + 𝑏𝑘(𝑡𝑋)
𝜋𝑡𝑋
2𝑇

+ 𝜑𝑘(𝑡𝑋) − 𝜑𝑑� (2) 

2.2.3 Interference of modulated signals 

Since in SRIPS_UMS senders are not required to be 
synchronized with each other or to be synchronized with 
receivers, time offsets may exist and can be expressed 
as: 

 
𝑡𝑋 = 𝑡 + ∆𝑡𝑋       (3) 

 
In each phase offset measurement round, ∆𝑡𝑋 is a 

constant and 𝑡𝑋 is a variable. In different phase offset 
measurement rounds, ∆𝑡𝑋 for a same sender/receiver 
pair can be a random constant and won’t affect 
measurement results in theory, as demonstrated in 
section 3 through simulations.  

The composite signal 𝑆𝑌(𝑡) received by Y is the 
summation of the two signals, which can be expressed 
by Equation (4): 

 

𝑆𝑌(𝑡) = 𝑎𝐴cos �2𝜋𝑓𝐴𝑡𝐴 + 𝑏𝑘(𝑡𝐴)
𝜋𝑡𝐴
2𝑇

+ 𝜑𝑘(𝑡𝐴)

− 𝜑𝑑𝐴𝐴�

+ 𝑎𝐵cos �2𝜋𝑓𝐵𝑡𝐵 + 𝑏𝑘(𝑡𝐵)
𝜋𝑡𝐵
2𝑇

+ 𝜑𝑘(𝑡𝐵) − 𝜑𝑑𝐵𝐵�         (4) 

2.2.4 Mix down process of the composite signal 

Sensor Y mixes down the composite signal 𝑆𝑌(𝑡) with a 
local signal 𝑚(𝑡) = cos(2𝜋𝑓𝐿𝐿𝑡). 𝑚(𝑡) is generated by 
a local oscillator and is used to convert the received 
signal to a resulting signal 𝑆𝑌∗(𝑡) with an intermediate 
frequency 𝑓𝐼𝐼. It can be expressed as: 

 
𝑆𝑌∗(𝑡) = 𝑆𝑌(𝑡)𝑚(𝑡)  (5) 

 
Then 𝑆𝑌∗(𝑡) is passed through a band pass filter to 

filter out the higher frequencies and to obtain the two 
low-frequency components. 𝑓𝐴 − 𝑓𝐵 is very small 
compared with 𝑏𝑘(𝑡) 4𝑇⁄  and 𝑓𝐿𝐿. The resulting 
intermediate signal 𝑆𝐼𝐼𝑌(𝑡) only contains two signal 
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components with frequencies 𝑓𝐴 + 𝑏𝑘(𝑡𝐴) 4𝑇⁄ − 𝑓𝐿𝐿 and 
𝑓𝐵 + 𝑏𝑘(𝑡𝐵) 4𝑇⁄ − 𝑓𝐿𝐿 separately. Set 𝑓𝐿𝐿 to 
((𝑓𝐴 + 𝑓𝐵) 2)⁄ − 𝑓𝐼𝐼 , let 𝛿 be (𝑓𝐴 − 𝑓𝐵) 2⁄ , and 𝑆𝐼𝐼𝑌(𝑡) 
can be written as: 

 

𝑆𝐼𝐼𝑌(𝑡) =
𝑎𝐴
2

cos �2𝜋(𝑓𝐼𝐼

+
𝑏𝑘(𝑡𝐴)

4𝑇
+ 𝛿)𝑡 + 2𝜋(𝑓𝐴

+
𝑏𝑘(𝑡𝐴)

4𝑇
)Δ𝑡𝐴 + 𝜑𝑘(𝑡𝐴) − 𝜑𝑑𝐴𝐴�

+
𝑎𝐵
2

cos�2𝜋(𝑓𝐼𝐼 +
𝑏𝑘(𝑡𝐵)

4𝑇

− 𝛿)𝑡 + 2𝜋(𝑓𝐵 +
𝑏𝑘(𝑡𝐵)

4𝑇
)Δ𝑡𝐵

+ 𝜑𝑘(𝑡𝐵) − 𝜑𝑑𝐵𝐵�                             (6) 

2.2.5 RSSI sampling  

The signal power of 𝑆𝐼𝐼𝑌(𝑡) is: 
 

𝑆𝑃𝑌 = 𝑆𝐼𝐼𝑌
2 (𝑡)          (7)            

 
Because RSSI measures RSS in dBm, a non-linear 

logarithmic function is used to read the RSS value. The 
logarithmic function distorts the composite signal by 
adding harmonic frequencies.10 The harmonic 
frequencies can be filtered out by a properly designed 
low pass filter, leaving only the fundamental frequency. 
Hence we get the filtered RSS signal in dBm 𝑆𝑅𝑅𝑅𝑌(𝑡): 

 

𝑆𝑅𝑅𝑅𝑌(𝑡) = log �
𝑎𝐴2 + 𝑎𝐵2

8

+
𝑎𝐴𝑎𝐵

4
cos �2𝜋 �2𝛿 +

𝑏𝑘(𝑡𝐴)
4𝑇

−
𝑏𝑘(𝑡𝐵)

4𝑇
� 𝑡 + 2𝜋 �𝑓𝐴 +

𝑏𝑘(𝑡𝐴)
4𝑇

�Δ𝑡𝐴

− 2𝜋 �𝑓𝐵 +
𝑏𝑘(𝑡𝐵)

4𝑇
�Δ𝑡𝐵 + 𝜑𝑘(𝑡𝐴)

− 𝜑𝑘(𝑡𝐵) − 𝜑𝑑𝐴𝐴 + 𝜑𝑑𝐵𝐵��  ( 8) 

 
We have theoretically derived the mathematical 

expression of the filtered RSS signal in dBm for 
composite unsynchronized modulated signals. It is a 
low-frequency signal.  

From Equation (8), we can get raw RSS values  
𝑆𝑅𝑅𝑅−𝑅𝑅𝑅𝑌(𝑡), as shown in Equation (9). Logarithm 
does not change the frequency and phase of signals. 
From now on, the filtered RSS signal refers to 
𝑆𝑅𝑅𝑅−𝑅𝑅𝑅𝑌(𝑡) in this paper. 

𝑆𝑅𝑅𝑅−𝑅𝑅𝑅𝑌(𝑡) =
𝑎𝐴2 + 𝑎𝐵2

8

+
𝑎𝐴𝑎𝐵

4
cos �2𝜋 �2𝛿 +

𝑏𝑘(𝑡𝐴)
4𝑇

−
𝑏𝑘(𝑡𝐵)

4𝑇
� 𝑡 + 2𝜋 �𝑓𝐴 +

𝑏𝑘(𝑡𝐴)
4𝑇

�Δ𝑡𝐴

− 2𝜋 �𝑓𝐵 +
𝑏𝑘(𝑡𝐵)

4𝑇
�Δ𝑡𝐵 + 𝜑𝑘(𝑡𝐴)

− 𝜑𝑘(𝑡𝐵) − 𝜑𝑑𝐴𝐴 + 𝜑𝑑𝐵𝐵�   (9) 

We simulate the waveform of the 𝑆𝑅𝑅𝑅−𝑅𝑅𝑅𝑌(𝑡), as 
shown in Fig. 3. The signal curve is not smooth and has 
a rough period as 2𝛿. 2𝛿 is the carrier frequency 
difference that generally varies from 0 to several 
kilohertz. The frequency of  𝑆𝑅𝑅𝑅−𝑅𝑅𝑅𝑌(𝑡) contains a 
changing component (𝑏𝑘(𝑡𝐴) 4𝑇)⁄ − (𝑏𝑘(𝑡𝐵) 4𝑇)⁄  that 
can be 1/2T, 0, or 1/2T over time. According to CC2420 
data sheet, 1/2T equals to 1 MHz. When time changes 
and this component is 0, the frequency of the signal is 
2𝛿. In other time periods when this equals to ±1 MHz, 
the signal’s frequency becomes much larger and the 
signal’s period becomes much shorter, with the same 
signal amplitude. This causes spikes on the curve of the 
filtered RSS signal in the time zone. 

 
Fig. 3.  Filtered RSS Signal in 1 Symbol Period and 32 

Symbol Periods 

If the user-defined measurement time for the filtered 
RSS signal is 20 ms, then the lower bound of the 
measurable frequency is 1/20 ms = 50 Hz. The Nyquist 
frequency determines the upper bound of the 
measurable frequency. In a RSSI circuitry with 
hardware sampling rate as 40 KHz, the upper bound is 
40 KHz/2 = 20 KHz. However, for a RSSI circuitry that 
only exposes an average RSS reading every 128 us, the 
upper bound for the measurable frequency becomes 
much lower. Suppose we use such a RSSI circuitry to 
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measure a filtered RSS signal with a period of 128 us, 
the obtained RSS values will be almost the same and 
cannot be used to recover the filtered RSS signal. So it’s 
reasonable to decrease the upper bound to 
(1 128 𝑢𝑢) ≈ 7.8 ⁄ KHz in this case. This average 
process won’t affect the lower bound because it works 
like a smoothing process for filtered RSS signals with 
longer periods. 

The phase of the filtered RSS signal contains 
distance information between involved sensors. The 
absolute phase is difficult to be measured, but the 
relative phase offset between two filtered RSS signals 
can be obtained and used for positioning. 

2.2.6 Phase offset calculation 

According to Equation (9), phase offset of filtered RSS 
signals at two receivers (sensor C and D) is: 

∆𝜑 = �𝜑𝑑𝐴𝐴 − 𝜑𝑑𝐴𝐴� + �𝜑𝑑𝐵𝐵 − 𝜑𝑑𝐵𝐵�  (10) 

𝜑𝑑𝑋𝑋  is the phase introduced by the distance 
between sender X and receiver Y with 𝜑𝑑𝑋𝑋 = 2𝜋(𝑑𝑋𝑋

𝑐 𝑓⁄
). 

c is the speed of light in free space. 𝜑𝑑𝑋𝑌  has a 
periodicity of 2𝜋. So ∆𝜑 can be further expressed in the 
form of distance relationships as: 

∆𝜑 = 2𝜋 �
𝑑𝐴𝐴 − 𝑑𝐴𝐴
𝑐 𝑓𝐴⁄ +

𝑑𝐵𝐵 − 𝑑𝐵𝐵
𝑐 𝑓𝐵⁄ �  𝑚𝑚𝑚 2𝜋  (11) 

With radio chips that average RSS values over 128 
us, the filtered RSS signal shown in Fig. 3 will be 
exposed in another form, as illustrated in Fig. 4. We call 
this curve “average-RSS-time curve” in this paper. 
From simulations in section 3, when carrier frequency 
difference 𝑓𝐴 − 𝑓𝐵 is less than 2 KHz, average-RSS-time 
curve displays a rough periodicity and its period 
approximates to 1 (𝑓𝐴 − 𝑓𝐵)⁄  regardless of time offsets 
(∆𝑡𝐴,∆𝑡𝐵). 

In Fig. 4, 1600 symbol periods are taken to get 200 
average RSSI readings, which equals to 25.6 ms. 
Another phase offset ∆𝜑𝐴𝐴𝐴−𝑅𝑅𝑅 is observed by 
comparing the two average-RSS-time curves measured 
by receiver C and receiver D respectively. In section 3, 
further simulation reveals the approximate relationship 
between ∆𝜑𝐴𝐴𝐴−𝑅𝑅𝑅 and ∆𝜑 when the carrier frequency 
difference is low within 2 KHz range: 

∆𝜑 = ∆𝜑𝐴𝐴𝐴−𝑅𝑅𝑅   (12) 

Since ∆𝜑𝐴𝐴𝐴−𝑅𝑅𝑅 can be measured, we obtain the 
value of ∆𝜑. Substitute the value of ∆𝜑 into Equation 
(11) to get the distance relationship. 
 

 

Fig. 4.  Phase Offset of Two Average-RSS-Time Curves 

2.2.7 Range 

According to Theorem 3 in Ref. 10, if the carrier 
frequency difference is less than 2 KHz, Equation (11) 
can be rewritten as: 

∆𝜑 = 2𝜋 �
𝑑𝐴𝐴 − 𝑑𝐴𝐴 + 𝑑𝐵𝐵 − 𝑑𝐵𝐵

𝑐 𝑓⁄
�  𝑚𝑚𝑚 2𝜋  (13) 

, where 𝑓 = (𝑓𝐴 + 𝑓𝐵) 2⁄ . 
Define 𝑞𝑟𝑟𝑟𝑟𝑟  as: 

𝑞𝑟𝑟𝑟𝑟𝑟 = 𝑑𝐴𝐴 − 𝑑𝐴𝐴 + 𝑑𝐵𝐵 − 𝑑𝐵𝐵   (14) 

Sensor A, B, and C’s locations are known, so 𝑑𝐴𝐴  
and 𝑑𝐵𝐵  can be calculated. Equation (14) can be further 
expressed in the form of 𝑡𝑟𝑟𝑟𝑟𝑟: 

𝑡𝑟𝑟𝑟𝑟𝑟 = 𝑞𝑟𝑟𝑟𝑟𝑟 + 𝑑𝐴𝐴 − 𝑑𝐵𝐵 = 𝑑𝐴𝐴 − 𝑑𝐵𝐵   (15) 

One iteration of the above process is called a “phase 
offset measurement round”. Repeat the phase offset 
measurement for different frequency channels and we 
can estimate 𝑞𝑟𝑟𝑟𝑟𝑟  based on a “least common 
multiple” approach mentioned in Ref. 10. A more 
advanced and accurate solution for 𝑞𝑟𝑟𝑟𝑟𝑟  estimation is 
to use “Chinese Remainder Theorem”.24, 25 

After 𝑞𝑟𝑟𝑟𝑟𝑟  is obtained, 𝑡𝑟𝑟𝑟𝑟𝑟 can be calculated 
using Equation (15). From the definition of hyperbola, it 
is known that target D is actually located on one branch 
of the hyperbola with two foci as the locations of sensor 
A and sensor B. Then repeat phase offset measurements 
with sensor A and C as senders and sensor B and D as 
receivers. A new 𝑡𝑟𝑟𝑟𝑟𝑟 can be calculated and it equals 
to the difference between the distance of the target and 
sensor A and the distance of the target and sensor C. So 
target D is also on one branch of another hyperbola with 
two foci as the locations of sensor A and sensor C. The 
intersection of two hyperbola branches is the estimated 
target position, as illustrated in Fig. 5. 
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Fig. 5.  Tracking a Single Target with Intersections of 
Hyperbolic Curves 

However, for a radio chip operating on 2.4 GHz 
band with frequency accuracy ±40 ppm, the maximum 
frequency offset can reach up to 200 KHz.20 As a result, 
the actual carrier frequency difference can be much 
larger than 2 KHz. This will bring in unestimated errors 
in range calculation and add much complexity to 
mathematical models. It is necessary to find a solution 
to distinguish effective measurements with carrier 
frequency differences in the range of 2 KHz and discard 
those noneffective measurements beyond the scope. In 
section 3, simulation results show that obvious visual 
differences exist for the shape of average-RSS-time 
curves under different carrier frequency differences. 
This provides a clue for us to utilize some 
characteristics of the average-RSS-time curve to tell 
whether the measurement is effective or not. But further 
careful and in-depth research are needed to make solid 
and convincing conclusions. 

2.2.8 Stochastic radio interferometric positioning 
algorithm 

Instead of using the range-based positioning algorithm 
mentioned above, we prefer to utilize the stochastic 
positioning algorithm in Ref. 14 that can eliminate false 
global optimums and converge more accurately to true 
locations. In this algorithm, a set of phase offsets 
obtained under different carrier frequencies and 
different sender/receiver pair combinations are input 
into the below equation to find the optimal target 
position (𝑥𝐷 ,𝑦𝐷) with best fit: 

(𝑥𝐷 ,𝑦𝐷) = arg𝑚𝑚𝑚(𝑥𝐷,𝑦𝐷) ���∆𝜑𝑖,𝑗 − ∆𝜑𝑖,𝑗∗ �
2 (16) 

𝑁

𝑖=1

𝑀

𝑗=1

 

, where ∆𝜑𝑖,𝑗 is the measured phase offset for carrier 
frequency 𝑓𝑖 under sender/receiver pair combination j. 
Δ𝜑𝑖 ,𝑗∗  is the actual phase offset in the same scenario. As 
shown in Equation (16), obtaining precise phase offsets 
is critical for accurate position estimation. According to 
Equation (13), if we assume sensor A and B are senders 
in combination j with locations (𝑥𝐴 ,𝑦𝐴) and (𝑥𝐵 ,𝑦𝐵) 
respectively, Δ𝜑𝑖 ,𝑗∗  can be expressed as: 

∆𝜑𝑖,𝑗∗ = 2𝜋 �
𝑑𝐴𝐴 − 𝑑𝐴𝐴 + 𝑑𝐵𝐵 − 𝑑𝐵𝐵

𝑐 𝑓𝑖⁄ �𝑚𝑚𝑚 2𝜋  (17) 

Since only sensor D’s location is unknown, 𝑑𝐴𝐴  and 
𝑑𝐵𝐵  can be calculated. 𝑑𝐴𝐴  and 𝑑𝐵𝐵  can be expressed 
using sensors’ locations: 

𝑑𝐴𝐴 = �(𝑥𝐴 − 𝑥𝐷)2 + (𝑦𝐴 − 𝑦𝐷)2  (18) 

𝑑𝐵𝐵 = �(𝑥𝐵−𝑥𝐷)2 + (𝑦𝐵 − 𝑦𝐷)2   (19) 

2.3. Preliminary evaluation of SRIPS_UMS 

2.3.1 Switching time 

SRIPS_UMS saves switching time. According to the 
positioning process described in Ref. 10 and Ref. 14, 
sensors use unmodulated signals for phase offset 
measurements and they also need to switch to 
modulation mode for communication purpose, such as 
receiving scheduling commands for localization. Denote 
the switching time as 𝑡𝑠 and the number of switching is 
𝑁, then the total saved localization time is 𝑁 × 𝑡𝑠, 
where 𝑡𝑠 is defined by radio chip data sheet.20, 21, 22 

2.3.2 Noise analysis  

In Ref. 15, it is pointed out that RIPS using modulated 
signals theoretically performs better than other RIPS 
methods with unmodulated signals in noisy 
environments. We expect SRIPS_UMS to inherit this 
advantage.  

Obviously, noise from other than the carrier 
frequencies is rejected by the transceiver. So we’re only 
concerned with noise that gets through the filter. The 
noise that gets through is not white; it is “pink” in the 
sense that it is concentrated in specific frequency bands. 

2.3.3 Error sources  

Some major error sources of SRIPS_UMS include: 
• Carrier frequency drift: sensor’s frequency can drift 

and effect phase offset measurements.  
• Noise: the noise from other wireless networks 

operating on the same channel, such as the 
ubiquitous Wi-Fi network. 
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• Data processing: errors introduced by algorithms 
that calculate phase offsets. 

• Time synchronization of receivers: it’s important 
for receivers to establish time synchronization 
points with high resolution to ensure accurate phase 
offset measurements. 

3. Simulation Results 

In this section, we conduct extensive simulations to 
study average-RSS-time curves in terms of the 
waveform, period, and phase offset. Results provide 
supports for Equation (12) and thus demonstrate the 
viability of SRIPS_UMS on new-generation radio chips. 
And we also prove another important advantage of 
SRIPS_UMS that it doesn’t need time synchronization 
on sender side. From simulations, time offsets 
(∆𝑡𝐴,∆𝑡𝐵) can be arbitrary and they have very little 
affect on positioning accuracy. 

A simple scenario is used in our simulations. We 
consider a square field 20×20 m with 4 sensors 
deployed in outdoor environment. The target sensor is 
the only one with unknown position in each phase offset 
measurement round and its role is always receiver. 

3.1. Carrier frequency difference and its effects on 
average-RSS-time curve 

Carrier frequency differences pose very obvious visual 
effects on the shape of averaged-RSS-time curves, as 
shown in Fig. 6. X-axis is time and Y-axis is signal 
amplitude. The Y-axis of Fig. 6 (a)~(h) has the same 
range from 20 to 200. 

With the increase of the carrier frequency 
difference, the amplitude of average-RSS-time curve 
decreases. When the carrier frequency difference is 
under 2 KHz, the average-RSS-time curve displays a 
rough periodicity. Compared with these curves, 
average-RSS-time curves with much higher carrier 
frequency differences (20 KHz and 200 KHz) look like 
horizontal lines without any periodicity. 

3.2. Time offsets and average period of average-
RSS-time curve 

The estimation for the frequency and phase of sine 
waves is a well-studied problem.26, 27 In this paper, we 
define a period as the distance between three sequential 
peaks that is shown as the distance between two red 
adjacent dash lines in Fig. 7. In Fig. 7, the upper subplot 
is the average-RSS-time curve of our interest, and the 
lower one uses RSS in dBm instead of raw RSS values. 
Actually the defined period is not a constant for a same 
average-RSS-time curve, so an average value is 
calculated and used. 

 
(a) with 200 Hz 

 
(b) with 500 Hz 

 
(c) with 600 Hz 

 
(d) with 1 KHz  

 
(e) with 1.5 KHz 

 
(f) with 2 KHz 

 
(g) with 20 KHz 

 
(h) with 200 KHz 

Fig. 6.  Average-RSS-Time Curves with Different Carrier 
Frequency Differences 

 
Fig. 7.  Period of Average-RSS-Time Curves 
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Simulations are performed under different carrier 
frequency differences from 200 to 2000 Hz. X-axis is 
∆𝑡𝐴 and Y-axis is ∆𝑡𝐵. Z-axis is the measured period of 
average-RSS-time curve under time offsets (∆𝑡𝐴,∆𝑡𝐵). 

In Fig. 8 (a), although (∆𝑡𝐴,∆𝑡𝐵) are changing, the 
average period of average-RSS-time curve remains 
around 5 ms. 5 ms is the reciprocal of the carrier 
frequency difference 𝑓𝐴 − 𝑓𝐵 (200 Hz). Repeat this 
experiment under different carrier frequency differences 
(400 Hz~2000 Hz) and these results hold, as shown in 
Fig. 8 (b)~(f). 

 

 
(a)  fA − fB=200 Hz 

 
(b) 𝑓𝐴 − 𝑓𝐵=400 Hz 

 

(c) 𝑓𝐴 − 𝑓𝐵=800 Hz 

 

(d)  𝑓𝐴 − 𝑓𝐵=1 KHz 

 

(e) 𝑓𝐴 − 𝑓𝐵=1.25 KHz 

 

(f) 𝑓𝐴 − 𝑓𝐵=2 KHz 

Fig. 8.  Average Period of Average-RSS-Time Curve under 
Different Time Offsets 

3.3. Time offsets and phase offset of average-RSS-
time curves 

The phase offset of average-RSS-time curves is defined 
as an average value of the phase shifts between two 
adjacent peaks of the two average-RSS-time curves, as 
shown in Fig. 9. 

We simulate the average-RSS-time curves measured 
by two receivers with changing time offsets. Results are 
available in Fig. 10 (a)~(h). X-axis is ∆𝑡𝐴 and Y-axis is 

∆𝑡𝐵. Z-axis is the measured phase offset between two 
average-RSS-time curves under time offsets (∆𝑡𝐴,∆𝑡𝐵). 

 
Fig. 9.  Phase Offset of Average-RSS-Time Curves 

In Fig. 10 (a), simulation is performed when phase 
offset of filtered RSS signals (∆𝜑) is 0.2𝜋, and the 
measured phase offset of average-RSS-time curves 
∆𝜑𝐴𝐴𝐴−𝑅𝑅𝑅 stays around 0.2𝜋 under different time 
offsets (∆𝑡𝐴,∆𝑡𝐵). Repeat this experiment under 
different ∆𝜑, ∆𝜑𝐴𝐴𝐴−𝑅𝑅𝑅 still approximates to ∆𝜑, as 
shown in Fig. 10 (b) (c) (d). Simulation results show 
that time offsets (∆𝑡𝐴,∆𝑡𝐵) have very little effect on the 
value of ∆𝜑𝐴𝐴𝐴−𝑅𝑅𝑅 and ∆𝜑𝐴𝐴𝐴−𝑅𝑅𝑅 always 
approximates to ∆𝜑.  

The above mathematical models and simulations 
assume that senders are continuously sending random 
symbols chosen from symbol 0~15. There is a special 
case that the symbol sequence contains a codon (a piece 
of small symbol sequence that appears repeatedly). The 
effects of codon are simulated by using a long sequence 
of symbol 0. In reality, this can be achieved by 
continuously sending a same packet. We repeat the 
experiments with a codon sequence and results are 
available in Fig. 10 (e)~(h). Obtained conclusions are 
the same with the ones made in random sequence 
scenario.   

X-axis of Fig. 10 (i)~(l) is time offset pair 
(∆𝑡𝐴,∆𝑡𝐵). Y-axis the error in estimating ∆𝜑. In Fig. 10 
(i), we compare the results shown in Fig. 10 (a) and Fig. 
10 (e) by calculating the errors (in Radians) of phase 
offset estimation in both scenarios. Other comparisons 
under different ∆𝜑 are available in Fig. 10 (j)~(l).  

The comparison results are summarized in Table 2. 
Compared with using random symbol sequence, 
utilizing codon sequence produces errors with higher 
mean and lower standard deviation in phase offset 
estimation. 

Table 2.  Mean and Standard Deviation of Errors in Radians 
for Phase Offset Estimation 

 ∆𝜑 = 0.2𝜋 04𝜋 0.6𝜋 0.8𝜋 
Mean -0.0023 0.0015 -0.0015 0.0024 
Mean (w/ codon) 0.0151 0.0302 0.0189 0.0121 
Std 0.0371 0.0344 0.0322 0.0325 
Std (w/ codon) 0 0 0.0078 0 
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4. Hardware Implementation 

The positioning experiments will be conducted in a 
20×20 m outdoor environment (as illustrated in Fig. 
11), with five Zolertia Z1 sensors equipped with 
CC2420. The embedded operating system - TinyOS 
2.1.2 is adopted for SRIPS_UMS implementation. We 
choose the target-as-receiver implementation because it 
has better scalability compared with the target-as-sender 
implementation.  

To localize the target, several rounds of phase offset 
measurements are needed. CC2420 has 16 channels 
within the 2.4 GHz band, in 5 MHz steps. The receiving 
sensors obtain 200 RSSI readings per phase offset 
measurement in 25.6 ms per frequency over a total of 16 
frequencies in a range of 2405 MHz to 2480 MHz. All 
RSSI readings will be sent to a personal computer (PC) 
and logged for further data processing and analysis. 

 
 
 
 

 
Fig. 11.  Deployment Area 

 

(a) actual ∆𝜑 = 0.2𝜋 

 

(b) actual ∆𝜑 = 0.4𝜋 

 

(c) actual ∆𝜑 = 0.6𝜋 

 

(d) actual ∆𝜑 = 0.8𝜋 

 

  (e) actual ∆𝜑 = 0.2𝜋; codon 

 

(f) actual ∆𝜑 = 0.4𝜋; codon 
 

(g) actual ∆𝜑 = 0.6𝜋; codon 
 

(h) actual ∆𝜑 = 0.8𝜋; codon 

 

    (i) error (actual ∆𝜑 = 0.2𝜋) 

 

    (j) error (actual ∆𝜑 = 0.4𝜋) 
 

    (k) error (actual ∆𝜑 = 0.6𝜋) 
 

    (l) error (actual ∆𝜑 = 0.8𝜋) 
 

Fig. 10.  Phase Offsets of Average-RSS-Time Curves with Different Time Offsets 
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4.1. Module design 

We design software modules based on TinyOS for 
SRIPS_UMS: 
• Sender: continuously send a same packet with 

adjustable packet length/packet interval/power 
level/communication channel 

• Receiver: continuously listen on the radio 
communication channel and read RSS values from 
register 

• Base Station: collect data from sensors and transmit 
them to PC; work as a gateway between the sensor 
network and outside networks, such as the Internet 

• Time Synchronization Partner: synchronize sensors 
using Flooding Time Synchronization Protocol28 

• Query: periodically send queries to the sensor 
network for synchronization progress 

• Scheduler: schedule events with pre-defined time 
intervals 

In the setup shown in Fig. 12, software module 
“Sender” is installed on both senders, while both 
receivers have the code of “Receiver” and “Time Syn-
chronization Partner”. Besides, the receiver connecting 
to PC is installed with the module “Base Station” 
additionally. Modules “Query” and “Scheduler” are 
installed on one sensor that can reach every other sensor 
in the network. The process to locate the target with 
SRIPS_UMS is illustrated in Algorithm 1. 

 

 
Fig. 12.  Scheme of Communication in Z1 Sensor Network 

4.2. Hardware implementation challenges 

The first hardware implementation challenge is to turn 
off collision avoidance on sensors for the generation of 
signal interference. Although TinyOS wiki provides a 
standard solution to disable Clear Channel Assessment 
(CCA) for CC2420, careful verifications on hardware 
are needed to confirm the behavior. 

Another problem is the time synchronization of 
receivers. The accuracy and stability of it will effect the 
performance of SRIPS_UMS. Assuming a 200 Hz 
interference frequency and a time synchronization with 

2 us precision, this translates to 4% × 2𝜋 phase offset 
error. Many details are involved in the design. 

 

5. Conclusions 

In this paper, we have described, evaluated, and 
partially implemented an innovative RIPS method - 
SRIPS_UMS. SRIPS_UMS theoretically resolves the 
hardware implementation problem of previous RIPS 
methods. And as a RIPS method utilizing modulated 
signals, it does not need time synchronization on 
senders or time synchronization between senders and 
receivers. The key enabling ideas behind these results 
are: 
• The successful mathematical derivation of the 

filtered RSS signal. 
• The discovery of the relationship between the phase 

offset of filtered RSS signals and the phase offset of 
average-RSS-time curves. 

• Extensive simulation on the effects of time offsets 
regarding phase offset estimation that determines 
positioning accuracy. 

Future work includes continuing work on hardware 
implementation of SRIPS_UMS on CC2420 and 
research on SRIPS_UMS utilizing new observations for 
possible indoor applications.29 
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