
Bayesian analysis of hierarchical heteroscedastic linear models using Dirichlet-Laplace
priors

S.K. Ghoreishi
Department of Statistics, Faculty of Sciences, University of Qom,

Qom, I. R. of Iran

From practical point of view, in a two-level hierarchical model, the variance of second-level usually has a ten-
dency to change through sub-populations. The existence of this kind of local (or intrinsic ) heteroscedasticity
is a major concern in the application of statistical modeling. The main purpose of this study is to construct
a Bayesian methodology via shrinkage priors in order to estimate the interesting parameters under local het-
eroscedasticity. The suggested methodology for this issue is to use of a class of the local-global shrinkage
priors, called Dirichlet-Laplace priors. The optimal posterior concentration and straightforward posterior com-
putation are the appealing properties of these priors. Two real data sets are analyzed to illustrate the proposed
methodology.
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1. introduction

The main objective of this paper is to develop a Bayesian approach for local heteroscedastic hier-
archical linear models using Dirichlet-Laplace priors. Hierarchical modeling provides an efficient
approach which combines partial information to achieve accurate and stable inference about inter-
esting parameters. In this context, risk properties of shrinkage estimators, admissible minimax esti-
mators, and many other estimators of hierarchical models have been noted by many authors under
different loss functions. The literature covers both homoscedastic and heteroscedastic models. It
seems heteroscedastic hierarchical modeling, which assumes unequal subpopulation variances, is
more popular in real world than homoscedastic hierarchical modeling. For more detail on the sub-
ject, see Berger and Strawderman(1996) and Brown and Greenshtein (2009).
One of serious challenge in Bayesian analysis of this kind of modeling is how to estimate the hyper-
parameters which are initiated from assumed prior distributions. The situation gets worse if one
encounters with some locally unknown sources(or hyperparameters) which cause the heteroscedas-
ticty. This phenomenon occurs in regression modeling over sub-populations and covariance analysis
especially for high-dimensional data. For big data, rapid computation of point estimates of parame-
ters(hyperparameters) of interest along with the uncertainty associated with them has been the main
focus of investigation, Efron et al. (2004).
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Xie et al. (2012) proposed a class of shrinkage estimators that can be readily applied in heterp-
scedastic hierarchial normal models. Indeed, their motivation was to illustrate the comparability of
various shrinkage estimators and their ’optimal’ properties. Their assumed model for subpopula-
tions i = 1,2, · · · ,n was

yi ∼ N(θi,Ai)

θi ∼ N(µ,σ2),

where Ais are some known and possibly distinct real values and σ2 and µ are hyperparameters.
Ghoreishi and Meshkani (2014) proposed and developed a class of shrinkage estimators that can
be readily applied in a two-level heteroscedastic hierarchical normal models. In this framework,
they assumed one or several explanatory variables produce the heteroscedasticty. They showed that
negligence in considering this fundamental assumption can lead to substantial bias in the estimates.
Their assumed model was

yi ∼ N(θi,g(zi)),

θi ∼ N(µ,σ2h(zi)),
(1.1)

where zi is an explanatory variable(or a vector of explanatory variables of order k in D), global
quantities σ2 > 0 and µ are hyperparameters, h : D ⊆ Rk → R+ is known function and finally
g : D ⊆ Rk→ R+ is either completely known or will be known by some plug-in robust estimators.
We believe assuming that the heteroscedasticty arises only from some explanatory variables in the
second level of model (1.1) is an exception to the rule. Because, in the real data, there are some
local unknown source of disturbance in the variances of hierarchical models which move over sub-
populations. Moreover, a model misspecification may lead to this case. However, it is important to
note that this actual assumption involves several parameters(hyperparameters) in the model which
the analyst has to find a way to estimate them and investigate their properties. So, we are interested
in extending the model (1.1) to

yi ∼ N(θi,g(zi))

θi ∼ (µ,σ2
i h(zi)),

(1.2)

for subpopulations i = 1,2, · · · ,n, where µ and local unknown quantities σ2
i > 0 are hyperparame-

ters. The functions g and h are defined as in model (1.1). As we illustrated before, the model (1.2)
is popular in regression modeling over subpopulations and covariance analysis with usually many
factor levels where one can not naturally control the homoscedasticity for each factor level over
experimental duration.
As one can see, in addition to the fact that the variances of both levels of model (1.2) depend on
explanatory variable zi, some other unknown local quantities σ2

i > 0 also have essential role in dis-
turbing the variances.
Our main purpose in this work is to construct a statistical inference methodology via shrinkage
priors for hyperparameters µ and σ2

i s. In this line, we hope to introduce an alternative Bayesian
variable selection strategy for choosing those variables which have effective role in altering the
homoscedasticity. Equivalently, this reduces to the choice of the variables that should be included in
the model, Miller (2002) and Broman and Speed (2002). Of course, those variable selection meth-
ods that can be implemented easily in the MCMC framework are needed, Dellaportas et al.(2000)
and Robert and Casella(2004).
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The rest of the article is organized as follows. Section 2 gives the general notations and defini-
tions. In Section 3, we develop our theoretical results. Section 4 illustrates the performance of our
methodology by analyzing two real datasets.

2. Preliminaries

2.1. Bayes Shrinkage estimators

Let yi ∼ N(θi,g(zi)), (i = 1, · · · ,n), be n independent normal observations for given zi ∈ D ⊆ Rk.

Again, consider the model (1.2)

yi ∼ N(θi,g(zi))

θi ∼ (µ,σ2
i h(zi)),

where g, h : D ⊆ Rk → R+ are known functions and µ and σ2
i > 0 are hyperparameters for sub-

populations i = 1,2, · · · ,n.
From Bayes’ theorem, the posterior distribution of θi is

N(
σ2

i h(zi)

σ2
i h(zi)+g(zi)

yi +
g(zi)

σ2
i h(zi)+g(zi)

µ,
σ2

i h(zi)g(zi)

σ2
i h(zi)+g(zi)

).

Assuming the weighted squared loss function,

lq(θi, θ̂i) =
1

∑qi
∑qi(θi− θ̂i)

2, (2.1)

where qi =
1

g(zi)
, the Bayes shrinkage estimators are of the form

θ̂i =
σ2

i h(zi)

σ2
i h(zi)+g(zi)

yi +
g(zi)

σ2
i h(zi)+g(zi)

µ. (2.2)

In practice, one may prefer the shrinkage estimators (2.2) to previous ones since the local nuisance
parameters σ2

i and the explanatory variable zi, which have important roles in disturbing the vari-

ances of model (1.2), are involved to build the shrinkage factors σ2
i h(zi)

σ2
i h(zi)+g(zi)

and g(zi)

σ2
i h(zi)+g(zi)

.

Using the Bayes shrinkage estimators (2.2) in the loss function (2.1), then respectively minimizing
this loss function, lq(θi, θ̂

σ2
1 ,··· ,σ2

n ,µ
i ), and its unbiased estimator,

MGS(σ2
1 , · · · ,σ2

n ,µ) =
1

∑qi
∑{

g(zi)(yi−µ)2

(σ2
i h(zi)+g(zi))2 +

σ2
i h(zi)−g(zi)

σ2
i h(zi)+g(zi)

},

with respect to µ and σ2
i s leads to the ’oracle’ estimators (µOL,σ

2(OL)
1 , · · · ,σ2(OL)

n ) and SURE
estimators (µSURE ,σ

2(SURE)
1 , · · · ,σ2(SURE)

n ). The SURE estimators are the solution of the following
equations.

σ
2
i = {(yi−µ)2−g(zi)

h(zi)
}+, i = 1, · · · ,n,

µ =
∑

g(zi)yi
(σ2

i h(zi)+g(zi))2

∑
g(zi)

(σ2
i h(zi)+g(zi))2

.

(2.3)
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In addition to the SURE estimators (2.3), the empirical Bayes estimators including moment and
maximum likelihood estimators are also obtained from the marginal distribution of yis. For more
details on this subject when σ2

i s are assumed equal, see Ghoreishi and Meshkani (2014).

2.2. Local-global shrinkage priors

Although the SURE estimators µ̂SURE and σ̂
2(SURE)
i , (2.3), have acceptable asymptotic performance

as n goes to infinity, solving n+1 non-linear equations often produce zero values for many σ2
i s and

therefore it may misleads us to some biased estimates. So, we have to find an approach to deal with
this problem. Our suggested Bayesian approach for this issue is using of a class of priors which
are constructed based on the local-global shrinkage priors, called Dirichlet-Laplace priors, Bhat-
tacharya et al. (2014). These priors possess optimal posterior concentration and lead to efficient and
straightforward posterior computation, Gibbs sampler, exploiting results from normalized random
measure theory. A brief discussion on these priors is given below.
Bhattacharya et al. (2014) investigated the theoretical properties of a whole class of local-global
shrinkage priors. Indeed, they derived posterior concentration rates for a global-local shrinkage
prior. Their assumed model was a single observation corrupted with i.i.d. standard normal noise:

yi = θi + εi; 1≤ i≤ n

θi ∼ N(0,σ2
i ),

(2.4)

where εi ∼ N(0,1). In their approach, Bhattacharya et al. (2014) assumed σ2
i = ψiφ

2
i τ2, where

τ controls global variation while the local scales φi allow deviations in the degree of variations
and finally, the volatility variables ψi are i.i.d. samples from an exponential distribution with scale
parameter 1/2. Moreover, for given constant a, they assumed a Dirichlet distribution for (φ1, · · · ,φn)

and a gamma distribution for hyper-parameter τ. That is,

(φ1, · · · ,φn)∼ Dir(a, · · · ,a)
τ ∼ G(na,1/2).

(2.5)

It is easy to see that the model (2.4) and its hierarchical priors (2.5), can be rewritten as

yi ∼ N(θi,1)

θi|φi,τ,ψi ∼ N(0,ψiφ
2
i τ

2)

ψi ∼ Exp(1/2)

φi ∼ Beta(a,(n−1)a)

τ ∼ G(na,1/2),

(2.6)

or equivalently,

yi ∼ N(θi,1)

θi|φi,τ ∼ DE(0,τφi)

φi ∼ Beta(a,(n−1)a)

τ ∼ G(na,1/2),

(2.7)

where DE(µ,θ) denotes a zero mean Laplace double exponential distribution with density function
f (x|µ,θ) = (2θ)−1e)−|x−µ|/θ .
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Although, this model may find some applications for real data, usually one primary objective in
statistical modeling is to assess certain regressors that play essential role in predicting response
variable. Furthermore, selecting a small set of ”covariates” is an important task too. So, the aim
of this work is to adapt model (2.6) to the case of model (1.2), hoping to remove the challenges
(mentioned before) that may arise in estimating of the SURE estimators. Moreover, we expect to
reach an easy-to-compute estimate, an MCMC approach, applicable for all sizes of data.
Our developed model, with respect to (1.2), is

yi ∼ N(θi,g(zi))

θi|φi,τ,ψi ∼ N(µ,ψiφ
2
i τ

2h(zi))

µ ∼ (µ0,A0)

ψi ∼ Exp(1/2)

φi ∼ Beta(a,(n−1)a)

τ ∼ G(na,1/2)

a∼ G(a0,b0),

(2.8)

where σ2
i in (1.2) is equal to ψiφ

2
i τ2, and µ0 and A0 are some known constants. Integrating over ψ

leads to the equivalent model

yi ∼ N(θi,g(zi))

θi|φi,τ,µ ∼ DE(µ,τφih1/2(zi))

µ ∼ (µ0,A0)

φi ∼ Beta(a,(n−1)a)

τ ∼ G(na,1/2)

a∼ G(a0,b0).

(2.9)

From Bayesian perspective, some appealing and applicable properties of hierarchical model (2.9)
are as follows:

a) From practical point of view, one of interesting properties of the model (2.9) is that it allows
incorporation of the explanatory variable zi into analysis in order to highly control the local
scale variation.

b) Although some beautiful classes of shrinkage priors, within the Gaussian global-local scale
mixture family, have been proposed by many statisticians, Dirichlet-Laplace priors, given
in (2.9), have minimax optimality under weak sparsity assumptions from a frequentist per-
spective, which is crucial in studying posterior contraction in high-dimensional settings, for
more details see Bhattacharya et al. (2014).

c) Model (2.9) induces a fully heteroscedasticity for hierarchical models, so it is suitable for
any weighted/unweighted regression analysis, covariance analysis or even for regression
error detections whenever the analyst is challenged due to the lack of exact zero errors.

d) It is important to note that one may be interested in extending model (2.9) from a sim-
ple linear model framework to a multiple one with p regressors such that p may be less,
equal, or greater than the number of subjects. In such a case, assuming explanatory vari-
ables z1, · · · ,zp, the function h can be rewritten as hp(z1, · · · ,zp) where subscript p is to
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show the number of the explanatory variables. The primary objective in our Bayesian vari-
able selection methodology is to choose a subset of regressors that play important role in
constructing coefficients of shrinkage estimators (2.2). Without loss of generality, assume
that the first r(r≤ p) variables are effective and hence, the rest can be ignored. In this case,
using hr(z1, · · · ,zr) instead of hp(z1, · · · ,zp) should not affect, effectively, the predictions
of response y. Therefore, this approach introduces an alternative Bayesian model selection
with respect to the other competitors.

e) An interesting property of model (2.9) is that one can evaluate the validity of hypothesis
H0 : σ2

1 = · · ·= σ2
n by computing the posterior probability

Prob = Pr(max(σi)−min(σi)< η | y1, · · · ,yn), (2.10)

for some tiny value η , which is priori chosen by the analyst. The small value of the proba-
bility (2.10) points to rejection of hypothesis H0.

Although these properties are important in their owns, our practical aim is to obtain the posterior
distribution (or at least some features) of the parameter of interest θi. Therefore, in order to sample
from posterior distributions, the posterior full conditional of θi is needed. In the next section, we
illustrate the subject with more details.

3. Theoretical Results

In this section, we establish main results containing two theorems. The first is to illustrate the asymp-
totic properties of SURE estimators (2.3). In the previous section, we mentioned that our primary
purpose in applying model (2.9) is how one can sample from posterior distributions. Therefore, the
second theorem provides the full conditional posteriors.

Theorem 3.1. Assume the conditions (C1)-(C3) given in the appendix and let σ2
i = τ2ψiφ

2
i . Then

for shrinkage estimators (2.2), we have

sup
0≤τ2≤∞, 0≤ψi≤∞,
0≤φ 2

i ≤∞, |µ|≤M
i=1,··· ,n,

|MGS(σ2
1 , · · · ,σ2

n ,µ)− lq(θ , θ̂
σ2

1 ,··· ,σ2
n ,µ

t ) |→ 0 in L2 as n→ ∞.

The following result is obvious. It shows that in probability (as n→ ∞)

| lq(θ , θ̂
σ

2(SURE)
1 ,··· ,σ2(SURE)

n ,µSURE

t )− lq(θ , θ̂
σ

2(OL)
1 ,··· ,σ2(OL)

n ,µOL

t ) |→ 0.

This means that under conditions (C1)-(C3), the SURE estimators are asymptotically as good as the
oracle estimators. Here, we assume
σ

2(SURE)
i = τ2(SURE)ψSURE

i φ
2(SURE)
i and σ

2(OL)
i = τ2(OL)ψOL

i φ
2(OL)
i .

Since the loss function lq(θ , θ̂
σ2

1 ,··· ,σ2
n ,µ

t ) is a convex function of µ and shrinkage factors U =
τ2ψiφ

2
i h(zi)

τ2ψiφ
2
i h(zi)+g(zi)

, the optimal Bayesian estimators, alternative to the SURE estimators (2.2), are given
as

θ̂
B
i = E(U |yi)yi +E{(1−U)µ|yi}. (3.1)

For numerical computation, we need the following theorem.
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Theorem 3.2. The full conditional distributions for efficient posterior computation of model (2.8)
are as follows:

i). θi|(ψi,φi,τ,µ,zi,yi)∼ N(µi,V 2
i ), where

µi = (1+
g(zi)

τ2ψiφ
2
i h(zi)

)−1yi +(1+
τ2ψiφ

2
i h(zi)

g(zi)
)−1

µ,

V 2
i = (

1
g(zi)

+
g(zi)

τ2ψiφ
2
i h(zi)

)−1.

ii). µ|(ψi,φi,θi,τ,zi)∼ N(µ1,A1)

µ1 = (
1

A0
+∑

i

1
τ2ψiφ

2
i h(zi)

)−1(
µ0

A0
+∑

i

θi

τ2ψiφ
2
i h(zi)

),

A1 = (
1

A0
+∑

i

1
τ2ψiφ

2
i h(zi)

)−1.

Practically, we ignore this item if we assume µ = 0 in model (2.8).
iii). ψi|(φi,θi,τ,µ,zi)∼ iG(φiτh1/2(zi)

|θi−µ| ,1),where iG is an inverse-Gaussian distribution.

iv). τ|(φi,θi,µ,a,zi) ∼ giG(n(a− 1),1,2∑
n
i=1

|θi−µ|
h1/2(zi)φi

), where giG, defined below, denotes a
generalized inverse-Gaussian distribution.

v). φi|(θi,µ,a,zi)∼ Ti/∑
n
i=1 Ti, and T1, · · · ,Tn are distributed independently according to Ti ∼

giG(a− 1,1, 2|θi−µ|
h1/2(zi)

). By definition, X ∼ giG(p,a,b) if f (x) = (a/b)p/2

2Kp(
√

ab)
xp−1e−(ax+b/x)/2,

where Kp is a modified Bessel function of the second kind with a > 0, and b > 0.
vi). a|(φi,τ)∼ π(a)∝

Γ(na)
Γ(a)n aa0−1e−{b0−n log(τ)−∑ log(φi)}a, where Γ(x) = (x−1)!. In this case, the

Metropolis-Hastings algorithm is used to produce samples for a.

The last five items show that the joint distribution of (ψi,φi,τ,µ,a)|zi depends on the response
yi through θi. So the joint posterior distribution of (ψi,φi,τ,µ,a)|zi is conditionally independent of
yi given θi. Therefore, the introduced sampler cycles in Theorem 2 give us a draw from the posterior
distribution of θi, which our concentration is on its entries.
It is important to note that the estimators (3.1) are different from the marginal mean of θi produced
from Theorem 2(i). We call this estimator, θ P

i , and evaluate its performance in the next section.

4. Application

In this section, we apply our methodology for Bayesian analysis of hierarchical heteroscedastic
linear models using Dirichlet-Laplace priors. To illustrate its performance, we have considered
two examples including 1: a simple weighted hierarchical regression model for the study of het-
eroscedasticity and 2: a multiple linear regression with two explanatory variables for variable selec-
tion purposes.

4.1. Simple weighted regression model

Consider Bid at auction data in Table (1), see Ghoreishi and Mostafavinia (2015). These data belong
to a big state company which wanted to survey its recent 12 auctions. It contains an explanatory vari-
able z : Bid at auction(in million dollars) and response variable y : Cost of auction(in million dollars).
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The least squares regression shows R2 = 0.880 and the mean square error MSE = 34.45, whereas
the results of the weighted least square, where the weights are proportional to 1

z2 , lead to R2 = 0.915
and the weighted mean square error WMSE = 0.792. This means the weighted least square provides
a suitable fit. Therefore, we consider the following simple hierarchical heteroscedastic regression

Table 1. The Bid at Auction data and corresponding shrinkage estimates

NO. Bid at auction(z) Cost of auction (Y) θ̂ P

1 2.13 15.5 15.94
2 1.21 11.1 11.39
3 11.00 62.6 59.23
4 6.00 35.4 32.98
5 5.60 24.9 22.45
6 6.91 28.1 24.72
7 2.97 15.0 15.76
8 3.35 23.2 21.78
9 10.39 42.0 36.86
10 1.10 10.0 10.24
11 4.36 20.0 19.07
12 8.00 47.5 44.60

model:

yi ∼ N(θi,δ
2 1

z2
i
)

θi = β0i +β1izi,

and following Edwards et al. (1963), we assume(
β0i

β1i

)
∼ N2(

(
µ

0

)
,σ2V(zi))

where (β0i,β1i) are independent for i = 1,2, · · · ,n and V is a known 2×2 covariance matrix. There-
fore it is easy to see that

yi ∼ N(θi,δ
2 1

z2
i
)

θi ∼ N(µ,σ2
(

1 zi
)

V(zi)

(
1
zi

)
).

(4.1)

Let us generalized the model (4.1) by considering all local factor effects that may disturb the vari-
ance and are ignored in our assumed simple regression model. This is achieved by changing σ2

to σ2
i and assuming σ2

i = ψiφ
2
i τ2. Moreover, for simplicity, in the following, we assume matrix

V is the identity matrix of dimension 2. Adopting the notations of model (2.8) for model (4.1),
we have h(zi) = 1+ z2

i and the plug-in estimate δ̂ 2 = 0.792. So, the corresponding hierarchical
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heteroscedastic model is given by

yi ∼ N(θi,
δ̂ 2

z2
i
)

θi|φi,τ ∼ DE(µ,τφi(1+ z2
i )

1/2)

µ ∼ (ȳ,100)

φi ∼ Beta(a,(n−1)a)

τ ∼ G(na,1/2)

a∼ G(5,5).

We call this weighted regression model as M1. To evaluate the performance of our methodology we
also consider two other competing models M2( unweighed regression model) and M3 (ignoring the
effect of explanatory variable z and using sample variance of y′s as the estimate of δ 2). We applied
the Gibbs sampler of Theorem 2, for N = 10000 draws for this data. The implementation results are
given in Table 2. From this table, it is easy to see that model M1 has a very small mean predictive

Table 2. The prediction errors and Bayesian estimate of a for various choices

Model δ̂ 2 a-estimate MPE

M1 0.792 1.300 6.10

M2 34.45 1.094 13.52

M3 259.968 0.978 216.44

errors,

MPE =
1
n ∑(θ̂ p

i − yi)
2,

which implies a great fit. In contrast, model M2 and model M3 (and even the weighted least square
(WLS) analysis with MPE=29.87) give an unrealistic MPE, implying unsatisfactory fit. The corre-
sponding shrinkage estimates of model M1 are given in Table 1 which are acceptable from practical
point of view. Since, the MPE and DIC criteria give the same results on these data, we only report
the MPEs in Table 2.

4.2. Multiple regression model

Consider Systolic Blood Pressure data which is
available at http://college. cengage.com/mathematics/brase/understandable−statistics/7e/students/
data sets/ mlr/frames/frame.html. Table 3 shows the data. It contains two explanatory variables
z1:Age in years and z2: Weight in pounds. The response variable y is the systolic blood pressure of
11 patients. A multiple regression analysis shows MSE = 4.84.
Similar to the previous simple weighted regression, we consider the following multiple unweighted
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Table 3. Systolic Blood Pressure data and corresponding shrinkage estimates

No. z1 z2 y θ̂ P

1 52 173 132 132.3
2 59 184 143 143.5
3 67 194 153 153.0
4 73 211 162 161.5
5 64 196 154 153.8
6 74 220 168 167.7
7 54 188 137 137.3
8 61 188 149 149.7
9 65 207 158 157.4
10 46 167 128 128.2
11 72 217 166 165.6

regression hierarchical model for these data.

yi ∼ N(θi,δ
2),

θi ∼ N(0,σ2
i (1+ z2

1i + z2
2i)).

To match this model with model (2.8), consider g(z1i,z2i) = δ 2 and h(z1i,z2i) = 1+ z2
1i + z2

2i. There-
fore, the corresponding hierarchical model is given as

yi ∼ N(θi, δ̂
2)

θi|φi,τ ∼ DE(µ,τφi(1+ z2
1i + z2

2i)
1/2)

µ ∼ (ȳ,100)

φi ∼ Beta(a,(n−1)a)

τ ∼ G(na,1/2)

a∼ G(5,5).

(4.2)

To evaluate the performance of our variable selection approach, we consider four different models.
Model M1 ignores the effects of both explanatory variables and only uses the sample variance of y′s
as an estimate for δ 2 . Model M2 incorporates the effect of regressor z1 while model M3 considers
only the effect of z2. Finally, model M4 incorporates the effects of both explanatory variables z1 and
z2 in the Bayesian analysis. We use the classical mean square error as an estimate of δ 2 in three last
models. Table 3 shows the results for N = 10000 draws. Table 4 shows that ignoring the explanatory
variables, model M1, produces very unreasonable value for MPE. Model M4 which employs both
variables z1 and z2 makes no improvement over models M2 and M3. This is true because there is
a big correlation 0.946 between z1 and z2. So, from practical point of view, we prefer model M2

and only select the explanatory variable z1 in our Bayesian model selection approach. The weighted
least square (WLS) analysis gives MPE=29.87. Moreover, the corresponding shrinkage estimates
of model M2 are given in Table 3 which are acceptable from practical point of view.
An interesting feature of examples 1 and 2 is the computation of the posterior probability given
in (2.10). Table 5 shows these probabilities. As one can see, heteroscedasticity for these data and
especially for example 2 is more likely and lets us analyze the data based on model (1.2).
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Table 4. The prediction errors and Bayesian estimate of a for various settings

Model δ̂ 2 a-estimate MPE

M1 185.69 0.970 148.9

M2 4.84 0.593 0.169

M3 4.84 0.421 0.263

M4 4.84 0.418 0.261

Table 5. The posterior probability

η 0.1 0.01 0.005 0.001
Example 1 1.000 0.872 0.331 0.000
Example 2 0.998 0.194 0.011 0.000

5. Conclusion

In this paper, a clear Bayesian methodology for fitting of a completely heteroscedastic hierarchical
linear model, using Dirichlet-Laplace priors, has been presented. This method provides a good fit
for all sizes of data. Providing an efficient posterior computation algorithm is another property of
this approach. Moreover, good performance of the methodology has clearly been shown for two real
datasets.

Acknowledgements

I wish to thank Professor M.R. Meshkani, the editor and two anonymous referees whose comments
greatly improved the article.

Appendix

For establishing the asymptotic theorem, the following three conditions are required,

C1) limsupn→∞
1
n ∑

n
t=1 g(At)< ∞.

C2) limsupn→∞
1
n ∑

n
t=1 θ 2

t < ∞.

C3) For given M > 0, | µ |≤M < ∞.

Proof of Theorem 3.1
Consider σ2

i = ψiφ
2
i τ2. It is easy to see

MGS(σ2
1 , · · · ,σ2

n ,µ)− lq(θ ,θ σ2
1 ,··· ,σ2

n ,µ) =
1

∑qi
∑{

y2
i −g(zi)−θ 2

i

g(zi)
−

2ψiφ
2
i τ2h(zi)

g(zi)+ψiφ
2
i τ2h(zi)

× (
y2

i −g(zi)−θiyi

g(zi)
)}−

2µ

∑qi
∑qi

g(zi)(yi−θi)

ψiφ
2
i τ2h(zi)+g(zi)

.
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For given ψi and φi, we have

MGS(σ2
1 , · · · ,σ2

n ,µ)− lq(θ ,θ σ2
1 ,··· ,σ2

n ,µ) =
1

∑qi
∑{

y2
i −g(zi)−θ 2

i

g(zi)
−

2τ2

τ2 +u(zi,ψi,φi)
× (

y2
i −g(zi)−θiyi

g(zi)
)}−

2µ

∑qi
∑qi

u(zi,ψi,φi)(yi−θi)

τ2 +u(zi,ψi,φi)
,

where u(zi,ψi,φi) =
g(zi)

ψiφ
2
i h(zi)

. From Theorem (3.2) in Ghoreishi and Meshkani (2014), under Con-
ditions (C1)-(C3), it easy to see

sup
0≤τ2≤∞, |µ|≤M

|MGS(σ2
1 , · · · ,σ2

n ,µ)− lq(θ ,θ σ2
1 ,··· ,σ2

n ,µ) |→ 0 in L2 as n→ ∞. (A.1)

Since (A.1) is valid for all ψi and φi, the proof of Theorem 1 is straightforward. �

Proof of Theorem 2
The proof is straightforward.
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