
Tactics Exploration Framework based on Genetic Programming

Jian Yao , Weiping Wang , Zhifei Li , Yonglin Lei , Qun Li ∗

College of Information System and Management
National University of Defense Technology

137 Yanwachi, Changsha, Hunan 410073, China
E-mail: liqun@nudt.edu.cn

Abstract

Engagement-level simulation is a quantitative way to evaluate the effectiveness of weapon systems before
construction and acquisition, minimizing the risk of investment. Though contractors have built simulation
systems with high fidelity models of weapon systems and battlefields, developing competent tactics to
give full play to new weapon systems in simulation experiments is labor intensive, as most classical
tactics tend to be out of date. In this work, we proposed a tactics exploration framework (TEF) that
applied grammar-based genetic programming (GP) to generating and evolving tactics in the engagement-
level simulation. Tactics are represented with modular behavior trees (BTs) for compatibility with the
genetic operators. Experiments to explore submarine tactics have been conducted to observe and study
the exploration process. The experimental results show that the TEF based on GP is efficient to explore
tactics in the formalism of BTs.

Keywords: tactics exploration framework; grammar-based genetic programming; behavior trees; subma-
rine warfare simulation

1. Introduction

The construction of a new conceptual weapon sys-

tem requires a large budget and an extended pe-

riod. Engagement-level simulation is a quantitative

method to evaluate the effectiveness of a weapon

system before its construction and acquisition, min-

imizing the investment risk and also providing feed-

back to optimize the technology solutions1.

Before finalizing the design, various technology

solutions for new weapon systems need to be eval-

uated in multiple engagement scenarios. Classical

tactics are no longer applicable to operate weapon

systems utilizing advanced technologies, and test

scenarios show that no universal tactic performs

well under these conditions; consequently, a lot of

competent tactics are required to conduct a com-

prehensive evaluation. However, developing tac-

tics requires significant domain expertise, and script-

ing tactics is time-consuming and labor-intensive in

practice2. Therefore subject matter experts (SMEs)

need a more efficient method to develop competent

tactics.

Evolutionary algorithms (EAs)3 are a class

of population-based stochastic search techniques

to search complex problem for optimal solu-

tions, providing a potential framework to explore

engagement-level tactic space. However, tactics are

more about structures (e.g., the goal hierarchy and

action sequence) than numerical parameters, and

∗ Corresponding author.

Email: liqun@nudt.edu.cn.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 804–814

804

Received 9 September 2016

Accepted 20 February 2017

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

classical EAs focus on numerical optimization and

lack the ability to explore structure space.

Genetic programming (GP)4,5, as an extension of

the classical genetic algorithm (GA)6, is defined as

a structural optimization algorithm7, which evolves

solutions represented with executable programs in-

stead of linear strings. Grammar-based GP8 re-

defined the elements on a derivation tree with a

problem-oriented context-free grammar (CFG) in-

stead of Lisp expressions as in the original GP. CFG

provides a general representation structure for defin-

ing constraints and limits in problem solutions.

The advantages of grammar-based GP include

the following: 1) formal grammar restricts the

search space; 2) problem-oriented grammar pro-

vides a flexible representation for domain knowl-

edge and problem solutions; and 3) grammar-based

GP extends GA with the ability of structure op-

timization. In summary, grammar-based GP is a

promising framework to explore tactic space, as tac-

tics are both domain knowledge intensive and repre-

sentation structured.

In this paper, we proposed our tactics exploration

framework (TEF) based on grammar-based GP to

evolve tactics in simulation, in which a grammar of

behavior tree (BT)9 formalism is used for tactic rep-

resentation. BTs are a formal method to represent

both goal hierarchies and action sequences in tac-

tics; moreover, the modular tree structure is inher-

ently compatible with genetic operators in grammar-

based GP. To validate our method, an undersea war-

fare scenario is built to explore submarine tactics in

the engagement-level simulation.

The outline of this paper is as follows: Sec-

tion 2 presents some related work. Section 3 is an

overview of our proposed framework to explore sub-

marine tactics with grammar-based GP. Section 4 in-

troduces BTs and details their specific application to

submarine warfare. Section 5 presents a grammar-

based GP technique to evolve tactics, followed in

Section 6 by submarine tactics exploration experi-

ments to validate our method and also the analysis

of experimental results. Conclusions and the future

works are presented in Section 7.

2. Related Work

In most military simulation systems, tactics are

script-based. SMEs propose new tactics and repre-

sent them with informal paper-based diagrams be-

fore coding them into scripts to do the simula-

tion. The most often-used tactics representations

are rule-set, decision tree, and finite state machine

(FSM). These are criticized for their defects in

practice10,11,12, such as the inability to scale up in

the complex domain, the difficulties for SMEs to

understand and reuse tactic scripts, and the tedious

scripting.

To address these problems, software engineer-

ing is introduced to provide domain specific lan-

guage (DSL)13 for tactics representation with au-

tomatic script generation. For example, Kerbusch

implemented a simple FSM with the scripting lan-

guage Lua to describe air combat tactics14. Ev-

ertsz proposed a Tactics Development Framework

(TDF)2,12, which fully defined the tactical elements,

such as missions, actors, roles, and scenarios. In

TDF methodology, a goal structure is designed to

decompose the mission objectives into sub-goals,

and a plan diagram based upon activity diagrams is

provided to describe the procedure of tactic. How-

ever, it is noteworthy that DSL is just a method to

represent tactics, and the tactics development still

relies heavily on domain expertise.

Developing tactics for a new weapon system

used to be an “trial and error” process; that is costly

and time-consuming for SMEs to propose, test, and

redesign tactics. Therefore, technologies in artifi-

cial intelligence (AI), such as EA and reinforcement

learning (RL), are introduced to optimize and learn

tactics in the simulation.

EA, as a general search technique, is widely used

to optimize tactics in the military domain. Mulgund

applied GA to optimize the team formation and in-

tercept geometry in large-scale air combat15. Liang

also used GA to design anti-torpedo tactics16. Sim-

ilar works can be found in17,18,19. In these applica-

tions, SMEs built the structures of tactics and imple-

mented EAs to optimize the critical parameters on

the structures; however, EAs did little exploration in

tactic structures.

While EA searches for optimal tactics through

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 804–814

805

evolving a population of individual agents, RL en-

ables an agent to improve its tactic through training

in the simulation. Teng proposed the FALCON20 ar-

chitecture based on the self-organizing neural net-

work to train strategies in 1-v-1 dogfight training

simulation. The proposed models showed signifi-

cantly improved adaptivity and higher performance

in human-in-the-loop (HIL) experiments. Toub-

man applied dynamic scripting (DS)21 to improving

team coordination behavior in air combat and got

a higher performance in experiments22. DS selects

high weight rules from a rule base to build scripts for

combat simulation; then the results are fed back to

update the weight of rules. This process continues

until a reliable script is reached. However, tactics

represented with weighted rule-set models or neu-

ral network models were black box systems, from

which it is difficult for SMEs to understand the in-

ternal logic and get explicit tactics23.

3. Tactics Exploration Framework

This section presents an overview of our proposed

framework to explore tactics, including components

and workflow. TEF consists of an engagement-level

simulator to conduct experiments and a grammar-

based GP as a tactic exploration engine. A tactics

representation tool (TRT) is also provided for SMEs

to edit and read tactics represented with BTs dia-

grams.

TEF is based on an engagement-level simula-

tor, named Weapon Effectiveness Simulation Sys-

tem (WESS)24, which supports submarine warfare

with high-fidelity models of the submarine, sonar,

torpedo, etc. Tactics are defined with Python for ex-

ecution, a scripting language that is close to a natu-

ral language. The Python interfaces for state query

and action execution are listed out as the basic el-

ements in tactic scripts. State variables in queries

are extracted from onboard instruments, and avail-

able actions to execute are basic orders from control

systems as in real-life combat.

Tactic representation is a core issue in a com-

bat simulation. In TEF, we use the BTs to represent

tactics. Compared to other forms of representation

(e.g., rule-set, FSM), BTs enable SMEs to represent

both the goal hierarchies and action sequences of a

tactic in one diagram. The inherent advantage comes

from the modularity of the tree structure in that the

subtrees can be composed into new BTs without lim-

its. Moreover, both BTs and the derivation trees of

GP are in the tree structure. Thus the genetic opera-

tors of GP are compatible with BTs in semantics. A

TRT is also developed as the bridge between SMEs

and GP, which enables SMEs to edit domain knowl-

edge for GP and also read the tactics generated from

the evolution of GP.

Fig. 1. Tactics Exploration Framework

Grammar-based GP works as the engine in TEF,

which produces tactics to conduct simulations and

updates tactics with feedback engagement results.

To utilize grammar-based GP in tactic exploration,

a context-free grammar of BT formalism in Backus-

Naur form (BNF) is defined to represent tactics, and

the genetic operators are improved to stabilize the

evolution process. The details are presented in Sec-

tion 5.

The workflow of TEF in Fig. 1 proceeds as fol-

lows. First, a repository of the most used tactics

and tactic modules in doctrine is built up. Next,

SMEs draft initial generation of tactics in BT dia-

grams based on the tactic repository. The diagrams

are mapped to derivation trees for genetic manipula-

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 804–814

806

tion and translated into executable tactic scripts with

TRT. After that, simulations are conducted to evalu-

ate the fitness of tactics in combat. Guided with the

feedback fitness, GP produces a new generation of

tactics with genetic operators and starts new simula-

tions to iterate the exploration. SMEs validate new

tactics in exploration to update the tactic repository.

4. Tactic Representation

4.1. Tactic Definition

The tactic definition varies in different warfare lev-

els, and there is no unified definition.

At the campaign level, Clausewitz defined tac-

tics as “the science and art of organizing a military
force, and the techniques for combining and using
weapons and military units to engage and defeat an
enemy in battle25 ”. In the Department of Defense

(DoD) Dictionary of Military and Associate Terms,

tactics are defined as “the employment and ordered
arrangement of forces in relation to each other. Also
procedures, techniques ”.

At the engagement level, Shaw stated that air

combat tactics are about “choice of attack forma-
tions, pre-attack positioning, attack speed, maneu-
vering to attain a firing position, and engagemen-
t/disengagement decision criteria26 ”.

For this paper, we simplified the engagement-

level definition that tactics are a sequence of actions

to achieve a specific goal.

4.2. Behavior Tree Formalism

BTs originated from the computer game industry

as a more modular, scalable, and reusable alterna-

tive to FSM in the development of AI components9.

Recently, the robotics community has shown great

interest in BTs as a modular control formalism

for unmanned aerial vehicles (UAVs) and complex

robots27. Colledanchise et al. provided an accurate

mathematical formula for BTs, and further analyzed

the safety, efficiency, and robustness of composite

BTs28.

A BT is a directed rooted tree defined as a tuple

BT = 〈V,E〉 where

V = A∪C∪N ∪ τ is the finite set of nodes with

action nodes A, condition nodes C, control flow

nodes N, and a root node τ .

E ⊂ V ×V is a finite set of edges, ∀〈vi,v j〉 ∈ E,

vi,v j ∈ V , vi is the parent node of v j, and v j is the

child of vi.

The algorithms of BT nodes are pre-

sented in Algorithm 1−7. The symbols are

S(Success),F(Failure),R(Running) ⊆ X , state

space X(t) ∈ X , and control signals U(t) ∈U .

The route from the top level to each leaf repre-

sents one course of action, and the behavior tree al-

gorithm searches among those courses of action in

a left-to-right manner. In other words, it performs a

depth-first search.

The execution of a BT proceeds as follows. The

root node sends signals called “ticks” to its children

at a certain frequency. This tick is then passed down

to leaf nodes (Action or Condition) with the guide

of control flow nodes. Once a leaf node receives a

tick and executes its task, it returns to its parent a

status Running if its execution has not finished yet,

Success if it has achieved its goal, or Failure other-

wise, and a Condition queries about the state, and

an Action performs a specific task in the execution.

Control flow nodes are typically Selector, Se-
quence, Parallel, and Decorator; the first executes

all its children from left to right until one fails, while

the second executes its children from left to right

until one succeeds. A Parallel node executes all

its children sequentially, returns Success if a given

number of children return Success, returns Failure
if the remaining running children are not enough to

reach the given number (even if they are all going to

succeed), and returns Running otherwise. The Dec-
orator sets constrains to pass ticks to its children.

Algorithm 1: Selector

for i← 1 to N do
state← Tick(child(i));
if state == Running then

return Running;

end
if state == Success then

return Success;

end
end
return Failure;

Algorithm 2: Sequence

for i← 1 to N do
state← Tick(child(i));
if state == Running then

return Running;

end
if state == Failure then

return Failure;

end
end
return Success;

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 804–814

807

Algorithm 3: Parallel

for i← 1 to N do
statei← Tick(child(i));

end
if nSuccNodes(statei)� nS then

return Success;

else if nFailNodes(statei)� nF
then

return Failure;

else
return Running;

end

Algorithm 4: Action

if Xn(t) ∈ Sn then
return Success;

end
if Xn(t) ∈ Fn then

return Failure;

end
if Xn(t) ∈ Rn then

Un(t)← γn(Xn(t));
return Running;

end

Algorithm 5: Condition

if Xn(t) ∈ Sn then
return Success;

end
if Xn(t) ∈ Fn then

return Failure;

end

Algorithm 6: Decorator

if Check(constrains) ==
True then

state← Tick(child);
return state;

else
return Failure;

end

Algorithm 7: Root

return Tick(child(0));

4.3. Representing Submarine Tactics with
Behavior Trees

According to the definitions, tactics are goal-

oriented and procedural in nature. Thus the repre-

sentation focuses on the decomposition of goals and

the sequence of action in the procedure.

IsTorpedo
Warning Defense

IsTorpedo
Warning

TgtRange
<10nm Attack

Retreat

Approach

POINT
5mins

LEAD
10mins

SetDepth
100m POINT

SetHeading
45

SetSpeed
20 knots

SetDepth
100m

Approach

Defence

Once

Launch
Decoy

a) goal hierarchy of submarine

b) action sequence of Approcach

c) action sequence of Defence

Root

TgtRange
<10nm

Launch
Decoy

ApproachOnce

Selector Sequence Parallel Decorate Condition Action Module

Fig. 2. An example of submarine tactic in Behavior Tree

formalism

4.3.1. Goal Hierarchies

BTs provide tree structure to support top-down de-

composition from mission goal to subtasks, state

queries and actions. In turn, low-level subtasks can

also be composed into higher-level tasks to achieve

specific goals through bottom-up integration.

In littoral defense, the tactical goal of the conven-

tional submarine is to destroy or clear out warships

in the operation area. In general, submarine tactics

can be decomposed into approach, attack, defense,

and retreat, as shown in Fig. 2(a). For example, the

approaching task is further decomposed into several

legs to locate and chase a warship, and each leg is

composed of actions to set heading and speed. Clas-

sical tactic modules in the repository, such as an ef-

fective torpedo defense, can be added to a new tactic

or replace the same part in an old one.

4.3.2. Action Sequences

The sequence of actions is defined with control

nodes in BTs; Sequence and Selector for serial ac-

tions, Parallel for concurrent actions, and Decorator
for specific temporal actions.

In submarine warfare, a tactic consists of maneu-

ver and fire control. Sequence executes subtasks or

actions with a strict time order, such as legs to lo-

cate the warship1. Fig. 2(b) is a simple Point-Lead-

Point leg. Selector defines the priorities of subtasks

or actions; for example, submarine interrupts attack-

ing maneuver to high prior torpedo defense, shown

in Fig. 2(b). Fire control, including sensor man-

agement, weapon launch, and countermeasure re-

lease, is concurrent with the maneuver. As in the

torpedo defense, submarine maneuvers to avoid tor-

pedo and releases decoys at the same time, as shown

in Fig. 2(c) with a Parallel. Moreover, actions with

specific constraints on intervals and times are de-

fined with Decorator.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 804–814

808

from bt import * #import behaviour tree package
from Common import * #import simulation Interfaces
def InitTactic(Platform):

#Build the Tactic
tactic = NodeRoot(root)
sel_anti_ship = NodeSelector(root)
seq_torpedo_warning = NodeSequence(sel_anti_ship)
cond_is_torpedo_warning = NodeCondition(seq_torpedo_warning,IsTorpedoWarning,equal,True)
para_defence = NodeParallel(seq_torpedo_warning)
seq_defence_maneuver = NodeSequence(para_defence)
act_set_depth_100 = NodeAction(seq_defence_maneuver,SetDepth,100)
act_set_heading_45 = NodeAction(seq_defence_maneuver,SetHeading,45)
act_set_speed_20 = NodeAction(seq_defence_maneuver,SetSpeed,20)
dec_decoy = NodeOnceDecorator(para_defence)
act_decoy = NodeAction(dec_decoy,LaunchDecoy)
para_approach_attack = NodeParallel(sel_anti_ship)
seq_approach = NodeSequence(para_approach_attack)
act_setdepth_100 = NodeAction(seq_approach,SetDepth,100)
act_POINT_5 = NodeAction(seq_approach,POINT,5)
act_LEAD_10 = NodeAction(seq_approach,LEAD,10)
act_POINT = NodeAction(seq_approach,POINT)
seq_attack = NodeSequence(para_approach_attack)
cond_tgtRange_less_10 = NodeCondition(seq_attack,TgtRange,less,10)
seq_attack_launch = NodeSequence(seq_attack)
act_set_depth_50 = NodeAction(seq_attack_launch,SetDepth,50)
dec_torpedo = NodeIntervalDecorator(seq_attack_launch,3)
act_torpedo = NodeAction(dec_torpedo,LaunchTorpedo)
para_retreat = NodeParallel(sel_anti_ship)
dec_decoy = NodeOnceDecorator(para_retreat)
act_decoy = NodeAction(dec_decoy,LaunchDecoy)
seq_retreat = NodeSequence(para_retreat)
act_set_heading_45 = NodeAction(seq_retreat,SetHeading,45)
act_set_depth_100 = NodeAction(seq_retreat,SetDepth,100)
act_set_speed_10 = NodeAction(seq_retreat,SetSpeed,10)
Platform.SetTactic(tactic)

def RunTactic(Platform):
#Run the Tactic
Platform.GetTactic().Run()

a) Screeshot of TRT Eclipse plugin

b) Tactic script generated by TRT

Fig. 3. Tactics representation tool and generated tactic script

4.4. Tactics Representation Tool

Based on BT formalism, we developed a DSL for

tactic representation with Eclipse Modeling Frame-

work (EMF)29. First, the abstract syntax of DSL

was developed with Ecore metamodeling, which de-

fined both the domain-independent elements of BTs

formalism and the domain elements, such as ac-

tions and state variables. Following this, a graphical

editor with concrete syntax was built with Graphi-

cal Modeling Framework (GMF)30, which provided

SMEs a graphical user interface to design tactic

models. Finally, a code generator was implemented

with Acceleo31, which mapped tactic diagrams into

Python scripts. TRT was an Eclipse-based plugin

based on the components above. See Ref. 32 for

more details.

TRT provided features such as friendly tactic

editor environment and flexible domain knowledge

management. Tactic diagrams also promoted user

comprehension and the potential for tactics reuse

and sharing. Fig. 3 showed the snapshot of TRT and

an example of generated script.

In TEF, TRT bridged the GP algorithm and

SMEs by automatically translating between tactic

diagrams and scripts. Domain knowledge, such as

classical tactic modules, represented by diagrams

were translated into scripts for GP manipulation. On

the other hand, tactic scripts generated from GP evo-

lution were translated back to diagrams for expert

analysis and validation.

5. Exploring Tactics with Grammar-based
Genetic Programming

5.1. Grammar-based Genetic Programming

In this work, we implemented CFG-GP33,34 to ex-

plore tactics, in which a CFG of BT formalism

was defined to generate the derivation trees, and ex-

tended genetic operators are proposed to stabilize

the evolution.

<S>::= <A>|<A><C>

<A>::=x|xy|<A><C>

::=y|z|<C>

<C>::=a|b|c|<A>

<S> <A><C>

<A><C>y<A>

xy<A>yx

xy<A><C>yx

xyxayz

(a) the production of grammar

(b) derivation steps

CA B

S

yA C A

xy A x

A C

x a

(c)derivation tree

Fig. 4. An application of grammar to generate a derivation tree

In the terminology of grammar-based GP, the

genotype is a derivation tree in the language de-

fined by a problem-oriented grammar, while the

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 804–814

809

phenotype refers to a program that produces the

behavior of an individual. The grammar defines

the interpretation between genotype and phenotype.

Fig. 4 showed an example to generate a derivation

tree from a grammar. In the evolution process,

genetic operators manipulate genotypic derivation

trees, while the fitness of individuals is calculated

based on the performance of phenotypic programs

in combat simulations.

As for any EAs, an initial population of individ-

uals is created at random, and each individual is ex-

ecuted to ascertain its fitness. The individuals with

higher fitness get more possibilities of being selected

as parents to generate a new population through se-

lection, crossover, and mutation operators. The evo-

lution loop is run until a certain termination condi-

tion is met (e.g., obtaining an acceptable solution, or

a maximum number of generations is reached).

A2 A3

?

A1

A2

A3 A4C1

?

?

A1C1 A3 A4

?

A1C1

A5
A3C2

A5

A3C2

crossover
 point

mutation
 point

random subtree

a) subtree crossover

b) subtree mutation

Parents Offspring

Fig. 5. Examples of subtree crossover and subtree mutation

5.2. Grammar for Submarine Tactics

Every problem has its own grammar, which repre-

sents the program syntax. The CFG for submarine

tactics of BT formalism can be represented in BNF.

SubBNF = 〈T,G,S,P〉, where

T = A∪C is the terminal set, include Condition
C and Action A;

G = N ∪ τ is the set of non-terminals, include

Control nodes N and Root node τ;

S = τ is the start symbol (the Root node in BTs);

P is a set of production rules.

The production rules in BNF for submarine tac-

tics are defined as follows.
〈Root〉 ::= 〈BT 〉
〈BT 〉 ::= 〈BT 〉〈Node〉|〈Node〉
〈Node〉 ::= 〈BT 〉|〈Control〉|〈Condition〉|〈Action〉
〈Control〉 ::= Selector|Sequence|Parallel|〈Decorator〉
〈Decorator〉 ::= 〈DecoratorType〉〈Node〉
〈DecoratorType〉 ::= Once|Repeat|Interval10s| · · ·
〈Condition〉 ::= 〈State〉|〈StateVariable〉〈op〉(number)
〈State〉 ::= TorpedoWarning|TorpedoReady|

LaunchAuthorized|ActivSonarOn| · · ·
〈StateVariable〉 ::= Depth|Speed|Heading|T gtType|

T gtHeading|T gtDepth| · · ·
〈op〉 ::== |< |> |<= |>= |
〈Action〉 ::= SetSpeed|SetHeading|SetDepth|

LaunchDecoy|ActivateJammer| · · ·

5.3. Genetic Operators

5.3.1. Crossover

The genotype in CFG-GP is a derivation tree, and the typ-

ical form of crossover is a subtree crossover. Two individ-

uals called the parents are selected from the population.

A crossover node is chosen at random in each parent, and

the subtrees rooted at the crossover nodes are swapped

between parents to generate child individuals, as shown

in Fig. 5(a).

The tree structure is more sensitive to the changes on

high-level nodes than on low-level ones. In contrast, the

high-level goal hierarchies and action sequences of tactic

BTs are more stable than the lower ones. In fact, frequent

changes on high-level nodes of tactic BTs trend to gen-

erate tactics that are syntactically correct but obviously

violate the doctrine and perform stupid actions, leading

to an unstable evolution.

As a consequence, we used a variable probability for

crossover operator at different levels to keep the BT struc-

ture stable. For a BT with N levels, the top node (root) is

level 0 and the lowest leaf node is level N− 1. Assum-

ing Px is the crossover probability parameter for GP, we

set Px(i) = Px ∗ (1− e−i) as the crossover probability for

nodes at level i.
Most tactic modules (e.g., Approach) are self-

contained blocks, in which the actions and conditions

are customized. For example, the submarine would not

launch torpedoes in De f ense. The crossover between dif-

ferent modules destroys the integrity of tactic modules.

To overcome this defect, we introduced an 〈XO〉 to

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 804–814

810

separate tactic modules and indicate the crossover bound-

aries. In the evolution process, the crossover is per-

formed on the same tactic modules, in which Approach
exchanges internal actions with Approach in other tactics

and avoid random exchange with Attack.
〈Tactic〉 ::= De f ence = 〈BT 〉;〈XO〉;

Approach = 〈BT 〉;〈XO〉;
Attack = 〈BT 〉;〈XO〉;
Retreat = 〈BT 〉;〈XO〉;

5.3.2. Mutation

A mutation operator selects a mutation node at random

in a single parent, removes the subtree at that point, and

inserts a new derivation tree generated with the CFG, as

shown in Fig. 5(b).

Just as the same as the crossover, we used a variable

probability for mutation operator to decrease changes on

the high-level nodes. Assuming Pm is the mutation prob-

ability parameter, we set Pm(i) = Pm ∗(1−e−i) as the mu-

tation probability for nodes at level i.

6. Case Study

6.1. Submarine Warfare Scenario

A littoral area submarine warfare scenario was built to

validate our proposed method. In the scenario, a pa-

trolling submarine dived underwater to ambush a war-

ship. As an opponent, the warship cruised with active

sonar working and attacked any submarines within its tor-

pedo range.

HH

R = 10nm

000

090

180

270

Heading = 330~30

Fig. 6. Scenario of submarine warfare

To model the uncertainties in warfare, the position,

speed, and heading of an adversary warship were initial-

ized randomly in scenarios. As shown in Fig. 6, the initial

position was randomly distributed in a circle with a radius

of 10 nautical miles (nm). The speed was sampled from

a uniform distribution on [10, 30] knots, and the heading

of the warship was sampled from a uniform distribution

from 330 to 30.

6.2. Experimental Setup

6.2.1. Comparison experiments

Both a submarine on active service (SubActive) and a new

submarine (SubNew) in design phase were tested in sce-

narios as comparison experiments. The baseline of the

experiments was 20 expert submarine tactics based on

doctrine for SubActive. The performance of grammar-

based GP in tactics exploration was evaluated with a com-

parison to the baseline. The experiment for SubNew fur-

ther studied the capability of grammar-based GP to ex-

ploit the advantages of new technologies.

6.2.2. Algorithm parameters

The parameters for GP are given in Table 1. Each tactic

ran 10 times in the simulation to get an average fitness

value for its performance. The exploration process it-

erated a total of 100 generations. Elite size specifies

the number of individuals who received high fitness

value that are guaranteed to survive to the next gen-

eration. Tournament selection chooses each parent by

choosing Tournament size players at random and then

choosing the best individual out of that set to be a parent.

Maximum tree height limits the height of derivation trees

in the GP evolution.

Table 1. Parameters for genetic programing.

Parameter Value

Population size 100

Generations 100

Elite size 15

Tournament size 4

Single point crossover ratio 80%

Two point crossover ratio 20%

Mutation probability 5%

Maximum tree height 15

6.2.3. Fitness function

The fitness function to evaluate tactics was defined with

the final result of engagement. A tactic got 1 point for

1 : 0 when the submarine eliminated the enemy without

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 804–814

811

loss and 0 for a loss without eliminating the enemy. As

for a draw, we set 1/3 for 0 : 0 that both sides survived,

and a higher 2/3 for 1 : 1 to explore aggressive tactics and

avoid evolution in negative escape tactics.

6.2.4. Initialization

It was labor intensive for SMEs to initialize 100 tactics.

To fully use the domain expertise and reduce the compu-

tation, the 20 expert tactics were used as seeds to generate

another 80 tactics with crossover and mutation using the

same parameters in Table 1. Therefore we received a total

population of 100 tactics to start the evolution.

6.3. Results

Because of the sensitive nature of the simulations, the re-

sults analysis focused on the efficiency of tactics in the

exploration process rather than the specific tactics. Fig. 7.

visualizes the experimental results with the average fit-

ness of the tactics in the exploration.

6.3.1. Baseline

The 20 expert tactics were tested in simulation to get the

baseline, with 0.513 for SubActive and 0.636 for SubNew.

It means that new technologies in SubNew brought about

23.9% increment in capability even run with expert tac-

tics for SubActive.

6.3.2. Exploration results

In Fig. 7, it was obvious that the exploration began with a

low average fitness value, the reason was that 80% of ini-

tial tactics were generated randomly. However, the aver-

age fitness value shows an uptrend in the following gen-

erations. In the SubActive experiment, the tactics started

with 0.285 and rose to about 0.451 after 50 generations

and then stagnated across the subsequent 50 generations.

It was almost the same in the SubNew experiment, with

tactics raised from 0.245 to 0.55 before 70 generations.

The evolution processes for both SubActive and SubNew
show an obvious uptrend on average fitness with decreas-

ing standard deviation. It demonstrates the capability of

grammar-based GP to explore tactics with a stable pro-

cess.

In our experiments, the average fitness of both

SubActive and SubNew did not make evident breakthroughs

over the baseline. However, the top 15% tactics show

some differences. The top 15% tactics performance and

expert tactics in the SubActive experiment mean that the

expert tactics gave full play to SubActive, and GP did not

make any breakthrough. In contrast, the top 15% tac-

tics for SubNew show slightly higher efficiency than expert

ones in the last 30 generations. A one-sided t-test rejected

the null hypothesis that the top 15% with average fitness

equaled baseline (0.636) at the 5% significance level and

accepted the alternative hypothesis of the top 15% with

an average fitness greater than the baseline. From this ob-

servation, it can be concluded that expert tactics worked

well but did not make full use of Subnew; however, GP

found new tactics to exploit the capability of SubNew fur-

ther.

20 40 60 80 100

generations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
av

er
ag

e
fit

ne
ss

a) SubActive tactics in exploration

baseline
top15%
population

20 40 60 80 100

generations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

av
er

ag
e

fit
ne

ss

b) SubNew tactics in exploration

baseline
top15%
population

Fig. 7. Fitness of tactics in the exploration

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 804–814

812

7. Conclusions and Future Work

In this paper, we have presented a framework of

grammar-based GP to explore tactics in the engagement-

level simulation. BT formalism for tactics representa-

tion are compatible with GP manipulation in exploration,

and also provide high-level diagrammatic goal hierar-

chies and action sequences. Extensions on genetic op-

erators were proposed to stabilize the evolution process.

Experiments in submarine warfare demonstrated the ca-

pability of TEF to explore tactics with incremental im-

provement on engagement results.

The directions for future work will focus on the effi-

ciency of grammar-based GP, the validation of generated

tactics, and the adaptiveness of tactics in uncertain com-

bat. First, various enhancement techniques on grammar-

based GP, such as extended genetic operators and gram-

mar design, will be tested and compared in this project.

The effect of GP parameters will also be analyzed with

more experiments. Then, SMEs will qualitatively eval-

uate the feasibility of the generated tactics in real com-

bat. Mining new tactic modules from the generated tac-

tic trees will also be an interesting work. Last, RL tech-

niques will also be introduced to improve the adaptivity

and flexibility of tactics to make actions in uncertain com-

bat.

Acknowledgments

This work is partly supported by the National Natural

Science Foundation of China (no. 61273198 and no.

71373282). The authors acknowledge Qiwang Huang for

his detailed and helpful advices to the paper.

References

1. Myeongjo Son and Taewan Kim. Maneuvering con-
trol simulation of underwater vehicle based on com-
bined discrete-event and discrete-time modeling. Ex-
pert Systems With Applications, 39(17):12992–13008,
2012.

2. Rick Evertsz, John Thangarajah, Nitin Yadav, and
Thanh Ly. A framework for modelling tactical
decision-making in autonomous systems. Journal of
Systems and Software, 110:222–238, 2015.

3. Alex M Andrew. Introduction to evolutionary com-
puting. Kybernetes, 2013.

4. John R Koza. Genetic programming: on the program-
ming of computers by means of natural selection, vol-
ume 1. MIT press, 1992.

5. John R. Koza and Riccardo Poli. Genetic Program-
ming, pages 127–164. Springer US, Boston, MA,
2005.

6. John H Holland. Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence. University
Michigan Press, 1975.

7. Wataru Fujishima and Tomoharu Nagao. Genetic ma-
trix algorithm ; simultaneous optimization of struc-
ture and numerical parameters. IEEJ Transactions
on Electrical and Electronic Engineering, 3(1):84–91,
2008.

8. Robert I Mckay, Nguyen Xuan Hoai, Peter Alexander
Whigham, Yin Shan, and Michael Oeill. Grammar-
based genetic programming: a survey. Genetic Pro-
gramming and Evolvable Machines, 11(3-4):365–
396, 2010.

9. Alex Champandard. Behavior trees for next-gen game
ai. In Game Developers Conference, Audio Lecture,
2007.

10. Teck-Hou Teng, Ah-Hwee Tan, and Loo-Nin Teow.
Adaptive computer-generated forces for simulator-
based training. Expert Systems with Applications,
40(18):7341–7353, 2013.

11. Armon Toubman, Jan Joris Roessingh, Pieter
Spronck, Aske Plaat, and H. Jaap van den Herik.
Dynamic scripting with team coordination in air
combat simulation. In Modern Advances in Applied
Intelligence - 27th International Conference on
Industrial Engineering and Other Applications of Ap-
plied Intelligent Systems, IEA/AIE 2014, Kaohsiung,
Taiwan, June 3-6, 2014, Proceedings, Part I, pages
440–449, 2014.

12. Rick Evertsz, John Thangarajah, Nitin Yadav, and
Thanh Li. Tactics development framework. In
Proceedings of the 2014 international conference
on Autonomous agents and multi-agent systems,
pages 1639–1640. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2014.

13. Martin Fowler. Domain-specific languages. Pearson
Education, 2010.

14. Philip Kerbusch and Paul Eigeman. Flexible and
reusable tactical behaviour models for combat aircraft.
Technical report, DTIC Document, 2010.

15. Sandeep Mulgund, Karen Harper, and Greg Zacharias.
Large-scale air combat tactics optimization using ge-
netic algorithms. Journal of Guidance, Control, and
Dynamics, 24(1):140–142, 2001.

16. Ko-Hsin Liang and Kuei-Ming Wang. Using simu-
lation and evolutionary algorithms to evaluate the de-
sign of mix strategies of decoy and jammers in anti-
torpedo tactics. In Proceedings of the 38th conference
on Winter simulation, pages 1299–1306, 2006.

17. Michael Jay Timmerman. A genetic algorithm based
anti-submarine warfare simulator. PhD thesis, Mon-

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 804–814

813

terey, California. Naval Postgraduate School, 1993.
18. Robert E Smith and Bruce A Dike. Learning novel

fighter combat maneuver rules via genetic algorithms.
International Journal of Expert Systems, 8(3):247–
276, 1995.

19. Vincent W Porto, Michael Hardt, David B Fogel, Ken-
neth Kreutz-Delgado, and Lawrence J Fogel. Evolv-
ing tactics using levels of intelligence in computer-
generated forces. In AeroSense’99, pages 262–270.
International Society for Optics and Photonics, 1999.

20. Teck-Hou Teng, Ah-Hwee Tan, Yuan-Sin Tan, and
Adrian Yeo. Self-organizing neural networks for
learning air combat maneuvers. In The 2012 Interna-
tional Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE, 2012.

21. Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-
Kuyper, and Eric Postma. Adaptive game ai with dy-
namic scripting. Machine Learning, 63(3):217–248,
2006.

22. Armon Toubman, Jan Joris Roessingh, Pieter
Spronck, Aske Plaat, and Jaap van den Herik.
Improving air-to-air combat behavior through trans-
parent machine learning. In The Interservice/Industry
Training, Simulation & Education Conference
(I/ITSEC), Orlando, Florida, USA, 2014.

23. NATO. Human behavior representation in construc-
tive simulation. Technical Report RTO-TR-HFM-128,
NATO RTO, 2009.

24. Yong-lin LEI, Qun LI, Feng YANG, Wei-ping
WANG, and Yi-fan ZHU. A composable model-
ing framework for weapon systems effectiveness sim-

ulation. Systems Engineering Theory & Practice,
33(11):2954–2966, 2013.

25. Carl Von Clausewitz. On war, volume 1. London, N.
Trübner & Company, 1873.

26. Robert L Shaw. Fighter combat: Tactics and maneu-
vering. Naval Institute Press, 1985.

27. Ogren Petter. Increasing Modularity of UAV Control
Systems using Computer Game Behavior Trees. Guid-
ance, Navigation, and Control and Co-located Confer-
ences. American Institute of Aeronautics and Astro-
nautics, 2012.

28. Michele Colledanchise and Petter Ögren. How behav-
ior trees modularize robustness and safety in hybrid
systems. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Chicago, IL, USA,
September 14-18, pages 1482–1488, 2014.

29. EMF project. http://www.eclipse.org/
modeling/emf/.

30. GMF project. http://www.eclipse.org/
modeling/gmp/.

31. Acceleo project. http://www.eclipse.org/
acceleo/.

32. Jian Yao, Ning Zhu, Junqing Xu, Shuai Chen, and
Yonglin Lei. A domain specific language for tac-
tic representation in engagement level simulation. In
30th European Simulation and Modelling Conference,
Gran Canaria, Spain, 2016.

33. Peter Alexander Whigham. Grammatical bias for evo-
lutionary learning. PhD thesis, 1996.

34. Adam Nohejl. Grammar-based genetic programming.
Master’s thesis, Charles University of Prague, 2011.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 804–814

814

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

