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Abstract 

Clause learning is the key component of modern SAT solvers, while conflict analysis based on the implication 
graph is the mainstream technology to generate the learnt clauses. Whenever a clause in the clause database is 
falsified by the current variable assignments, the SAT solver will try to analyze the reason by using different cuts 
(i.e., the Unique Implication Points) on the implication graph. Those schemes reflect only the conflict on the current 
search subspace, does not reflect the inherent conflict directly involved in the rest space. In this paper, we propose a 
new advanced clause learning algorithm based on the conflict analysis and the logical deduction, which reconstructs 
a linear logical deduction by analyzing the relationship of different decision variables between the backjumping 
level and the current decision level. The logical deduction result is then added into the clause database as a newly 
learnt clause. The resulting implementation in Minisat improves the state-of-the-art performance in SAT solving. 
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1. Introduction 

Boolean satisfiability (SAT) problem is the first NP-
complete problem proven by Cook2, many problems can 
be converted into the SAT problem solving. The 
corresponding SAT solvers are widely used in 
combinatorial optimization, artificial intelligence, model 
checking, integrated circuit verification, software 
verification, and other fields. Over the last two decades, 
many heuristic algorithms for SAT solvers have been 
developed, such as clause learning3,4,15, non-
chronological backtracking4, branching heuristic4,6,19,20, 

restart5,21,22, clause deleting6,23, and so on. With the help 
of those algorithms, the modern SAT solvers can solve 
the problem with millions of clauses, and those 
algorithms also enhance the chances for the SAT solvers 
to be widely applied in industry. 

Among the key technologies of SAT solvers, clause 
learning is the most important one. In the search 
procedure, whenever a new decision variable is chosen, 
the Boolean Constraint Propagation algorithm (BCP) 
can determine the values of a series of variables. If any 
clause in the clause database is falsified, the conflict 
analysis procedure will be triggered, and new learnt 
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clauses are obtained by analyzing the implication graph 
and added into the original problem3. The learnt clauses 
often make other clauses become redundant, i.e., the 
learnt clauses can simplify the original problem, but 
also avoid the solver enter the same conflict search 
space again. Implication graph and other advanced 
researches on learning clauses, such as efficient 
implementation7, minimizing learnt clauses7, measuring 
the quality of learnt clause and subgraph8,10, extending 
implication graph9, and so on, have made a great 
breakthrough in the performance of the SAT solver. 

However, the implication graph processing usually 
does not consider the relationship between different 
decision variables, but focuses on how to cut the 
implication graph and obtain the corresponding learnt 
clauses. Because the literals involved in the learnt 
clause cannot be assigned false at the same time, 
implication subgraph reflects only conflicts caused by 
the assigned variables, therefore it cannot fully reflects 
the potential conflicts in the rest graph. In Ref. 11, 
Jabbour used learnt clause and original clause for 
resolution deduction, and the resolvent was added to the 
clause database as the new learnt clause and obtained a 
smaller backjumping level at the same time. The new 
learnt clause is not directly related to the current 
conflict. Although the potential conflicts seem to be 
processed, but sometimes it is hard to pinpoint the deep 
reasons of the conflict. In Ref. 29, Sabharwal used the 
implication graph to generate additional clauses called 
back-clauses. By adding the first Unique Implication 
Point (UIP) clause and back-clauses between every two 
consecutive UIPs at level L , it enable unit propagation 
to make all inferences that all traditional nogoods based 
on all UIPs at level L  would. This method only 
analyzes the reason of conflict at the single decision 
level, and does not consider the relationship between the 
different decision levels, so the effect of corresponding 
back-clause is not obvious. 

Aiming to find the relationship between different 
decision variables, and avoid the potential conflicts, we 
use logical deductive method with a systematic study of 
the conflict analysis and clause learning in this paper. 
Whenever a conflict is reached, the solver begins to 
reconstruct a logical deduction by using decision 
variables between the backjumping level and the current 
decision level, and the results is then added to the 
original problem for further search. Experiments show 

that the proposed algorithm has significantly improved 
the frequency of restarts, conflicts and decision-making. 
The rest of the paper is organized as follows. Section 2 
provides some preliminaries including the main 
concepts used in the present work. Section 3 
summarizes some traditional learning schemes. Then a 
new approach using logical deduction for clause 
learning is proposed and detailed in Section 4. It is 
followed by the experimental case studies and results 
analysis in Section 5. Section 6 concludes the paper. 

2. Preliminaries 

2.1. SAT problem 

A propositional formula φ  is represented in a 
Conjunctive Normal Form (CNF) which consists of a 
conjunction of clauses C , φ  is true if and only if all of 
its clauses are true. A clause C  consists of a disjunction 
of literals l , C is true while one of its literals is true. A 
literal l  is either a variable x  or its negation x¬ , i.e., 
if x is assigned value true (1), then x¬  must be false 
(0), and vice versa. For example, 0 1 3 1( ) (x x xφ = ¬ ∨ ∧  

2 2 3 5 2 4 5) ( ) ( )x x x x x x x∨ ∧ ∨¬ ∨ ∧ ¬ ∨¬ ∨¬  is a CNF 
formula which contains 5 variables and 4 clauses. 

The SAT problem is to decide whether there exists a 
truth assignment to all the variables such that the 
formula φ  becomes true. If exist, then φ  is satisfiable; 
otherwise φ  is unsatisfiable. For the formula 0φ , the 
assignment '

1 2 3 4{ 1, 1, 1, 0}X x x x x= = = = =  makes it 
true, so 0φ  is satisfiable, we call 'X  is a satisfiable 
instance or interpretation of 0φ . 

2.2. CDCL framework 

Conflict-Driven Clause Learning (CDCL) is based on 
the Davis–Putnam–Logemann–Loveland (DPLL)12,13 
algorithm, which is the most mainstream architecture of 
the modern SAT solver. Typical CDCL SAT solver 
algorithm24 is shown in Algorithm 1. The SAT solver 
records an index for each decision level, which is 
denoted as decisionlevel , the decisionlevel  starts from 
0. Each variable in a CNF formula has a unique decision 
level, denoted as xL . The search procedure will start by 
selecting an unassigned variable p  and assume a value 
for it, at the same time, a new decision level will be 
starting, while the decisionlevel  adds 1 by itself and the 
search space will jump to { }v p . BCP( φ , v ) is the 
Boolean Constraint Propagation (BCP) procedure that 
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consists of the iterated application of the unit clause 
rule. During these running procedures, a sequence of 
literals will be derived from it, and we call such 
variables propagated variables, denoted as |pV , and 

pL = |pVL . Let ( )Root x  be a function defined as the 
decision level which variable x  belongs to, then 

( )Root p p= , ( | )pRoot V p= . If a conflict occurs in 
BCP(φ , v ), i.e., any clause, either the initial clause or 
learnt clause, becomes an empty clause, then the 
procedure will analyze the reason of conflict, obtain a 
learnt clause and a backjumping decision level β . If 
β is 0, representing that the conflict occurs at the top 
level, then φ  is unsatisfiable; otherwise undo all 
assignments between β  and the current decision level. 

Algorithm 1: A typical CDCL framework. 
Input: CNF formula φ , assigned variables v . 
Output: the property of φ . 
1:   0decisionlevel ←          
2:   if (BCP (φ , v )==CONFLICT)  then 

    Boolean Constraint Propagation 
3:           return UNSATISFIABLE 
4:   while (not AllVariableAssigned(φ , v ))  
5:          p ←PickBranchingLit (φ , v )  

   Start a new branch 
6:          1decisionlevel decisionlevel← +  
7:          { }v v p←   
8:           if (BCP (φ , v )==CONFLICT) then  
9:               β = ConflictAnalysis(φ , v )       
10:              if( 0β < ) then 

 Conflict occurred at the root level 
11:                   return UNSATISFIABLE 
12:              else 
13:                   BackTrack(φ , v , β )       

  Non-chronological backtracking 
14:                  decisionlevel β←  
15:  return SATISFIABLE 

3. Clause learning 

In the subsequent sections we will review the clause 
learning method, resolution and implication graph, and 
how to analyze the conflict and obtain the learnt clause 
from an implication graph. 

3.1.  Resolution 

Resolution principle14,16 is one of the most important 

methods for validating the unsatisfiability of logical 
formulae. Given two clauses 1C A x= ∨  and 

2C B x= ∨¬ , where x is a Boolean variable, then the 
clause 1 2( , )R C C A B= ∨  can be inferred by the 
resolution rule, resolving on the variable x . 1 2( , )R C C  
is called the resolvent of 1C  and 2C , both 1C  and 2C  is 
either a clause of original formula or the resolvent 
iteratively derived by using the resolution rule. If 

1 2( , )R C C  is an empty clause, then the original formula 
is unsatisfiable. The resolvent can be viewed as a learnt 
clause puts into the CNF formula, but it is not directly 
derived from the conflict. In theory, the number of 
resolvents from a CNF formula is infinite, often requires 
amazing time and space complexity. 

3.2. Implication Graph 

CDCL based on implication graph3 makes the scale of 
learnt clauses obvious smaller than the conventional 
resolution, and more targeted. The main idea of this 
method is as follows: whenever the conflict occurs, i.e., 
there exists at least one clause whose literals are all false, 
then analyze the implication graph and find the reason 
of conflict, and a new learnt clause represents the 
conflict is derived and added to the CNF formula. 

The implication graph reflects the relationships of 
assigned variables during the SAT solver process. An 
implication graph is a directed acyclic graph (DAG). A 
typical implication graph is illustrated in Fig. 1, which 
is constructed as follows: 
• Vertex: each vertex represents a variable 

assignment and its decision level, e.g., in Fig. 1, 
1(6)x  represents the variable 1x  is assigned true at 

the decision level 6, 8 (6)x¬  represents the variable 
8x  is assigned false at the decision level 6.  

• Directed edge: the directed edge propagates from 
the antecedent vertices to the vertex q  
corresponding to the unit clause iC  that led to q  
assigned true, which will be labeled with iC . 
Vertices have no incident edges corresponding to 
the decision variables. In Fig. 1, 4x  and 1x  are 
assigned false at the decision level 3 and 6, 
respectively, so 1C  is a unit clause at the moment, 
its sole unassigned literal 3x  must be assigned true 
for 1C  to be satisfied. Therefore, 4 (3)x¬  and 

1(6)x¬  are the antecedent vertices of 3 (6)x . 
• Conflict: each variable corresponds to a unique 

vertex in the implication graph. A conflict occurs 
when there is a variable appears with positive and 
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negative at the same time, such variable is referred 

to as the conflicting variable. In Fig. 1, 2x  is the 

conflicting variable. In this case, the search 

procedure will be broken and the conflict analysis 

procedure will be invoked. 

Unique Implication Point3 ：A Unique Implication 

Point (UIP) is a vertex in an implication graph that 

dominates both positive and negative branches of the 

conflicting variable. In Fig. 1, 9x  has played a dominant 

role for the conflict branches 2x  and 2x . Therefore, 

9x  is a UIP. From the conflicting variable, along the 

incident edge backtrack to the current decision variable, 

UIPs are sorted in order as follows: called 9x  the First 

UIP, 3x  is the Last UIP. 

)( 3411 xxxC 

)( 532 xxC 

)( 9583 xxxC 

)( 974 xxC 

)( 111075 xxxC 

)( 12766 xxxC 

)( 837 xxC 

)( 131229 xxxC 

)( 121128 xxxC 

)( 9610 xxC 

)6(1x

1C

)6(3x

)6(5x

7C

)3(4x

)6(8x

)6(9x2C

3C

3C

)6(7x

4C

)6(6x

)4(10x

5C
)6(11x

5C

6C

6C
)6(12x

)4(13x

9C

9C
)6(2x

)6(2x
8C

8C

10C1C

 
(a) Clause Database                                                                       (b) Implication Graph 

Fig. 1. Clause database and implication graph. 

3.3. Conflict Analysis and Learning 

Conflict analysis aims to find the reasons of conflict, 

such conflict is not always caused by a unique variable 

assignment. As shown in Fig. 1, in addition to the 

variable 1x  assigned true at the current decision level, 

4x , 10x  and 13x are assigned true at the earlier decision 

level. Through the conflict analysis, we can construct a 

new clause '

1 4 10 13( )C x x x x      as a 

constraint clause and put it into the initial clause 

database, and backtrack to the biggest level except the 

current conflict level, see Ref. 15. Whenever the 

variables 4x , 10x  and 13x  are assigned true, 1x  must be 

assigned false for 
'C to be satisfied, i.e., the SAT solver 

will not enter the conflict search space again. 

When the conflict occurs, different learnt clauses 

can be deduced from the implication graph by different 

UIP cuts. The implication graph will be divided into two 

parts, that is, the conflict side and the reason side. The 

conflict side contains the conflict variables, and the 

reason side contains the variable which caused the 

conflict. Grasp3 and Chaff4 used the First UIP cut, as 

shown in Fig. 2, the first UIP splits the implication 

graph by the unique implication point 9x , the 

corresponding learnt clause 9 10 13( )x x x    will be 

derived. Relsat15 used the Last UIP cut schema, the 

corresponding learnt clause is 1 4 10 13( )x x x x    , 

and backtrack to level 4. 

In Ref. 9, Audemard proposed an extension of the 

clause learning method called inverse arcs, which is 

directly derived from the satisfied clause. As shown in 

Fig. 1, for the clause 1 1 4 3( )C x x x    , 1x  is 

assigned true at the current decision level, 4x  is 

assigned true at the smaller decision level, such that 3x  

will be assigned true at the current decision level, both 

1x  and 4x  are the antecedent variables of 3x . Assume 

that there exists a clause 4 14 3' ( )C x x x    , 3x  is 

assigned true at the level 2, the literal 4x  assigned at the 

level 7 is implied by the two literals 14x  and 3x  

respectively assigned at the levels 2 and 6. So the clause 

'C  is an inverse arc, the new clause 

1 10 13 14 3( , ) ( )LastUIPR C C x x x x x     ‘  is 

generated by resolution, then the search procedure will 

backtrack to the level 2, which is smaller than the 

previous value, i.e., the conflict can be found as early as 

possible. 
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Last UIP Cut

 

Fig. 2. Different cuts on an implication graph. 

From the above analysis, FirstUIPC , LastUIPC  and 

( , )LastUIPR C C‘  are different cuts and processes based on 

the current implication graph, the learnt clause is a 

constraint condition with part of a few variables. 

Although the inverse arc can derive a smaller 

backtracking level, but it usually requires amazing 

amount of calculation. The motivation behind the 

present work is to seek an advanced learning algorithm, 

making the backtracking level smaller, amounts of 

calculation fewer, and the optimization efficiency 

higher. In order to break through the limit of classical 

learning schemes, we have done some research on 

logical deduction, see Ref. 1, another automated 

reasoning method. Experiments show that the 

combination of implication graph and logical deduction 

is effective for some hard distances. Accordingly, in this 

paper, we propose an advanced learning algorithm 

based on the logical deduction. Through the analysis of 

correlation information between the decision variables 

at different decision levels, the proposed learning 

algorithm constructs the information constraints out of 

the implication graph, so as to guide the search process 

to avoid conflict as early as possible. The new learning 

algorithm is detailed in the following Section 4. 

4. An Advanced Clause Learning Algorithm 

Using Logical Deduction 

4.1. Principle 

In this section, we propose a new approach using 

logical deduction for clause learning, and the logical 

method we used is mainly base on the resolution 

principle and its variations. Due to its simplicity, as well 

as its soundness and completeness, resolution method 

has been adopted by the most popular modern theorem 

provers. For further improving the efficiency of 

resolution, many refined resolution methods have been 

proposed such as linear resolution, semantic resolution, 

and lock resolution, etc. In this paper we use the 

structure of linear resolution deduction as the logical 

deduction method, in which many clauses are involved 

in the deduction, only one resolvent is derived. 

Definition 4.116,25 Let 1C  and 2C  be clauses and 1L  

a propositional variable. Then the clause 
' '

1 2 1 2( , , )iR C C L C C   is called a resolvent of clauses 
'

1 1 1( )C L C   and '

2 1 2( )C L C   . 

Definition 4.225 Let S  be a clause set. 

1 2{ , , , }kC C C   is called a resolution deduction 

from S  to kC , if iC  ( i =1, …, k ) is either a clause in 

S , or the resolvent of 
jC  and ( , )rC j i r i  . 

Definition 4.325 Let S  be a clause set, 0C  a clause 

in S . Then 
1 2{ , , , }kC C C   is called a linear 

resolution deduction from S  to kC  with the top clause 

0C  (shown in Fig. 3). 

(1) 1iC   is the resolvent of iC  (a center clause) and 

iB (a side clause), where 0,1, , 1i k  ; 

(2) iB S , or ( )i jB C j i  . 

kC

0C 0B

1C 1B

1kC  1kB 

 

Fig. 3. Classical linear resolution. 
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4.2. Extension 

As shown in Fig. 3, the resolution process is pushed 
forward from top to bottom with top clause 0C , any 

(1 )iC i k≤ ≤  can be viewed as a learnt clause. Observe 
that the classical linear resolution is merely theoretical, 
and there have three uncertain factors (or defects) that 
limit the computer implementation: 

(1) Uncertain Resolution Literal. Each resolution 
literal il  belongs to iC , any literal in iC  can be selected 
as a resolution literal il . Different il may generates the 
different resolvent +1iC . 

(2) Uncertain Side Clause. Whenever a center 
clause iC  and its resolution literal il  are determined, 
any clause (including original clause and resolvent) 
which contains il¬  can be selected as side clause, so 
the arbitrariness of choosing side clause is increased 
sharply while generating new resolvents. 

(3) Uncertain Depth. Here, the depth is k  which 
represents the number of center clauses. If the last 
center clause kC  is nonempty and resolution literal is 
not pure literal, then the resolution deduction will be 
extended sustainably. Therefore, k  is uncertain. 

In general, for a large-scale CNF formula, the 

resolvents are often grown exponentially with the depth 
of the solution. Therefore, in a logical deduction, which 
clause should be chosen and how many literals are 
involved, will make a lot of influences on the efficiency 
of solving. In response to these uncertain factors, we 
present some extended strategies of integrating with 
CDCL solver. The logical deduction process can be 
invoked at any time of the CDCL search procedure, 
restrictive strategies make the resolving process more 
controllable and easily realized. 

(1) Synchronized Clause Learning (SCL). Linear 
logical deduction process synchronized with the CDCL 
clause learning. After the CDCL conflict analysis, a 
backtracking level is obtained, then we can reconstruct a 
linear resolution deduction between the backtracking 
level (also the root level) and the current decision level. 
Decision variables from the backtracking level to the 
current decision level are sequentially selected as the 
resolution literal. Our motivation is to prevent the 
resolution literals are arbitrarily selected. Further, the 
depth of resolution deduction is determined by 
backtracked level. Restrictive resolution literals and 
depth make the resolving process is controllable.  

3x 7x 8x

11x 12x 18x

5x 6x 20x

16x 9x 15x
current level: 10
(Conflict level） 

decision level: 7
(back track level)

decision level: 8

decision level: 9

3

3

3

3 3C

'
0 3 0( )C x C= ∨ '

0 3 11 0( )B x x B= ¬ ∨ ∨

1C '
1 11 5 1( )B x x B= ¬ ∨ ∨

2C '
2 5 16 2( )B x x B= ¬ ∨ ∨

3C

'
0 3 0( )C x C= ¬ ∨ '

0 3 11 0( )B x x B= ∨¬ ∨

1C '
1 11 5 1( )B x x B= ∨¬ ∨

2C '
2 5 16 2( )B x x B= ∨¬ ∨

4C

3 16 16( )B x x= ∨¬

 
(a) the partial sequence of assignments                   (b) reconstruct logic deduction                      (c) another reconstruct schema 

Fig. 4. The partial sequence of assignments under the current conflict and the reconstruct logical deduction by using those decision 
variables. 

As an example illustrated in Fig. 4, assume that Fig. 
4(a) is a partial sequence of variable assignments under 
the current conflict, where decision variables are grayed 
out and other variables behind the decision variable are 
implied variables under the corresponding decision 
assignments. When the conflict occurred at the current 
decision level 10, the backtracking level is 7 according 
to the CDCL conflict analysis, then our algorithm is 
invoked. Decision variables from the backtracking level 

to the current decision level are 3x , 11x , 5x  and 16x  
respectively. With those decision variables, we can 
reconstruct a logical resolution deduction and get a new 
clause completely different from the procedure via the 
implication graph. The reconstructed process is shown 
in Fig. 4(b), where '

0C , '
0B , '

1B , '
2B  is part of 

0C , 0B , 1B , 2B , respectively. The resolvent 
' ' ' '

3 16 0 0 1 2( )C x C B B B= ∨ ∨ ∨ ∨  can be added to the 
clause database as a new learnt clause. Moreover, we 
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can reconstruct another logical deduction shown in Fig. 
4(c). Notice that the center clause 0C  and the side 
clauses 0B , 1B , and 2B  are different from that shown in 
Fig. 4(b). Here, we add a tautology 3 16 16( )B x x= ∨¬  to 
the clause database. Then the resolvent '

4 16 0(C x C= ¬ ∨  
' ' '
0 1 2 )B B B∨ ∨ ∨ is also a learnt clause, which contains 

the negation of the last decision variable 16x  and similar 
to the traditional learnt clause by cutting the implication 
graph. 

(2) Smaller Average Decision Level (SADL). For 
the side clause iB , the average decision level excluding 
the unassigned literals should be as small as possible, 
and the number of unassigned literals must be as less as 
possible. There are two advantages for those selection 
strategies: one is the side clauses can be easily 
determined rather than randomly chosen, and therefore 
it can be seen as the conflict variables guided. The other 
and the most important is that, the smaller average 
decision level will cause the backtracking level smaller, 
i.e., the conflicts will occur as earlier as possible. On the 
other hand, the clauses with less unassigned literals are 
more likely unsatisfied, i.e., it is easier to become a unit 
clause or binary clause, hence it reduce the searching 
space more powerful.  

(3) Periodical Resolvent Deletion (PRD). In most 
cases the resolvents are grown exponentially, we need 
to construct automatic garbage collection that prevents 
memory overflow. It means, in short, the resolvents 
should be deleted periodically. However, it is not easy 
to estimate which one is best resolvent among those. In 
Ref. 17, Minisat set an activity weight for each learnt 
clause. Whenever a learnt clause takes part in the 
conflict analysis, its activity is bumped. Inactive clauses 
are periodically removed. In Refs. 23 and 26, Glucose 
compute the Literals Blocks Distance (LBD) for each 
learnt clause. A learnt clause is partitioned into n 
subsets according to the decision level of its literals, 
then all the learnt clauses with LBD greater than 2 are 
periodically deleted. Inspired by Minisat and Glucose, 
we propose a new weighted activity evaluation for each 
resolvent as follows: 

Definition 4.4 (Weighted Activity -WA). Let S  be 
a clause set and 1 2{ , , , }kC C Cω = 2  be a linear 
resolution deduction from S  to kC  with the top clause 

0C . The number of resolvent iC  that takes part in the 
conflict analysis is defined as ( )iH C . The average 
decision level of resolvent iC  is defined as ( )iL C . We 
define the weighted activity of iC  as  

( ) ( )
( ) 1

max{ ( )} max{ ( )}
i i

i
L C H C

A C
L C H C

 
= − + 
 

. 

Whenever the solver needs to collect garbage, all the 
resolvents which ( )A C  is lower than a threshold will be 
removed. This evaluation method is easy to understand. 
A resolvent with smaller average decision level and 
used repeatedly analyze conflict is more likely to be 
preserved. 

The new advanced algorithm is shown in Algorithm 
2, Through many times deductions by recursively 
selected clause iB , the resolvent 1iC +  can be added to 
the original CNF formula, which will not change the 
truth-value of the formula. 

Algorithm 2: The advanced clause learning by using 
the logical deduction. 
Input: backtracking level backlevel after conflict 

analysis. 
Output: a new learnt clause by a logical deduction. 
1:   while ( backlevel decisionlevel< )          

 decisionlevel : the current decision level. 
2:        0i ←  
3:       p = trail[ Lastbacklevel ]  

 trail: the sequence of assigned variables. 
4:       q = trail[ 1Lastbacklevel + ] 
5:       iB =getClause( p¬ , q )  
Choose a clause which contains both p¬  and q . 

6:              if ( iB  is existing) 
7:                   ' '

1 ( , )i i iC R C B+ =   
Use the resolution rule on p  with '

iC  and iB . 
8:             else 
9:                    break                          Stop deduction. 
10:      1i i← +  
11:      1backlevel backlevel← +  
12:  return '

1iC +  

4.3. Compare with First UIP Cut 

Let’s recall the example shown in Fig. 2, where the 
current decision level is 6. After a conflict occurs, a new 
learnt clause 1 4 10 13( )LastUIPC x x x x= ¬ ∨¬ ∨¬ ∨¬  can be 
inferred from the implication graph by the Last UIP cut. 
Because 

4 10 13 1x x x xL L L L< ≤ < , the search procedure 
will get back to the second largest decision level 4. In 
this case, we can choose the smallest decision level 

4
=3xL . We start the logical deduction from the layer 3 

to 6 (also starts from the root level). Assume that 
4 14( )Root x x¬ =  and 10 15( )Root x x¬ = , the decision 
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variable of level 5 is 16x , there exist clauses 

11 4 14( )C x x   , 
12 15 14 9( )C x x x   , 

13 15 16 10( )C x x x    , and 
14 16 9( )C x x   , we 

can infer some clauses by the logical deduction: 
'

1 11 12 14 4 15 9( , , ) ( )C R C C x x x x     , 
' '

2 1 13 15 4 16 9 10( , , ) ( )C R C C x x x x x      , 
' '

3 2 14 16 4 9 10( , , ) ( )C R C C x x x x     . 

Now we add '

3C  to the original CNF formula as a 

new learnt clause. The variable 8x  is assigned true at 

the level 6 is implied by the two variables 4x  and 10x  

which are assigned true at the levels 3 and 4 

respectively. 8x  will inevitably become a conflict 

variable and earlier than 2x , the new implication graph 

is shown in Fig. 5. 

1C

)6(5x

7C

2C1C

'

3C

'

3C 3C

3C

Conflcit Side

Reason Side
1 1 4 3( )C x x x   

2 3 5( )C x x  

3 8 5 9( )C x x x  

4 7 9( )C x x 

5 7 10 11( )C x x x   

6 6 7 12( )C x x x   

7 3 8( )C x x  

8 2 11 12( )C x x x  

9 2 12 13( )C x x x   

10 6 9( )C x x 

11 4 14( )C x x  

12 14 15 9( )C x x x   

13 15 16 10( )C x x x   

14 16 9( )C x x  

'

3 4 9 10( )C x x x   

1(6)x

4 (3)x

10 (4)x

3 (6)x

9 (4)x

8 (6)x

8 (6)x

 
Clause Database                                                              Implication Graph 

Fig. 5. The clause database and implication graph based on the logical deduction. 

5. Experimental Results 

In this section, we empirically compare the performance 

between the SAT solvers with and without using the 

logical deduction. Minisat17 is the well-known SAT 

solver with the First UIP, some state of the art SAT 

solvers such as Glucose, abcdSAT and COMiniSatPS 

are improved versions on the Minisat, see Refs. 26-28. 

So we have implemented the logical deduction with 

different backlevel  in Minisat 2.2.0, called PSat_bl0 

and PSat_blc respectively with the backlevel  0 and the 

backlevel  from the conflict analysis. This comparison 

is made on the set of 286 instances from the main track 

of SAT-Race 2015, with a time out of 3600s. We used a 

farm of Xeon 2.4Ghz E5 with 16G bytes physical 

memory, the operating system is Hat Enterprise Red 6. 

Both Minisat 2.2.0 and PSat can successfully solve 

the instances without any preprocessors and all 

conclusions are correct. Minisat 2.2.0 solved 170 

instances, PSat with =0backlevel  solved 193 instances, 

and PSat with backlevel from the conflict analysis 

solved 203 instances. For the satisfiable problems, 

PSat_blc solves 20 more instances than Minisat. For the 

unsatisfiable problems, PSat_blc solves 13 more 

instances than Minisat. Table 1 summarizes the number 

of instances solved for different benchmark families, 

where some families have been cleared from the table 

that all solvers have equal numbers of solved instances. 

The manthey family18 is encoding of the Modulo game, 

a certain form of a combinatorial puzzle. We can see 

that our approach improves most obviously on the 

manthey family. 

Table 2 shows the average time of Minisat, PSat_bl0 

and PSat_blc. As can be seen clearly, the logical 

deduction with the advanced clause learning method 

performs better than the original version no matter on 

SAT or UNSAT instances. For the satisfiable problems, 

Minisat solved 114 instances with average time 715.6s, 

but PSat_blc requires only 305.8s for 134 instances. 

This illustrates the learnt clauses from reconstructing 

logical deduction are more efficient because of avoiding 

the potential conflict searching space. For the 

unsatisfiable problems, PSat_blc solved 69 instances 

with average time 958.9s. It seems that the time is long 

compared to the result in Minisat and PSat_bl0. The 

reason is PSat_blc solved more difficult instances which 

are spent nearly 3600s. Fig. 6 shows that both PSat_bl0 

and PSat_blc are more powerful than Minisat, where 

each dot corresponds to a SAT instance. Although the 

two versions of the PSat can improve the efficiency 

significantly, they behave differently, backlevel  from 

conflict analysis is better than directly selecting the top 

level. The reason is that the logical deduction tends to 

spend more time, sometimes the learnt clauses have 

more literals while more clauses participates in the 

logical deduction and become redundant easily. 
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Table 1. Zoom on some solved families. 

Family Minisat 2.2.0 PSat_bl0 PSat_blc 
SAT UNSAT TOTAL SAT UNSAT TOTAL SAT UNSAT TOTAL 

manthey 36 28 64 37 29 66 41 29 70 
jgiraldezlevy 13 0 13 14 0 14 16 1 17 

xbits 12 0 12 17 0 17 17 0 17 
atco 4 4 8 4 5 9 6 5 11 
6sx 0 2 2 0 3 3 0 4 4 

aaaix-planning 0 0 0 0 2 2 0 2 2 
ACG 0 1 1 1 2 3 1 2 3 
aes 2 0 2 1 0 1 4 0 4 

AProVE 1 0 1 1 2 3 1 2 3 
Group_mulr 0 0 0 0 1 1 0 1 1 

gss 2 0 2 2 0 2 3 0 3 
mrpp 20 12 32 21 12 33 20 12 32 
partial 3 0 3 3 0 3 2 0 2 
UCG 2 1 3 3 2 5 3 2 5 
UR 0 0 0 1 0 1 1 0 1 
UTI 0 0 0 1 0 1 1 0 1 

countbitssr 0 0 0 0 1 1 0 1 1 
vmpc 2 0 2 2 0 2 1 0 1 

Table 2. The average time of different solvers. 

Solver Minisat 2.2.0 PSat_bl0 PSat_blc 
SAT UNSAT TOTAL SAT UNSAT TOTAL SAT UNSAT TOTAL 

Solved instances 114 56 170 126 67 193 134 69 203 
Total time(s) 81578 35629 117207 84372 42036 126408 40982 66164 107146 

Average time(s) 715.6 636.2 689.5 669.6 627.4 655.0 305.8 958.9 527.8 
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Fig. 6. Cactus plot of solvers with different clause learning schemas (2015 SAT-Race instances). 
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Fig. 7. Comparison of conflict times with and without the advanced learning on 156 instances. 

6. Conclusions 

In this paper, we have proposed an advanced learning 
algorithm for SAT problem. Whenever the SAT solver 
reaches a conflict, the advanced learning procedure will 
be triggered. A backjumping level is obtained by 
analyzing the implication graph. Through the iteratively 
logical deduction from the backjumping level to the 
current conflict level, a new learnt clause is obtained. 
The classic learning algorithms usually make the 
conflict occurs as early as possible, but easy to fall into 
a local optimum. As an extension of classic algorithms, 
our learnt clause contains more literals with smaller 
decision level, i.e. the possibility of SAT solver back-
jump to the lower level will be bigger than before. We 
integrated the new algorithm into the state-of-the-art 
CDCL solver Minisat 2.2.0, experiments on the main 
track instances from SAT-Race 2015 showed that our 
algorithm has better performance. In future work, we 
plan to establish a detailed characterization system of 
clauses, in order to estimate clause of logical deduction, 
and obtain shorter resolvents. 

Acknowledgements 

This work is partially supported by the National Natural 
Science Foundation of China (Grant No. 61673320, 
11526171, 61305074), and the Fundamental Research 
Funds for the Central Universities of China (Grant No. 
A0920502051305-24, 2682015CX060). 

References 

1. Q. Chen, Y. Xu, X. He, A heuristic Complete algorithm 
for sat problem by using logic deduction, in Proc of the 
12th International FLINS Conference (Roubaix, France, 
2016), 496-501. 

2. S. A. Cook, The complexity of theorem-proving 
procedures, in Proc of the 3rd Annual ACM Symposium 
on Theory of Computing (1971), 151-158. 

3. J. P. Marques-Silva and K. A. Sakallah, Grasp: A search 
algorithm for propositional satisfiability, IEEE 
Transactions on Computers, 48(5) (1999) 506-521. 

4. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. 
Malik, Chaff: Engineering an efficient SAT solver, in 
Proc of the 38th Annual Design Automation (New York, 
USA, 2001), 530-535. 

5. C. P. Gomes, B. Selman, and H. Kautz, Boosting 
combinatorial search through randomization, in National 
Conference on Artificial Intelligence (Madison, 
Wisconsin, 1998), 431-437. 

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834
___________________________________________________________________________________________________________

833



 
 

6. E. Goldberg and Y. Novikov, BerkMin: a fast and robust 
SAT solver, in Design, Automation and Testing in 
Europe Conference (Paris, France, 2002), 142-149. 

7. N. Sörensson and A. Biere, Minimizing learned clauses, 
in Proc of the 12th international conference on theory and 
applications of satisfiability testing (Swansea, Wales, 
2009), 237-243. 

8. Y. Hamadi, S. Jabbour, and L. Sais, Learning for 
dynamic subsumption, in Proc of the 21st IEEE 
international conference on tools with artificial 
intelligence (Newark, New Jersey, 2009), 328-335. 

9. G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and 
L. Sais, A generalized framework for conflict analysis, in 
Proc of the eleventh international conference on theory 
and applications of satisfiability testing (Guangzhou, 
China, 2008), 21-27. 

10. Z. Newsham, V. Ganesh, S. Fischmeister, G. Audemard, 
and L. Simon, Impact of community structure on SAT 
solver performance, in Proc of the 17th international 
conference on theory and applications of satisfiability 
testing (Vienna, Austria, 2014), 252-268. 

11. S. Jabbour, Learning for dynamic assignments 
reordering, in Proc of the 21st IEEE international 
conference on tools with artificial intelligence (Newark, 
New Jersey, 2009), 336-343. 

12. M. Davis, H. Putnam, A computing procedure for 
quantification theory, Journal of the ACM, 7(3) (1960) 
201-215. 

13. M. Davis, G. Logemann, and D. Loveland, A machine 
program for theorem proving, Commun. ACM, 5(7) 
(1962) 394-397. 

14. J. A. Robinson, A machine-oriented logic based on the 
resolution principle, Journal of the ACM, 12(1) (1965) 
23-41. 

15. R. J. J. Bayardo, R. C. Schrag, Using CSP look-back 
techniques to solve real-world SAT instances, in Proc of 
the fourteenth national conference on artificial 
intelligence (Providence, Rhode Island, 1997), 203-208. 

16. C. L. Chang and R. C. T. Lee, Symbolic logic and 
mechanical theorem proving (Academic Press, USA, 
1997). 

17. N. Eén, N. Sörensson, An extensible SAT solver, in Proc 
of the Sixth International Conference on Theory and 
Applications of Satisfiability Testing (Vancouver, 
Canada, 2004), 502-518. 

18. http://baldur.iti.kit.edu/sat-race-2015/descriptions/bench/ 
Modulo-HahnMantheyPhilipp.pdf. 

19. A. Biere, A. Fröhlich, Evaluating CDCL variable scoring 
schemes, in Proc of the 18th international conference on 
theory and applications of satisfiability testing (Austin, 
Texas, 2015), 405-422. 

20. J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, 
Learning Rate Based Branching Heuristic for SAT 
Solvers, in Proc of the 19th international conference on 
theory and applications of satisfiability testing 
(Bordeaux, France, 2016), 123-140. 

21. J. Huang, The effect of restarts on the efficiency of clause 
learning, in Proc of the 20th International Joint 
Conference on Artificial Intelligence (Hyderabad, India, 
2007), 2318-2323. 

22. A. Biere, Adaptive restart strategies for conflict driven 
SAT solvers, in Proc of the 11th international conference 
on theory and applications of satisfiability testing 
(Guangzhou, China, 2008), 28-33. 

23. G. Audemard, L. Simon, Predicting learnt clauses quality 
in modern SAT solvers, in Proc of of the 21th 
International Joint Conferences on Artificial Intelligence 
(Pasadena, California, 2009), 399-404. 

24. J. Marques-Silva, I. Lynce, and S. Malik, Conflict-driven 
clause learning SAT solvers, in Handbook of 
Satisfiability (IOS Press, 2009), 127-149. 

25. J. A. Robinson, and A. Voronkov (eds.), Handbook of 
automated reasoning (Elsevier and MIT Press, 
Cambridge, 2001). 

26. G. Audemard, L. Simon, Glucose 2.3 in the SAT 2013 
Competition, in Proc of SAT Competition 2013 
(Helsinki, Finland, 2013), 42-43. 

27. J. Chen, A bit-encoding phase selection strategy for 
satisfiability solvers, in Proc of the 11th Annual 
Conference on Theory and Applications of Models of 
Computation (Chennai, India, 2014), 58-167. 

28. O. Chanseok, Patching minisat to deliver performance of 
modern sat solvers, in SAT Race 2015 Solver and 
Benchmark Descriptions (2015). 

29. A. Sabharwal, H. Samulowitz, and M. Sellmann, 
Learning back-clauses in sat, in Proc of the 15th 
international conference on Theory and applications of 
satisfiability testing (Trento, Italy, 2012), 498-499. 

 

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 824–834
___________________________________________________________________________________________________________

834


	1. Introduction
	2. Preliminaries
	2.1. SAT problem
	2.2. CDCL framework

	3. Clause learning
	3.1.  Resolution
	3.2. Implication Graph
	3.3. Conflict Analysis and Learning

	4. An Advanced Clause Learning Algorithm Using Logical Deduction
	4.1. Principle
	4.2. Extension
	4.3. Compare with First UIP Cut

	5. Experimental Results
	6. Conclusions
	Acknowledgements
	References

