
A Logical Deduction Based Clause Learning Algorithm
for Boolean Satisfiability Problems

Qingshan Chen 1 *, Yang Xu 2, Jun Liu 3, Xingxing He 2

1School of Information Science and Technology, Southwest Jiaotong University,
Chengdu, Sichuan 610031, China

E-mail: qschen@home.swjtu.edu.cn
2 National-Local Joint Engineering Laboratory of System Credibility Automatic Verification,

Southwest Jiaotong University, Chengdu, Sichuan 610031, China
E-mail: xuyang@home.swjtu.edu.cn, x.he@home.swjtu.edu.cn

3School of Computing and Mathematics, University of Ulster, Northern Ireland, UK
E-mail: j.liu@ulster.ac.uk

Abstract

Clause learning is the key component of modern SAT solvers, while conflict analysis based on the implication
graph is the mainstream technology to generate the learnt clauses. Whenever a clause in the clause database is
falsified by the current variable assignments, the SAT solver will try to analyze the reason by using different cuts
(i.e., the Unique Implication Points) on the implication graph. Those schemes reflect only the conflict on the current
search subspace, does not reflect the inherent conflict directly involved in the rest space. In this paper, we propose a
new advanced clause learning algorithm based on the conflict analysis and the logical deduction, which reconstructs
a linear logical deduction by analyzing the relationship of different decision variables between the backjumping
level and the current decision level. The logical deduction result is then added into the clause database as a newly
learnt clause. The resulting implementation in Minisat improves the state-of-the-art performance in SAT solving.

Keywords: Boolean Satisfiability, SAT Problem, Clause Learning, Logical Deduction, Implication Graph.

* Corresponding author.

1. Introduction

Boolean satisfiability (SAT) problem is the first NP-
complete problem proven by Cook2, many problems can
be converted into the SAT problem solving. The
corresponding SAT solvers are widely used in
combinatorial optimization, artificial intelligence, model
checking, integrated circuit verification, software
verification, and other fields. Over the last two decades,
many heuristic algorithms for SAT solvers have been
developed, such as clause learning3,4,15, non-
chronological backtracking4, branching heuristic4,6,19,20,

restart5,21,22, clause deleting6,23, and so on. With the help
of those algorithms, the modern SAT solvers can solve
the problem with millions of clauses, and those
algorithms also enhance the chances for the SAT solvers
to be widely applied in industry.

Among the key technologies of SAT solvers, clause
learning is the most important one. In the search
procedure, whenever a new decision variable is chosen,
the Boolean Constraint Propagation algorithm (BCP)
can determine the values of a series of variables. If any
clause in the clause database is falsified, the conflict
analysis procedure will be triggered, and new learnt

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834

824

Received 9 February 2017

Accepted 17 March 2017

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

clauses are obtained by analyzing the implication graph
and added into the original problem3. The learnt clauses
often make other clauses become redundant, i.e., the
learnt clauses can simplify the original problem, but
also avoid the solver enter the same conflict search
space again. Implication graph and other advanced
researches on learning clauses, such as efficient
implementation7, minimizing learnt clauses7, measuring
the quality of learnt clause and subgraph8,10, extending
implication graph9, and so on, have made a great
breakthrough in the performance of the SAT solver.

However, the implication graph processing usually
does not consider the relationship between different
decision variables, but focuses on how to cut the
implication graph and obtain the corresponding learnt
clauses. Because the literals involved in the learnt
clause cannot be assigned false at the same time,
implication subgraph reflects only conflicts caused by
the assigned variables, therefore it cannot fully reflects
the potential conflicts in the rest graph. In Ref. 11,
Jabbour used learnt clause and original clause for
resolution deduction, and the resolvent was added to the
clause database as the new learnt clause and obtained a
smaller backjumping level at the same time. The new
learnt clause is not directly related to the current
conflict. Although the potential conflicts seem to be
processed, but sometimes it is hard to pinpoint the deep
reasons of the conflict. In Ref. 29, Sabharwal used the
implication graph to generate additional clauses called
back-clauses. By adding the first Unique Implication
Point (UIP) clause and back-clauses between every two
consecutive UIPs at level L , it enable unit propagation
to make all inferences that all traditional nogoods based
on all UIPs at level L would. This method only
analyzes the reason of conflict at the single decision
level, and does not consider the relationship between the
different decision levels, so the effect of corresponding
back-clause is not obvious.

Aiming to find the relationship between different
decision variables, and avoid the potential conflicts, we
use logical deductive method with a systematic study of
the conflict analysis and clause learning in this paper.
Whenever a conflict is reached, the solver begins to
reconstruct a logical deduction by using decision
variables between the backjumping level and the current
decision level, and the results is then added to the
original problem for further search. Experiments show

that the proposed algorithm has significantly improved
the frequency of restarts, conflicts and decision-making.
The rest of the paper is organized as follows. Section 2
provides some preliminaries including the main
concepts used in the present work. Section 3
summarizes some traditional learning schemes. Then a
new approach using logical deduction for clause
learning is proposed and detailed in Section 4. It is
followed by the experimental case studies and results
analysis in Section 5. Section 6 concludes the paper.

2. Preliminaries

2.1. SAT problem

A propositional formula φ is represented in a
Conjunctive Normal Form (CNF) which consists of a
conjunction of clauses C , φ is true if and only if all of
its clauses are true. A clause C consists of a disjunction
of literals l , C is true while one of its literals is true. A
literal l is either a variable x or its negation x¬ , i.e.,
if x is assigned value true (1), then x¬ must be false
(0), and vice versa. For example, 0 1 3 1() (x x xφ = ¬ ∨ ∧

2 2 3 5 2 4 5) () ()x x x x x x x∨ ∧ ∨¬ ∨ ∧ ¬ ∨¬ ∨¬ is a CNF
formula which contains 5 variables and 4 clauses.

The SAT problem is to decide whether there exists a
truth assignment to all the variables such that the
formula φ becomes true. If exist, then φ is satisfiable;
otherwise φ is unsatisfiable. For the formula 0φ , the
assignment '

1 2 3 4{ 1, 1, 1, 0}X x x x x= = = = = makes it
true, so 0φ is satisfiable, we call 'X is a satisfiable
instance or interpretation of 0φ .

2.2. CDCL framework

Conflict-Driven Clause Learning (CDCL) is based on
the Davis–Putnam–Logemann–Loveland (DPLL)12,13
algorithm, which is the most mainstream architecture of
the modern SAT solver. Typical CDCL SAT solver
algorithm24 is shown in Algorithm 1. The SAT solver
records an index for each decision level, which is
denoted as decisionlevel , the decisionlevel starts from
0. Each variable in a CNF formula has a unique decision
level, denoted as xL . The search procedure will start by
selecting an unassigned variable p and assume a value
for it, at the same time, a new decision level will be
starting, while the decisionlevel adds 1 by itself and the
search space will jump to { }v p . BCP(φ , v) is the
Boolean Constraint Propagation (BCP) procedure that

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834

825

consists of the iterated application of the unit clause
rule. During these running procedures, a sequence of
literals will be derived from it, and we call such
variables propagated variables, denoted as |pV , and

pL = |pVL . Let ()Root x be a function defined as the
decision level which variable x belongs to, then

()Root p p= , (|)pRoot V p= . If a conflict occurs in
BCP(φ , v), i.e., any clause, either the initial clause or
learnt clause, becomes an empty clause, then the
procedure will analyze the reason of conflict, obtain a
learnt clause and a backjumping decision level β . If
β is 0, representing that the conflict occurs at the top
level, then φ is unsatisfiable; otherwise undo all
assignments between β and the current decision level.

Algorithm 1: A typical CDCL framework.
Input: CNF formula φ , assigned variables v .
Output: the property of φ .
1: 0decisionlevel ←
2: if (BCP (φ , v)==CONFLICT) then

  Boolean Constraint Propagation
3: return UNSATISFIABLE
4: while (not AllVariableAssigned(φ , v))
5: p ←PickBranchingLit (φ , v)

  Start a new branch
6: 1decisionlevel decisionlevel← +
7: { }v v p← 
8: if (BCP (φ , v)==CONFLICT) then
9: β = ConflictAnalysis(φ , v)
10: if(0β <) then

 Conflict occurred at the root level
11: return UNSATISFIABLE
12: else
13: BackTrack(φ , v , β)

 Non-chronological backtracking
14: decisionlevel β←
15: return SATISFIABLE

3. Clause learning

In the subsequent sections we will review the clause
learning method, resolution and implication graph, and
how to analyze the conflict and obtain the learnt clause
from an implication graph.

3.1. Resolution

Resolution principle14,16 is one of the most important

methods for validating the unsatisfiability of logical
formulae. Given two clauses 1C A x= ∨ and

2C B x= ∨¬ , where x is a Boolean variable, then the
clause 1 2(,)R C C A B= ∨ can be inferred by the
resolution rule, resolving on the variable x . 1 2(,)R C C
is called the resolvent of 1C and 2C , both 1C and 2C is
either a clause of original formula or the resolvent
iteratively derived by using the resolution rule. If

1 2(,)R C C is an empty clause, then the original formula
is unsatisfiable. The resolvent can be viewed as a learnt
clause puts into the CNF formula, but it is not directly
derived from the conflict. In theory, the number of
resolvents from a CNF formula is infinite, often requires
amazing time and space complexity.

3.2. Implication Graph

CDCL based on implication graph3 makes the scale of
learnt clauses obvious smaller than the conventional
resolution, and more targeted. The main idea of this
method is as follows: whenever the conflict occurs, i.e.,
there exists at least one clause whose literals are all false,
then analyze the implication graph and find the reason
of conflict, and a new learnt clause represents the
conflict is derived and added to the CNF formula.

The implication graph reflects the relationships of
assigned variables during the SAT solver process. An
implication graph is a directed acyclic graph (DAG). A
typical implication graph is illustrated in Fig. 1, which
is constructed as follows:
• Vertex: each vertex represents a variable

assignment and its decision level, e.g., in Fig. 1,
1(6)x represents the variable 1x is assigned true at

the decision level 6, 8 (6)x¬ represents the variable
8x is assigned false at the decision level 6.

• Directed edge: the directed edge propagates from
the antecedent vertices to the vertex q
corresponding to the unit clause iC that led to q
assigned true, which will be labeled with iC .
Vertices have no incident edges corresponding to
the decision variables. In Fig. 1, 4x and 1x are
assigned false at the decision level 3 and 6,
respectively, so 1C is a unit clause at the moment,
its sole unassigned literal 3x must be assigned true
for 1C to be satisfied. Therefore, 4 (3)x¬ and

1(6)x¬ are the antecedent vertices of 3 (6)x .
• Conflict: each variable corresponds to a unique

vertex in the implication graph. A conflict occurs
when there is a variable appears with positive and

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834

826

negative at the same time, such variable is referred

to as the conflicting variable. In Fig. 1, 2x is the

conflicting variable. In this case, the search

procedure will be broken and the conflict analysis

procedure will be invoked.

Unique Implication Point3 ：A Unique Implication

Point (UIP) is a vertex in an implication graph that

dominates both positive and negative branches of the

conflicting variable. In Fig. 1, 9x has played a dominant

role for the conflict branches 2x and 2x . Therefore,

9x is a UIP. From the conflicting variable, along the

incident edge backtrack to the current decision variable,

UIPs are sorted in order as follows: called 9x the First

UIP, 3x is the Last UIP.

)(3411 xxxC 

)(532 xxC 

)(9583 xxxC 

)(974 xxC 

)(111075 xxxC 

)(12766 xxxC 

)(837 xxC 

)(131229 xxxC 

)(121128 xxxC 

)(9610 xxC 

)6(1x

1C

)6(3x

)6(5x

7C

)3(4x

)6(8x

)6(9x2C

3C

3C

)6(7x

4C

)6(6x

)4(10x

5C
)6(11x

5C

6C

6C
)6(12x

)4(13x

9C

9C
)6(2x

)6(2x
8C

8C

10C1C

(a) Clause Database (b) Implication Graph

Fig. 1. Clause database and implication graph.

3.3. Conflict Analysis and Learning

Conflict analysis aims to find the reasons of conflict,

such conflict is not always caused by a unique variable

assignment. As shown in Fig. 1, in addition to the

variable 1x assigned true at the current decision level,

4x , 10x and 13x are assigned true at the earlier decision

level. Through the conflict analysis, we can construct a

new clause '

1 4 10 13()C x x x x     as a

constraint clause and put it into the initial clause

database, and backtrack to the biggest level except the

current conflict level, see Ref. 15. Whenever the

variables 4x , 10x and 13x are assigned true, 1x must be

assigned false for
'C to be satisfied, i.e., the SAT solver

will not enter the conflict search space again.

When the conflict occurs, different learnt clauses

can be deduced from the implication graph by different

UIP cuts. The implication graph will be divided into two

parts, that is, the conflict side and the reason side. The

conflict side contains the conflict variables, and the

reason side contains the variable which caused the

conflict. Grasp3 and Chaff4 used the First UIP cut, as

shown in Fig. 2, the first UIP splits the implication

graph by the unique implication point 9x , the

corresponding learnt clause 9 10 13()x x x   will be

derived. Relsat15 used the Last UIP cut schema, the

corresponding learnt clause is 1 4 10 13()x x x x    ,

and backtrack to level 4.

In Ref. 9, Audemard proposed an extension of the

clause learning method called inverse arcs, which is

directly derived from the satisfied clause. As shown in

Fig. 1, for the clause 1 1 4 3()C x x x    , 1x is

assigned true at the current decision level, 4x is

assigned true at the smaller decision level, such that 3x

will be assigned true at the current decision level, both

1x and 4x are the antecedent variables of 3x . Assume

that there exists a clause 4 14 3' ()C x x x    , 3x is

assigned true at the level 2, the literal 4x assigned at the

level 7 is implied by the two literals 14x and 3x

respectively assigned at the levels 2 and 6. So the clause

'C is an inverse arc, the new clause

1 10 13 14 3(,) ()LastUIPR C C x x x x x     ‘ is

generated by resolution, then the search procedure will

backtrack to the level 2, which is smaller than the

previous value, i.e., the conflict can be found as early as

possible.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834

827

)6(1x

1C

)6(3x

)6(5x

7C

)3(4x

)6(8x

)6(9x2C

3C

3C

)6(7x

4C

)6(6x

)4(10x

5C
)6(11x

5C

6C

6C
)6(12x

)4(13x

9C

9C
)6(2x

)6(2x
8C

8C

10C1C Conflcit SideReason Side

First UIP Cut

Last UIP Cut

Fig. 2. Different cuts on an implication graph.

From the above analysis, FirstUIPC , LastUIPC and

(,)LastUIPR C C‘ are different cuts and processes based on

the current implication graph, the learnt clause is a

constraint condition with part of a few variables.

Although the inverse arc can derive a smaller

backtracking level, but it usually requires amazing

amount of calculation. The motivation behind the

present work is to seek an advanced learning algorithm,

making the backtracking level smaller, amounts of

calculation fewer, and the optimization efficiency

higher. In order to break through the limit of classical

learning schemes, we have done some research on

logical deduction, see Ref. 1, another automated

reasoning method. Experiments show that the

combination of implication graph and logical deduction

is effective for some hard distances. Accordingly, in this

paper, we propose an advanced learning algorithm

based on the logical deduction. Through the analysis of

correlation information between the decision variables

at different decision levels, the proposed learning

algorithm constructs the information constraints out of

the implication graph, so as to guide the search process

to avoid conflict as early as possible. The new learning

algorithm is detailed in the following Section 4.

4. An Advanced Clause Learning Algorithm

Using Logical Deduction

4.1. Principle

In this section, we propose a new approach using

logical deduction for clause learning, and the logical

method we used is mainly base on the resolution

principle and its variations. Due to its simplicity, as well

as its soundness and completeness, resolution method

has been adopted by the most popular modern theorem

provers. For further improving the efficiency of

resolution, many refined resolution methods have been

proposed such as linear resolution, semantic resolution,

and lock resolution, etc. In this paper we use the

structure of linear resolution deduction as the logical

deduction method, in which many clauses are involved

in the deduction, only one resolvent is derived.

Definition 4.116,25 Let 1C and 2C be clauses and 1L

a propositional variable. Then the clause
' '

1 2 1 2(, ,)iR C C L C C  is called a resolvent of clauses
'

1 1 1()C L C  and '

2 1 2()C L C   .

Definition 4.225 Let S be a clause set.

1 2{ , , , }kC C C  is called a resolution deduction

from S to kC , if iC (i =1, …, k) is either a clause in

S , or the resolvent of
jC and (,)rC j i r i  .

Definition 4.325 Let S be a clause set, 0C a clause

in S . Then
1 2{ , , , }kC C C  is called a linear

resolution deduction from S to kC with the top clause

0C (shown in Fig. 3).

(1) 1iC  is the resolvent of iC (a center clause) and

iB (a side clause), where 0,1, , 1i k  ;

(2) iB S , or ()i jB C j i  .

kC

0C 0B

1C 1B

1kC  1kB 

Fig. 3. Classical linear resolution.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834

828

4.2. Extension

As shown in Fig. 3, the resolution process is pushed
forward from top to bottom with top clause 0C , any

(1)iC i k≤ ≤ can be viewed as a learnt clause. Observe
that the classical linear resolution is merely theoretical,
and there have three uncertain factors (or defects) that
limit the computer implementation:

(1) Uncertain Resolution Literal. Each resolution
literal il belongs to iC , any literal in iC can be selected
as a resolution literal il . Different il may generates the
different resolvent +1iC .

(2) Uncertain Side Clause. Whenever a center
clause iC and its resolution literal il are determined,
any clause (including original clause and resolvent)
which contains il¬ can be selected as side clause, so
the arbitrariness of choosing side clause is increased
sharply while generating new resolvents.

(3) Uncertain Depth. Here, the depth is k which
represents the number of center clauses. If the last
center clause kC is nonempty and resolution literal is
not pure literal, then the resolution deduction will be
extended sustainably. Therefore, k is uncertain.

In general, for a large-scale CNF formula, the

resolvents are often grown exponentially with the depth
of the solution. Therefore, in a logical deduction, which
clause should be chosen and how many literals are
involved, will make a lot of influences on the efficiency
of solving. In response to these uncertain factors, we
present some extended strategies of integrating with
CDCL solver. The logical deduction process can be
invoked at any time of the CDCL search procedure,
restrictive strategies make the resolving process more
controllable and easily realized.

(1) Synchronized Clause Learning (SCL). Linear
logical deduction process synchronized with the CDCL
clause learning. After the CDCL conflict analysis, a
backtracking level is obtained, then we can reconstruct a
linear resolution deduction between the backtracking
level (also the root level) and the current decision level.
Decision variables from the backtracking level to the
current decision level are sequentially selected as the
resolution literal. Our motivation is to prevent the
resolution literals are arbitrarily selected. Further, the
depth of resolution deduction is determined by
backtracked level. Restrictive resolution literals and
depth make the resolving process is controllable.

3x 7x 8x

11x 12x 18x

5x 6x 20x

16x 9x 15x
current level: 10
(Conflict level）

decision level: 7
(back track level)

decision level: 8

decision level: 9

3

3

3

3 3C

'
0 3 0()C x C= ∨ '

0 3 11 0()B x x B= ¬ ∨ ∨

1C '
1 11 5 1()B x x B= ¬ ∨ ∨

2C '
2 5 16 2()B x x B= ¬ ∨ ∨

3C

'
0 3 0()C x C= ¬ ∨ '

0 3 11 0()B x x B= ∨¬ ∨

1C '
1 11 5 1()B x x B= ∨¬ ∨

2C '
2 5 16 2()B x x B= ∨¬ ∨

4C

3 16 16()B x x= ∨¬

(a) the partial sequence of assignments (b) reconstruct logic deduction (c) another reconstruct schema

Fig. 4. The partial sequence of assignments under the current conflict and the reconstruct logical deduction by using those decision
variables.

As an example illustrated in Fig. 4, assume that Fig.
4(a) is a partial sequence of variable assignments under
the current conflict, where decision variables are grayed
out and other variables behind the decision variable are
implied variables under the corresponding decision
assignments. When the conflict occurred at the current
decision level 10, the backtracking level is 7 according
to the CDCL conflict analysis, then our algorithm is
invoked. Decision variables from the backtracking level

to the current decision level are 3x , 11x , 5x and 16x
respectively. With those decision variables, we can
reconstruct a logical resolution deduction and get a new
clause completely different from the procedure via the
implication graph. The reconstructed process is shown
in Fig. 4(b), where '

0C , '
0B , '

1B , '
2B is part of

0C , 0B , 1B , 2B , respectively. The resolvent
' ' ' '

3 16 0 0 1 2()C x C B B B= ∨ ∨ ∨ ∨ can be added to the
clause database as a new learnt clause. Moreover, we

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834

829

can reconstruct another logical deduction shown in Fig.
4(c). Notice that the center clause 0C and the side
clauses 0B , 1B , and 2B are different from that shown in
Fig. 4(b). Here, we add a tautology 3 16 16()B x x= ∨¬ to
the clause database. Then the resolvent '

4 16 0(C x C= ¬ ∨
' ' '
0 1 2)B B B∨ ∨ ∨ is also a learnt clause, which contains

the negation of the last decision variable 16x and similar
to the traditional learnt clause by cutting the implication
graph.

(2) Smaller Average Decision Level (SADL). For
the side clause iB , the average decision level excluding
the unassigned literals should be as small as possible,
and the number of unassigned literals must be as less as
possible. There are two advantages for those selection
strategies: one is the side clauses can be easily
determined rather than randomly chosen, and therefore
it can be seen as the conflict variables guided. The other
and the most important is that, the smaller average
decision level will cause the backtracking level smaller,
i.e., the conflicts will occur as earlier as possible. On the
other hand, the clauses with less unassigned literals are
more likely unsatisfied, i.e., it is easier to become a unit
clause or binary clause, hence it reduce the searching
space more powerful.

(3) Periodical Resolvent Deletion (PRD). In most
cases the resolvents are grown exponentially, we need
to construct automatic garbage collection that prevents
memory overflow. It means, in short, the resolvents
should be deleted periodically. However, it is not easy
to estimate which one is best resolvent among those. In
Ref. 17, Minisat set an activity weight for each learnt
clause. Whenever a learnt clause takes part in the
conflict analysis, its activity is bumped. Inactive clauses
are periodically removed. In Refs. 23 and 26, Glucose
compute the Literals Blocks Distance (LBD) for each
learnt clause. A learnt clause is partitioned into n
subsets according to the decision level of its literals,
then all the learnt clauses with LBD greater than 2 are
periodically deleted. Inspired by Minisat and Glucose,
we propose a new weighted activity evaluation for each
resolvent as follows:

Definition 4.4 (Weighted Activity -WA). Let S be
a clause set and 1 2{ , , , }kC C Cω = 2 be a linear
resolution deduction from S to kC with the top clause

0C . The number of resolvent iC that takes part in the
conflict analysis is defined as ()iH C . The average
decision level of resolvent iC is defined as ()iL C . We
define the weighted activity of iC as

() ()
() 1

max{ ()} max{ ()}
i i

i
L C H C

A C
L C H C

 
= − + 
 

.

Whenever the solver needs to collect garbage, all the
resolvents which ()A C is lower than a threshold will be
removed. This evaluation method is easy to understand.
A resolvent with smaller average decision level and
used repeatedly analyze conflict is more likely to be
preserved.

The new advanced algorithm is shown in Algorithm
2, Through many times deductions by recursively
selected clause iB , the resolvent 1iC + can be added to
the original CNF formula, which will not change the
truth-value of the formula.

Algorithm 2: The advanced clause learning by using
the logical deduction.
Input: backtracking level backlevel after conflict

analysis.
Output: a new learnt clause by a logical deduction.
1: while (backlevel decisionlevel<)

 decisionlevel : the current decision level.
2: 0i ←
3: p = trail[Lastbacklevel]

 trail: the sequence of assigned variables.
4: q = trail[1Lastbacklevel +]
5: iB =getClause(p¬ , q)
Choose a clause which contains both p¬ and q .

6: if (iB is existing)
7: ' '

1 (,)i i iC R C B+ =
Use the resolution rule on p with '

iC and iB .
8: else
9: break  Stop deduction.
10: 1i i← +
11: 1backlevel backlevel← +
12: return '

1iC +

4.3. Compare with First UIP Cut

Let’s recall the example shown in Fig. 2, where the
current decision level is 6. After a conflict occurs, a new
learnt clause 1 4 10 13()LastUIPC x x x x= ¬ ∨¬ ∨¬ ∨¬ can be
inferred from the implication graph by the Last UIP cut.
Because

4 10 13 1x x x xL L L L< ≤ < , the search procedure
will get back to the second largest decision level 4. In
this case, we can choose the smallest decision level

4
=3xL . We start the logical deduction from the layer 3

to 6 (also starts from the root level). Assume that
4 14()Root x x¬ = and 10 15()Root x x¬ = , the decision

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834

830

variable of level 5 is 16x , there exist clauses

11 4 14()C x x   ,
12 15 14 9()C x x x   ,

13 15 16 10()C x x x    , and
14 16 9()C x x   , we

can infer some clauses by the logical deduction:
'

1 11 12 14 4 15 9(, ,) ()C R C C x x x x     ,
' '

2 1 13 15 4 16 9 10(, ,) ()C R C C x x x x x      ,
' '

3 2 14 16 4 9 10(, ,) ()C R C C x x x x     .

Now we add '

3C to the original CNF formula as a

new learnt clause. The variable 8x is assigned true at

the level 6 is implied by the two variables 4x and 10x

which are assigned true at the levels 3 and 4

respectively. 8x will inevitably become a conflict

variable and earlier than 2x , the new implication graph

is shown in Fig. 5.

1C

)6(5x

7C

2C1C

'

3C

'

3C 3C

3C

Conflcit Side

Reason Side
1 1 4 3()C x x x   

2 3 5()C x x  

3 8 5 9()C x x x  

4 7 9()C x x 

5 7 10 11()C x x x   

6 6 7 12()C x x x   

7 3 8()C x x  

8 2 11 12()C x x x  

9 2 12 13()C x x x   

10 6 9()C x x 

11 4 14()C x x  

12 14 15 9()C x x x   

13 15 16 10()C x x x   

14 16 9()C x x  

'

3 4 9 10()C x x x   

1(6)x

4 (3)x

10 (4)x

3 (6)x

9 (4)x

8 (6)x

8 (6)x

Clause Database Implication Graph

Fig. 5. The clause database and implication graph based on the logical deduction.

5. Experimental Results

In this section, we empirically compare the performance

between the SAT solvers with and without using the

logical deduction. Minisat17 is the well-known SAT

solver with the First UIP, some state of the art SAT

solvers such as Glucose, abcdSAT and COMiniSatPS

are improved versions on the Minisat, see Refs. 26-28.

So we have implemented the logical deduction with

different backlevel in Minisat 2.2.0, called PSat_bl0

and PSat_blc respectively with the backlevel 0 and the

backlevel from the conflict analysis. This comparison

is made on the set of 286 instances from the main track

of SAT-Race 2015, with a time out of 3600s. We used a

farm of Xeon 2.4Ghz E5 with 16G bytes physical

memory, the operating system is Hat Enterprise Red 6.

Both Minisat 2.2.0 and PSat can successfully solve

the instances without any preprocessors and all

conclusions are correct. Minisat 2.2.0 solved 170

instances, PSat with =0backlevel solved 193 instances,

and PSat with backlevel from the conflict analysis

solved 203 instances. For the satisfiable problems,

PSat_blc solves 20 more instances than Minisat. For the

unsatisfiable problems, PSat_blc solves 13 more

instances than Minisat. Table 1 summarizes the number

of instances solved for different benchmark families,

where some families have been cleared from the table

that all solvers have equal numbers of solved instances.

The manthey family18 is encoding of the Modulo game,

a certain form of a combinatorial puzzle. We can see

that our approach improves most obviously on the

manthey family.

Table 2 shows the average time of Minisat, PSat_bl0

and PSat_blc. As can be seen clearly, the logical

deduction with the advanced clause learning method

performs better than the original version no matter on

SAT or UNSAT instances. For the satisfiable problems,

Minisat solved 114 instances with average time 715.6s,

but PSat_blc requires only 305.8s for 134 instances.

This illustrates the learnt clauses from reconstructing

logical deduction are more efficient because of avoiding

the potential conflict searching space. For the

unsatisfiable problems, PSat_blc solved 69 instances

with average time 958.9s. It seems that the time is long

compared to the result in Minisat and PSat_bl0. The

reason is PSat_blc solved more difficult instances which

are spent nearly 3600s. Fig. 6 shows that both PSat_bl0

and PSat_blc are more powerful than Minisat, where

each dot corresponds to a SAT instance. Although the

two versions of the PSat can improve the efficiency

significantly, they behave differently, backlevel from

conflict analysis is better than directly selecting the top

level. The reason is that the logical deduction tends to

spend more time, sometimes the learnt clauses have

more literals while more clauses participates in the

logical deduction and become redundant easily.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834

831

Table 1. Zoom on some solved families.

Family Minisat 2.2.0 PSat_bl0 PSat_blc
SAT UNSAT TOTAL SAT UNSAT TOTAL SAT UNSAT TOTAL

manthey 36 28 64 37 29 66 41 29 70
jgiraldezlevy 13 0 13 14 0 14 16 1 17

xbits 12 0 12 17 0 17 17 0 17
atco 4 4 8 4 5 9 6 5 11
6sx 0 2 2 0 3 3 0 4 4

aaaix-planning 0 0 0 0 2 2 0 2 2
ACG 0 1 1 1 2 3 1 2 3
aes 2 0 2 1 0 1 4 0 4

AProVE 1 0 1 1 2 3 1 2 3
Group_mulr 0 0 0 0 1 1 0 1 1

gss 2 0 2 2 0 2 3 0 3
mrpp 20 12 32 21 12 33 20 12 32
partial 3 0 3 3 0 3 2 0 2
UCG 2 1 3 3 2 5 3 2 5
UR 0 0 0 1 0 1 1 0 1
UTI 0 0 0 1 0 1 1 0 1

countbitssr 0 0 0 0 1 1 0 1 1
vmpc 2 0 2 2 0 2 1 0 1

Table 2. The average time of different solvers.

Solver Minisat 2.2.0 PSat_bl0 PSat_blc
SAT UNSAT TOTAL SAT UNSAT TOTAL SAT UNSAT TOTAL

Solved instances 114 56 170 126 67 193 134 69 203
Total time(s) 81578 35629 117207 84372 42036 126408 40982 66164 107146

Average time(s) 715.6 636.2 689.5 669.6 627.4 655.0 305.8 958.9 527.8

0 50 100 150 200

0

600

1200

1800

2400

3000

3600

tim
e(

se
c)

No. solved instances

 Minisat 2.2.0
 PSat_bl0(backlevel=0)
 PSat_blc(backlevel from conflict analysize)

Fig. 6. Cactus plot of solvers with different clause learning schemas (2015 SAT-Race instances).

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834

832

100 102 104 106 108
100

102

104

106

108

59 instances

M
in

is
at

 2
.2

.0

PSat(backlevel from conflict analysize)

97 instances

Fig. 7. Comparison of conflict times with and without the advanced learning on 156 instances.

6. Conclusions

In this paper, we have proposed an advanced learning
algorithm for SAT problem. Whenever the SAT solver
reaches a conflict, the advanced learning procedure will
be triggered. A backjumping level is obtained by
analyzing the implication graph. Through the iteratively
logical deduction from the backjumping level to the
current conflict level, a new learnt clause is obtained.
The classic learning algorithms usually make the
conflict occurs as early as possible, but easy to fall into
a local optimum. As an extension of classic algorithms,
our learnt clause contains more literals with smaller
decision level, i.e. the possibility of SAT solver back-
jump to the lower level will be bigger than before. We
integrated the new algorithm into the state-of-the-art
CDCL solver Minisat 2.2.0, experiments on the main
track instances from SAT-Race 2015 showed that our
algorithm has better performance. In future work, we
plan to establish a detailed characterization system of
clauses, in order to estimate clause of logical deduction,
and obtain shorter resolvents.

Acknowledgements

This work is partially supported by the National Natural
Science Foundation of China (Grant No. 61673320,
11526171, 61305074), and the Fundamental Research
Funds for the Central Universities of China (Grant No.
A0920502051305-24, 2682015CX060).

References

1. Q. Chen, Y. Xu, X. He, A heuristic Complete algorithm
for sat problem by using logic deduction, in Proc of the
12th International FLINS Conference (Roubaix, France,
2016), 496-501.

2. S. A. Cook, The complexity of theorem-proving
procedures, in Proc of the 3rd Annual ACM Symposium
on Theory of Computing (1971), 151-158.

3. J. P. Marques-Silva and K. A. Sakallah, Grasp: A search
algorithm for propositional satisfiability, IEEE
Transactions on Computers, 48(5) (1999) 506-521.

4. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S.
Malik, Chaff: Engineering an efficient SAT solver, in
Proc of the 38th Annual Design Automation (New York,
USA, 2001), 530-535.

5. C. P. Gomes, B. Selman, and H. Kautz, Boosting
combinatorial search through randomization, in National
Conference on Artificial Intelligence (Madison,
Wisconsin, 1998), 431-437.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834

833

6. E. Goldberg and Y. Novikov, BerkMin: a fast and robust
SAT solver, in Design, Automation and Testing in
Europe Conference (Paris, France, 2002), 142-149.

7. N. Sörensson and A. Biere, Minimizing learned clauses,
in Proc of the 12th international conference on theory and
applications of satisfiability testing (Swansea, Wales,
2009), 237-243.

8. Y. Hamadi, S. Jabbour, and L. Sais, Learning for
dynamic subsumption, in Proc of the 21st IEEE
international conference on tools with artificial
intelligence (Newark, New Jersey, 2009), 328-335.

9. G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and
L. Sais, A generalized framework for conflict analysis, in
Proc of the eleventh international conference on theory
and applications of satisfiability testing (Guangzhou,
China, 2008), 21-27.

10. Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard,
and L. Simon, Impact of community structure on SAT
solver performance, in Proc of the 17th international
conference on theory and applications of satisfiability
testing (Vienna, Austria, 2014), 252-268.

11. S. Jabbour, Learning for dynamic assignments
reordering, in Proc of the 21st IEEE international
conference on tools with artificial intelligence (Newark,
New Jersey, 2009), 336-343.

12. M. Davis, H. Putnam, A computing procedure for
quantification theory, Journal of the ACM, 7(3) (1960)
201-215.

13. M. Davis, G. Logemann, and D. Loveland, A machine
program for theorem proving, Commun. ACM, 5(7)
(1962) 394-397.

14. J. A. Robinson, A machine-oriented logic based on the
resolution principle, Journal of the ACM, 12(1) (1965)
23-41.

15. R. J. J. Bayardo, R. C. Schrag, Using CSP look-back
techniques to solve real-world SAT instances, in Proc of
the fourteenth national conference on artificial
intelligence (Providence, Rhode Island, 1997), 203-208.

16. C. L. Chang and R. C. T. Lee, Symbolic logic and
mechanical theorem proving (Academic Press, USA,
1997).

17. N. Eén, N. Sörensson, An extensible SAT solver, in Proc
of the Sixth International Conference on Theory and
Applications of Satisfiability Testing (Vancouver,
Canada, 2004), 502-518.

18. http://baldur.iti.kit.edu/sat-race-2015/descriptions/bench/
Modulo-HahnMantheyPhilipp.pdf.

19. A. Biere, A. Fröhlich, Evaluating CDCL variable scoring
schemes, in Proc of the 18th international conference on
theory and applications of satisfiability testing (Austin,
Texas, 2015), 405-422.

20. J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki,
Learning Rate Based Branching Heuristic for SAT
Solvers, in Proc of the 19th international conference on
theory and applications of satisfiability testing
(Bordeaux, France, 2016), 123-140.

21. J. Huang, The effect of restarts on the efficiency of clause
learning, in Proc of the 20th International Joint
Conference on Artificial Intelligence (Hyderabad, India,
2007), 2318-2323.

22. A. Biere, Adaptive restart strategies for conflict driven
SAT solvers, in Proc of the 11th international conference
on theory and applications of satisfiability testing
(Guangzhou, China, 2008), 28-33.

23. G. Audemard, L. Simon, Predicting learnt clauses quality
in modern SAT solvers, in Proc of of the 21th
International Joint Conferences on Artificial Intelligence
(Pasadena, California, 2009), 399-404.

24. J. Marques-Silva, I. Lynce, and S. Malik, Conflict-driven
clause learning SAT solvers, in Handbook of
Satisfiability (IOS Press, 2009), 127-149.

25. J. A. Robinson, and A. Voronkov (eds.), Handbook of
automated reasoning (Elsevier and MIT Press,
Cambridge, 2001).

26. G. Audemard, L. Simon, Glucose 2.3 in the SAT 2013
Competition, in Proc of SAT Competition 2013
(Helsinki, Finland, 2013), 42-43.

27. J. Chen, A bit-encoding phase selection strategy for
satisfiability solvers, in Proc of the 11th Annual
Conference on Theory and Applications of Models of
Computation (Chennai, India, 2014), 58-167.

28. O. Chanseok, Patching minisat to deliver performance of
modern sat solvers, in SAT Race 2015 Solver and
Benchmark Descriptions (2015).

29. A. Sabharwal, H. Samulowitz, and M. Sellmann,
Learning back-clauses in sat, in Proc of the 15th
international conference on Theory and applications of
satisfiability testing (Trento, Italy, 2012), 498-499.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834

834

	1. Introduction
	2. Preliminaries
	2.1. SAT problem
	2.2. CDCL framework

	3. Clause learning
	3.1. Resolution
	3.2. Implication Graph
	3.3. Conflict Analysis and Learning

	4. An Advanced Clause Learning Algorithm Using Logical Deduction
	4.1. Principle
	4.2. Extension
	4.3. Compare with First UIP Cut

	5. Experimental Results
	6. Conclusions
	Acknowledgements
	References

