
Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Choosing Expected Shortfall over VaR in Basel III  

Using Stochastic Dominance* 

Chia-Lin Chang1 ,Juan-Angel Jimenez-Martin2,Esfandiar Maasoumi3, 

Michael McAleer4, 5 * and Teodosio Perez-Amaral6 

1Department of Applied Economics and Department of Finance 

National Chung Hsing University, Taiwan 

2Department of Quantitative Economics and Complutense  

Institute of Economic Analysis Complutense (ICAE), University of Madrid Spain 

3Department of Economics 

Emory University, USA 

4Department of Quantitative Finance 

National Tsing Hua University, Taiwan 

5Department of Mathematics and Statistics 

University of Canterbury, New Zealand 

6Department of Quantitative Economics and Complutense  

Institute of Economic Analysis Complutense (ICAE), University of Madrid Spain 

*michael.mcaleer@gmail.com 

Abstract.Bank risk managers follow the Basel Committee on Banking Supervision (BCBS) 

recommendations that recently proposed shifting the quantitative risk metrics system from 

Value-at-Risk (VaR) to Expected Shortfall (ES). The Basel Committee on Banking Supervision 

(2013, p. 3) noted that: “a number of weaknesses have been identified with using VaR for 

determining regulatory capital requirements, including its inability to capture tail risk”. The proposed 

reform costs and impact on bank balances may be substantial, such that the size and distribution of 

daily capital charges under the new rules could be affected significantly. Regulators and bank risk 

managers agree that all else being equal, a “better” distribution of daily capital charges is to be 

preferred. The distribution of daily capital charges depends generally on two sets of factors: (1) the 

risk function that is adopted (ES versus VaR); and (2) their estimated counterparts. The latter is 

dependent on what models are used by bank risk managers to provide for forecasts of daily capital 

charges. That is to say, while ES is known to be a preferable “risk function” based on its fundamental 

properties and greater accounting for the tails of alternative distributions, that same sensitivity to tails 

can lead to greater daily capital charges, which is the relevant (that is, controlling) practical reference 

for risk management decisions and observations. In view of the generally agreed focus in this field on 

the tails of non-standard distributions and low probability outcomes, an assessment of relative merits 

of estimated ES and estimated VaR is ideally not limited to mean variance considerations. For this 

reason, robust comparisons between ES and VaR will be achieved in the paper by using a Stochastic 

Dominance (SD) approach to rank ES and VaR.  
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1 Introduction 

In the financial market industry, it is well known that the Basel III Accord requires that banks and 

other Authorized Deposit-taking Institutions (ADIs) communicate their daily risk forecasts to the 

appropriate monetary authorities at the beginning of each trading day, using one of a range of 

alternative financial risk models to forecast Value-at-Risk (VaR). Recently, the Basel Committee on 

Banking Supervision (BCBS) (2013) published a consultative document which presents the Basel 

Committee’s initial proposals in regard to trading book capital requirement policies. A key element of 

the proposal is moving the quantitative risk metrics system from VaR to expected shortfall (ES), and 

decreasing the confidence level from 99% to 97.5%. The Basel Committee (2013, p. 3) observed that 

“a number of weaknesses have been identified in using Value-at-Risk (VaR) for determining 

regulatory capital requirements, including its inability to capture tail risk”.  

For this reason, the Basel Committee has considered using Expected Shortfall (ES) instead of VaR. 

ES is a coherent risk measure and has already become common in the insurance industry, although 

not yet in the banking industry. Artzner et al. (1997) proposed the use of ES to alleviate the problems 

inherent in VaR as: (1) ES considers losses beyond the VaR level and is shown to be sub-additive, 

whereas VaR disregards losses beyond the percentile and is not sub-additive; (2) although ES is 

mathematically superior to VaR in that it does not show “tail risk” and is a coherent risk measure in 

being subadditive, its practical implementation and greater computational requirements may pose 

operational challenges to financial firms. 

Danielsson (2013) has examined the quantitative impact of such a proposal through analytical 

calculations, Monte Carlo simulations, and empirical results from observed data. He analyzed one of 

the key issues raised from this change in emphasis, namely that estimating ES conditional on VaR 

might be such that estimation and model risk for ES will be strictly higher than for VaR. Having 

found that 97.5% ES and 99% VaR are exactly the same for conditionally normal procedures, and a 

slightly greater ES than VaR for conditional Student-t, his analysis concluded that the 97.5% ES risk 

forecasts are generally more volatile than their 99% VaR counterparts. 

Not only did prior methods for testing the main concerns of moving from VaR to ES focus on the first 

and second moments of these two risk distributions, but they also did not analyze the impact of such a 

measure on bank balances. The proposed reform costs and impact on bank balances may be 

substantial; in particular, the size and distribution of daily capital charges under the new rules may be 

considerably affected. Regulators and bank risk managers agree that all else being equal, a “better” 

distribution of daily capital charges is to be preferred. Distribution of daily capital charges depends 

on generally two sets of factors: (1) the risk function that is adopted (ES versus VaR), and (2) their 

estimated counterparts. The latter is dependent on what models are used by bank risk managers to 

provide forecasts of daily capital charges. That is to say, while ES is known to be a preferable “risk 

function” based on its fundamental properties and greater accounting for the tails of distributions, that 

same sensitivity to tails can lead to greater daily capital charges. Then the latter is the relevant 

(controlling) practical reference for risk management decisions and observations. 

In view of the generally agreed focus in this field on the tails of non-standard distributions and low 

probability outcomes, an assessment of the relative merits of estimated ES and estimated VaR should 

not be limited to mean variance considerations. It will be consistent with the spirit of Basel III 

concerns with tail outcomes, to consider a more robust comparison, that is, robust to particular loss 

function (for example, mean and variance/quadratic), and underlying (unknown) distributions of the 

estimated daily capital charges. The former robustness is achieved by exploration of uniform 
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rankings over classes of loss functions, while the latter robustness is achieved by non-parametric 

estimation of the estimated daily capital charges distributions and resampling techniques. 

Robust comparison between ES and VaR is achieved in this paper by using Stochastic Dominance 

(SD) methods and rankings. SD is a well-developed branch of “Decision Theory under Risk”, with 

important applications in Economics, Finance, Portfolio Theory, and Financial Risk Management, 

among others. The SD approach has been regarded as one of the most useful tools to rank investment 

prospects when there are uncertainties (see, for example, Levy, 1992) as the ranking of the assets has 

been proven to be equivalent to utility maximization for the preferences of risk averters and risk 

lovers (see, for example, Quirk and Saposnik, 1962; Hanoch and Levy, 1969; Hammond, 1974; 

Stoyan, 1983; Li and Wong, 1999). Chang et al. (2015) used SD tests for choosing among several 

VaR forecasting models to analyze whether the daily capital charges produced by one model would 

stochastically dominate the daily capital charges produced by an alternative model. 

The paper will analyse the optimality of the two standard risk measures, namely ES and VaR, with 

respect to the stochastic dominance relations induced by the sampling distribution of the daily capital 

charges produced by using either 97.5%-ES or 99%-VaR. As stated above, Basel III Accord requires 

that banks and other Authorized Deposit-taking Institutions (ADIs) communicate their daily risk 

forecasts to the appropriate monetary authorities at the beginning of each trading day, using one of a 

range of alternative financial risk models to forecast risk. The risk estimates from these models are 

used to determine the daily capital charges and associated capital costs of ADIs, depending in part on 

the number of previous violations, whereby realized losses exceed the estimated risk measure (for 

further details see, for example, Chang et al. (2011)). The objective or the risk manager is to minimize 

the overall cost associated with the risk measure chosen, which will be assumed to minimize the daily 

capital charges. 

The SD approach uses as much information as possible from the probability distribution of daily 

capital charges. Such an approach can incorporate useful information about the likelihood of specific 

levels of daily capital charges, and provide decision makers with greater information about the risks 

associated with different options. Using the information contained in the distribution of daily capital 

charges, SD will provide the pairwise comparison of the two risk measures such that all risk bank 

managers whose utility functions belong to some set U will prefer one to another.  

Seeking to choose between the two alternative risk measures, the paper will follow Weeks (1985), 

who defines a hypothetical utility-of-cost function. An appealing aspect of SD is that the criterion 

does not require a parameterized utility function, with a reliance on a general preference assumption. 

The bank manager’s “utility-of-daily capital charges” function may be represented by a decreasing 

utility function with a negative second derivative, which reflects diminishing marginal utility of daily 

capital charges reduction associated with risk-averse decision-making (loss aversion). Risk taking for 

losses is not inconsistent with expected utility theory, provided the von Neumann-Morgenstern 

(1947) utility function possesses convex segments in the range of losses. 

The paper will examine several standard models for forecasting VaR and ES, including GARCH, 

EGARCH, and GJR, paired with Gaussian and Student-t distributions. The results will likely show 

that the daily capital charges (DCC) produced using VaR (DCC_VaR) FSD (First-order Stochastic 

Dominance) the daily capital charges produced using ES (DCC_ES) for the four models and the two 

distributions. This would imply that the likelihood of a greater mean of DCC_ES is higher than the 

mean of DCC_VaR. In addition, given that FSD implies Second-order Stochastic Dominance (SSD), 

we would conclude that the uncertainty inherent in the estimated DCC_VaR is greater than the 

uncertainty in DCC_ES, at least in the case of extreme events, which is contrary to Danielsson’s 

(2013) results. Given a utility-of-daily capital charges preference structure, a risk-averse manager 

should prefer VaR to ES as risk measurement because the expected utility of the daily capital 

charges produced is larger than the expected utility of the daily capital charges produced by the ES 

risk measure. 
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Three tests proposing different resampling procedures for estimating the critical values of a extended 

Kolmogorov-Smirnov (KS) test for SD will be used: (i) Barret and Donald (BD) (2003), who propose 

a standard bootstrap simulation method to mimic the asymptotic null distribution of the least 

favourable case (LFC); (ii) Linton, Maasoumi and Whang (2005) (LMW), who estimate the critical 

values using the sub-sampling method proposed in Politis and Romano (1994), which allows for 

general dependence among the prospects, and for observations not to be i.i.d., so that the critical 

values for this test do not rely on the (LFC); and (iii) the Donald and Hsu (2013) test that extends 

Hansen’s (2005) recentering method to obtain critical values for the KS test, which increases the 

power properties compared with the unadjusted test mounted at the composite boundary of the null 

and alternative spaces, the so-called Least Favorable Case (LFC). 

The remainder of the paper is organized as follows: Section 2 describes VaR and ES risk measures 

and how to produce daily capital charges. In Section 3 the definition, notation and properties of SD 

are presented along with a brief description of the SD tests. Section 4 introduces the data, describes 

the block bootstrapping method to simulate time series, and presents alternative conditional volatility 

models to produce VaR and ES in order to obtain the daily capital charges. Section 5 presents the 

main results. Section 6 gives some concluding comments. 

2 Forecasting Value-at-Risk, Expected Shortfall and Daily Capital Charges 

In this section we introduce the definitions and explain the forecasting of Value-at-Risk (VaR) and 

Expected Shortfall (ES). In addition, we describe how to compute Daily Capital Charges (DCC) 

under VaR and ES as a basic criterion for choosing between risk measures. The Basel II Accord 

stipulates that DCC must be set at the higher of the previous day’s VaR or the average VaR over the 

last 60 business days, multiplied by a factor (3+k) for a violation penalty, where a violation occurs 

when the actual negative returns exceed the VaR forecast negative returns for a given day. Although 

regulators have not released the DCC expression under the ES risk measure, it is fair to assume that it 

will consist in changing VaR to ES.  

 

2.1 Value-at-Risk 

VaR refers to the lower bound of a confidence interval for a (conditional) mean, that is, a “worst case 

scenario on a typical day”. The VaR for a given confidence level 
 0,1q

 and time t is given by the 

smallest number yqsuch that the lost 1tY
at time t+1 will fall below yq with probability q: 

  

 
     1 1inf : inf : 1 .q

t q t q q t qVaR y P Y y q y P Y y q         
 (1) 

  

Thus, VaR is a quantile of the distribution of the loss function, and q is usually taken to be in the range 

[0.9, 1). For example, the Basel II accord refers to the “99%-VaR”. Sometimes the level of 

significance or coverage rate, 1 ,q    is used instead. If the random variable, tY
, is normally 

distributed with mean 1t  and standard deviation 1t  , for 
  0,1 ,q

 the VaR of tY
 is given by: 

 

 
   1

1 1 1 ,q

t t t tVaR Y q  

    
      (2) 

 

where   is the cumulative distribution function of a standard normal variable.  

 

If instead the normalized random variable 
 t t t tZ Y   

 has a standardized t-distribution with 
2  degrees of freedom, that is, the Student t distribution with mean 0 and variance 1, the VaR of 

t t t tY Z  
 would be given as: 
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   1 1

1 1 1 2 ,q

t t tVaR t q 

        
     (3) 

  

where 
 1



t q
is the q quantile of the standard Student-t distribution. Since quantiles translate under 

monotonic transformations, the q quantile of the standardized Student-t distribution (mean 0 and 

variance 1) with  degrees of freedom is given as 
   1 1 2    t q

.  

 

In addition to these parametric VaR calculations, we will include the analysis based on the 

non-parametric historical VaR, which does not have to make an assumption about the parametric 

form of the distribution of the returns. The 100q% historical VaR is the q quantile of the random 

variable, 
.tY
 

 

2.2. Expected Shortfall 

The expected shortfall at level q is the expected value at time t of the loss in the next period, 1tY
, 

conditional on the loss exceeding 
q

tVaR
: 

 

 1 1 1 1 .q q

t t t t tES E Y Y VaR   
          (4) 

 

For 
  0,1 ,q

 the expected shortfall for a normally distributed random variable, 
2~ ( , ),t t tY N  

 is 

given as:  

 

 

  1

1 1 1 ,
1

q

t t t

q
ES

q



  


 




 

      (5) 

 

where   is the density of a standard normal variable.  

 

If instead the normalized random variable 
 t t t tZ Y   

 has a standardized t-distribution with 

2  degrees of freedom, then the expected shortfall of  
e

t  is given by:  

 

 

      
2

1
1

1 1 1

2 ** *
,

1

v
v vq

t t t

v t qf t q
ES

q q
 




  

 
 

    (6) 

 

where 
 1*

vt q
denotes the q quantile of the standardized Student t distribution (that is, with zero 

mean and unit variance) having   degrees of freedom, and 
  1* *

v vf t q
is the value of its density 

function at that point. The standardized Student t density function is given as: 

 

 
       

 1 21/2 1 21
* 2 1 2 ,

2 2

v

v

v v
f x v v x

     
        

   


  (7) 

 

where the gamma function, ,  is an extension of the factorial function to non-integer values (see 

Alexander, 2009, p. 130). 
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Analogous to the VaR calculations, for the calculation of ES it is possible for  
s

t  to be replaced by 

alternative estimates of the conditional standard deviation in order to obtain an appropriate VaR (for 

useful reviews of theoretical results for conditional volatility models, see Li et al. (2002) and McAleer 

(2005), where several univariate and multivariate, conditional, stochastic and realized volatility 

models are discussed).  

 

In the historical VaR model the ES can be estimated directly, simply by taking the average of all the 

losses in the tail above the VaR. 

 

2.3. Forecasting Daily Capital Charges  

In this section,which follows McAleer et al. (2013a, b, c) closely, we introduce the calculation of 

DCC. The Basel II Accord stipulates that DCC must be set at the higher of the previous day’s VaR or 

the average VaR over the last 60 business days, multiplied by a factor (3+k) for a violation penalty, 

where a violation occurs when the actual negative returns exceed the VaR forecast negative returns 

for a given day. Assuming that the new risk measure might be ES, we can generalize the DCC 

expression changing VaR to RiskM, which is the risk measure that can be either VaR or ES for day t,  

 

 
  

______

60t t-1DCC = sup - 3+ k RiskM ,  - RiskM

     (8) 

 

where  

 

DCCt = daily capital charges, 

 
______

60RiskM  = mean RiskM over the previous 60 working days, 

 

0 k 1    is the Basel II violation penalty (see Table 1). 

 

Table 1  

Basel Accord Penalty Zones 

 

Zone Number of Violations K 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 

Note: The number of violations is given for 250 business days. The 

penalty structure under the Basel II Accord is specified for the 

number of violations and not their magnitude, either individually 

or cumulatively.   
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It is well known that the formula given in equation (8) is contained in the 1995 amendment to Basel I, 

while Table 1 appears for the first time in the Basel II Accord in 2004. The multiplication factor (or 

penalty), k, depends on the central authority’s assessment of the ADI’s risk management practices 

and the results of a simple backtest. It is determined by the number of times actual losses exceed a 

particular day’s VaR forecast (see Basel Committee on Banking Supervision).  

 

As stated in a number of previous papers (see, for example, McAleer et al. (2013a, b, c)), the 

minimum multiplication factor of 3 is intended to compensate for various errors that can arise in 

model implementation, such as simplifying assumptions, analytical approximations, small sample 

biases and numerical errors that tend to reduce the true risk coverage of the model (see Stahl (1997)). 

Increases in the multiplication factor are designed to increase the confidence level that is implied by 

the observed number of violations at the 99% confidence level, as required by regulators (for a 

detailed discussion of VaR, as well as exogenous and endogenous violations, see McAleer (2009) and 

McAleer et al. (2010)). 

 

In calculating the number of violations, it is well known that ADIs are required to compare the 

forecasts of VaR with realized profit and loss figures for the previous 250 trading days. In 1995, the 

1988 Basel Accord (Basel Committee on Banking Supervision (1988)) was amended to allow ADIs 

to use internal models to determine their VaR thresholds (Basel Committee on Banking Supervision 

(1995)). However, ADIs that propose using internal models are required to demonstrate that their 

models are sound. Movement from the green zone to the red zone arises through an excessive number 

of violations. Although this will lead to a higher value of k, and hence a higher penalty, violations will 

also tend to be associated with lower daily capital charges. It should be noted that the number of 

violations in a given period is an important, though not the only, guide for regulators to approve a 

given VaR model. 

  

3. Stochastic Dominance and Risk Measures 

 

The purpose of the paper is to evaluate the optimality of 97.5%-ES and 99%-VaR with respect to the 

stochastic dominance relations induced by the sampling distribution of the Daily Capital Charges 

produced by using both risk measures. Notice that each measure will yield different values of DCC. 

The stochastic dominance concept is applied to determine which risk measure should be used to 

maximize the expected utility of a risk averse bank manager. The objective is to rank DCC, which are 

treated as costs/losses for banks, according to the expected value of the utility-of-DCC function 

introduced below in this section. In addition, we define first- and second-order stochastic dominance 

and its relation to the decision making process of risk seeking for losses agents. Finally, we briefly 

describe the SD tests that are used in this paper.  

 

3.1. Daily Capital Charges (DCC) and evaluation framework: Stochastic Dominance 

 

SD rules have been shown to offer superior and more efficient criteria on which to base investment 

decisions than the criteria derived from the traditional strategies based on first and second moments. 

In this paper we use SD and utility function theory to compare DCC produced by VaR or ES. We 

focus on the behaviour of the decision maker when the potential DCC is used as the variable of 

interest. Following Weeks (1985), who defines a utility-of-cost function (attractively, SD criteria do 

not require a parameterized utility function, but rather they rely on general preference assumption), 

the bank manager’s utility-of-DCC function may be represented by U (DCC), assuming U´< 0 and 

U´´< 0, where U´ is the first derivative and U´´ is the second derivative, which reflects diminishing 

marginal utility of DCC reduction associated with risk-averse decision making (loss aversion, 

individuals seem to feel more pain from losses than from equivalent gains).  
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Hershey and Schoemaker (1980) investigated risk loving in the domain of losses. Risk taking for 

losses is not inconsistent with EU theory provided the von Neumann-Morgenstern (1947) utility 

function possesses convex segments in the range of losses.  

 

Consequently, the definition of first- and second-order stochastic dominance applied to risk 

loving-decision makers is defined as follows: 

Definition 1: Consider two distributions of DCC, DCC1 and DCC2, characterized by the 

cumulative distribution functions, with F and G as their respective distribution functions defined on 

[a, b], we can define that DCC1 First-order stochastic Dominates DCC2, denotes DCC1 FSD DCC2, 

if and only if either: 

 

a)  

b)  
 

Definition 2: DCC1 Second order stochastic Dominates DCC2, denotes DCC1 SSD DCC2, if and 

only if either: 

 

c)  

d) With strict inequality 

for some x. Having loss aversion, individuals will often be willing to accept a gamble with 

uncertainty and an expected loss than a guaranteed loss of the same amount. 

 

3.2. Test statistics and critical values
1
 

 

Three tests proposing different resampling procedures for estimating the critical values of a extended 

Kolmogorov-Smirnov (KS) test for SD are used, namely: (i) Barret and Donald (BD) (2003), who 

propose a standard bootstrap simulation method to mimic the asymptotic null distribution of the least 

favourable case (LFC); (ii) Linton, Maasoumi and Whang (2005) (LMW), who estimate the critical 

values using the subsampling method proposed in Politis and Romano (1994), which allow for 

general dependence amongst the prospects, and for observations not to be i.i.d., such that the critical 

values for this test does not rely on the (LFC); and (iii) the Donald and Hsu (2013) test that extends 

Hansen’s (2005) recentering method to obtain critical values for the KS test, which increases power 

properties compared with the unadjusted test mounted at the composite boundary of the null and 

alternative spaces, the so-called Least Favorable Case (LFC). 

 

Let DCC1 and DCC2 be two random variables with cumulative distribution functions (CDF), FX and 

FY, respectively. We are interested in knowing if DCC1 first stochastic dominates DCC2 that 

according to definition 1 corresponds to 
       Y XF z F z

 for all z R . The technical assumptions 

required for the underlying statistical theory include the following (see Linton, Maasoumi and Whang 

(2005) (hereafter LMW), Linton, Song and Whang (2010) and Donald and Hsu (2013) for further 

details): 

 

Assumption 3.1: 

 

1.   [0,  ],    .Z z where z    

2. FX and FY are continuous functions on Z such that FX (z) = FY(z) = 0 iff z = 0, and FX (z) = FY (z) 

= 1 iff   .z z  

                                                        
1This section is based on Donald and Hsu (2013), and Linton, Maasoumi, and Whang (2007).  

   1 2  for all u with strict inequality for some u;       E u DCC E u DCC or

  ( ) for all x with strict inequality for some x.F x G x

   1 2  for all u with strict inequality for some u;       E u DCC E u DCC or

   dt dt for all x with strict inequality for some x. 
x x

F t G t
 

 
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The first part of assumption 3.1 requires FX and FY to be continuous on Z. The second part rules out 

the cases where FX (z) = FY(z) = 0  

 

 

 

Assumption 3.2: 

 

1. 1{ }  N

i iX  and 1{ }  M

i iY  are samples from distributions with CDF’s FX and FY , respectively. It is 

possible to deal with independent samples and observations. Linton, Maasoumi and Whang (2005) 

allow dependent time series, and possibly dependent X and Y. 

2. M is a function of N such that M(N) → ∞ and N/(N +M(N)) → λ~(0, 1) when N → ∞. 

Assumption 3.2 requires that N and M grow at the same rate. In order to test whether X FSD Y, the 

hypothesis of interest can now be stated as in McFadden (1989): 

 

 
   0  :    for all  ,Y XH F z F z z Z 

 (9) 

 
   1  :   >  for all  ,Y XH F z F z z Z

 (10) 

 

Under the null, alternative X would provide a higher probability of lowest DCCs.  

 

The CDF’s FX and FY are estimated by empirical CDFs: 

 

, ,
1 1

1 1ˆ ˆ( )   1(   ),  ( )   1(   ),
N N

X N i Y M i
i i

F z X z F z Y z
N M 

    
 

 

where 1(·) denotes the indicator function. The Kolmogorov-Smirnov test statistic is given by: 

 

, ,
ˆ ˆ ˆsup ( ( )  ( ))N Y N X M

z Z

NM
S F z F z

N M 

 
 . 

 

Regarding higher-order SD, Davidson and Duclos (2000) offer a very useful characterization of any 

SD order and tests. They define 
   


 

( ) ( 1) , , ,  
z

s s
k kD z D t dt k Y X

where 
   

(1) .k kD z F z
 Then X 

stochastically dominates Y at order s, if 
   ( ) ( )s s

y xD z D z
for all z with strict inequality for some z. In 

order to test if X SD2 Y, we can formulate the null and alternative hypotheses as: 

 

 
   (2) (2)

0 :  for all  , y xH D z D z z Z
 (11) 

 
   ( ) (2)

1 :  for all  , s

y xH D z D z z Z
 (12) 

 

Under the null, over the entire range of DCC outcomes, risk adverse bank managers would prefer 

alternative X because it provides a greater utility of DCC. 

 

The corresponding test statistic is defined as: 

 

 2 2

2, , ,
ˆ ˆ ˆsup ( )  ( )N Y N X M

z Z

NM
S D z D z

N M 

 
 , 
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where a natural estimator of 
 (2)

kD z
 is: 

           (2)

0
1 1

1 1ˆ ˆ
N Nz

k k i i i
i i

D z z t dF t z t I t z z t
N N 

 

       
 

 

Under the above assumptions, which we adopt here, these tests are known to be asymptotically 

Gaussian. The asymptotic approximation is also known to be too poor to provide reliable empirical 

guidance. In response, many resampling techniques and approaches have been proposed in the 

literature. We implement three of these suggested resampling techniques in this paper.  

 

3.2.A.- Barret and Donald (BD) (2003) 

 

BD apply three different techniques for simulation to mimic the asymptotic null distribution in the 

LFC: the multiplier method and bootstrap with both separate and combined samples. In this paper, the 

critical values 
ˆBD

Nq are computed using the bootstrap with separate samples. Draw a random sample of 

size N from 1{ ,  . . . , }NX X
 and sample size M from 1{ ,  . . . , }MY Y

 to form 

     ( ) ( 1) (1)

,
ˆ ˆ ˆ ˆ( ) ,  where , , .

z
s BD s BD BD DB

k N k k kD z D t dt D z F z k X Y


    

 

Define 
     ( ) ( )

, , , ,
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )  ( )s s BD s s BD s

YX Y N Y N X M X MS z D z D z D z D z   
 and let P

u
 denote the conditional 

probability measure given the observed sample. Let α be the significance level, then 
ˆBD

Nq  can be 

computed as: 

 

 

ˆˆ sup |  sup ( )   1  . 
 

BD u s

N z Z YX

NM
q q P S z q

N M


   
           (13) 

 

ˆBD

Nq is bounded away from zero in probability. 

 

3.2.B.- Linton, Maasoumi and Whang (2005) 

 

BD simulation methods do not work well enough when the data are weakly dependent, as for time 

series samples that are used in this paper. In these cases, one has to appeal to either the subsampling 

technique of LMW, or a variant of the block bootstrap. Donald and Hsu (2013) provide a comparative 

examination of these alternatives 

 

LMW estimate the critical value by the subsampling method proposed by Politis and Romano (1994) 

that allows the series to be mutually dependent over time. Let 
  1{ ,  }  N

i i iX Y  be a strictly stationary 

time series sequence with joint distribution function FXY on Z
2
 and marginal CDF’s,  FX and FY, 

respectively. Suppose that Assumption 1 of LMW holds. Then under the null hypothesis that H0: 

D
s
Y(z) ≤ D

s
X(z) for all z ~ Z, the SD tests defined earlier are asymptotically Gaussian. 

 

Donald and Hsu (2013) introduce LMW’s test with a modification that allows for different sample 

sizes. For s ≥ 1, let Xs  denote the collection of all of the subsets of size s of {X1, ...,XN}: 

 

 
 

1 1 {  ,  . . . , } |{ ,  . . . ,  }  {1,  . . . , } .
ss r r sX X X r r N 
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A random draw denoted by 1{ ,  . . . , }b b

sX X
 from Xs would be a random sample of size s without 

replacement from the original data. Let ,
ˆ

b

X sF
be the empirical CDF based on the random draw, 

1{ ,  . . . , }b b

sX X
. Define ,

ˆ
b

Y sF
similarly and let sN and sM  denote the subsampling sizes for the X and Y 

samples, respectively, and define 
 ( ) ( ) ( )

, ,
ˆ ˆ ˆ( ) ( ),s b s b s b

YX Y N X MD z D z D z 
 where 

     ( ) ( 1) (1)

,
ˆ ˆ ˆ ˆ( ) ,  where , , .

z
s b s b b b

k N k k kD z D t dt D z F z k Y X


    Then the subsampling critical value

( )ˆ s LMW

Nc
for any s pre-specified order is given by: 

  

 

( ) ( )ˆˆ   sup |  sup   1  .
  

s LMW u s bN M
N z Z XY

N M

s s
c c P D c

s s


   
           

 

Assume that: 

 

1. sN→ ∞, sM→ ∞, sN/N → 0 and sM/M → 0 as N → ∞. 

2. sN/(sN+ sM) → λ, where λ is defined in Assumption 4.2. 

 

These subsampling SD tests are known to be asymptotically Gaussian under these assumptions, 

and provide consistent tests. The limiting distribution theory in LMW covers weakly stationary, 

dependent samples, with certain mixing conditions, such as in our applications. In addition, they 

allow for the prospects that are ranked to be estimated functions, rather than the original series 

described above. If the estimators involved in these functions permit certain expansions, as described 

in Linton, Maasoumi and Whang (2005), Assumption 2, Section 3.1, the limiting distribution theory 

will be preserved with re-centering.  

 

3.2.C.- Donald and Hsu (2013) and Re-centering Functions. 

 

Donald and Hsu (2013) and Linton, Maasoumi and Whang (2005) propose re-centering methods 

introduced by Hansen (2005) to construct critical values for Kolmogorov-Smirnov type tests. This 

approach provides a test with improved size and power properties compared with the unadjusted test 

mounted at the composite boundary of the null and alternative spaces, the so-called Least Favorable 

Case (LFC).  

 

For a negative number aN, Donald and Hsu (2013) define the re-centering function 
 ˆ

N z
 as:  

 

 
            , , , ,

ˆ ˆ ˆ ˆˆ  · 1 -  .N Y M X N Y M X N Nz F z F z N F z F z a   
 

 

See Donald and Hsu (2013) for further details of recentering functions. The blockwise bootstrap is 

used to compute the critical values based on the sum of the simulated processes and the recentering 

function. Let 
   (1)ˆ ˆ , ,bb bb

k kD z F z k Y X 
 denote the empirical CDF computed with the b-th 

resample/subsample block. Define 
 ( ) ( ) ( )

, ,
ˆ ˆ ˆ( ) ( ),s bb s bb s bb

YX Y N X MD z D z D z 
 where 

 ( ) ( 1)

,
ˆ ˆ( ) .

z
s bb s bb

k N kD z D t dt


   Then for α<½: 
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       

( ) ( )

,

( ) ( )

ˆ  max{ ,  },

ˆ ˆ sup | sup     1  ,N

s bb s bb

N N

s bb u s bb

N z Z N

c c

c c P N D z z c

 

 



    
 

 

where η is an arbitrarily small positive number. If the decision rule is to reject the null hypothesis, H0: 

D
(s)

Y(z) ≤ D
(s)

X(z) for all z ~ Z when 
( )

,
ˆ ˆ s bb

sN NS c
, then the corresponding test has the same size 

properties as in the independent random samples case.  

 

4. Data and Implementation of Tests 

 

In this section, we describe the data used together with the block bootstrapping procedure for 

simulating the time series of the stock prices. In addition, for computing 97.5%-ES and 99%-VaR, the 

conditional variances must be estimated. We use three different univariate conditional volatility 

models that are also described in this section.  

 

4.1. Data description 

 

The data used for estimation and forecasting are the closing daily prices for Standard and Poor’s 

Composite 500 Index (S&P500), which were obtained from the Thomson Reuters-Datastream 

database for the period 1 January 1999 to 26 June 2014, giving 4040 observations. 

 

The returns at time t
( )tR  are defined as: 

 

 
 1log / ,t t tR P P

 (14) 

 

where tP  is the market price.  

 

 

Figure 1 

S&P500 Returns 

 1 January 1999 – 24 June 2014 
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Figure 1 shows the S&P500 returns. The extremely high positive and negative returns are evident 

from September 2008 onward, after the Lehman Brothers bankruptcy, and have continued well into 

2009. Then, in spring, 2010, the European debt crisis began, with the European Union together with 

the International Monetary Fund providing 110 million Euros to Greece that became unable to 

borrow from the market. Greece required a second bailout in mid-2011. Thereafter, Ireland and 

Portugal also received bailouts in November 2010 and May 2011, respectively. Higher volatility in 

the S&P500 returns is observed during these periods. Regarding the descriptive statistics, the median 

(0.022) is above the mean (0.012) and the range is between 11% and -9.5%, with a standard deviation 

of 1.27. S&P500 returns show negative skewness (-0.17) and high kurtosis (10.99), which would 

seem to indicate the existence of extreme observations and non-Gaussianity. 

 

Figure 2 shows several graphs that provide valuable information for identifying the returns 

probability distribution. Panel A displays the empirical histogram, together with the density function 

of the Gaussian distribution and a kernel density estimate of the distribution that show fatter tails than 

normal and some slight asymmetry. Panels B and C exhibit two theoretical quantile-quantile plots 

(QQ-plot) comparing the quantiles of the S&P500 returns with the quantiles of both a fitted normal, 

Panel B, and Student-t, Panel C, distributions. For the Gaussian case, the QQ-plot does not lie on a 

straight line, overall on the tails, supporting the non-normality of returns. According to the QQ-plots, 

the Student-t distribution seems to fit the observed data better than does the Gaussian distribution. 

Finally, Panel D displays a boxplot that summarizes the returns distributions showing the extreme 

observation mentioned above.  
Figure 2 

SP500 Returns distribution analysis 

1 January 1999 – 24 June 2014 
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Figures 1 and 2 show that stock markets have been working under stress during the last seven years. 

Traditional risk measurement, specifically VaR, might not work properly under these extreme price 

fluctuations. The BIS Committee on the Global Financial System discussed the shortcomings of VaR 

for measuring and monitoring market risk when many such events are taking place in the tails of the 

distributions. VaR that suffers tail risk only measures the distribution quantile, and disregards the 

extreme loss beyond the VaR level, ignoring important information regarding the tails of the 

distribution. Expected shortfall might be a more appropriate tool for risk monitoring under stress 

circumstances. As Yamai and Yoshiba (2005) state, expected shortfall has no tail risk under more 

lenient conditions than VaR. 

 

Fat tails might be explained by clusters of volatility that seem to appear in Figure 1. A closer 

examination of the volatility of returns using a measure proposed in Franses and van Dijk (1999) is 

given as: 

 

 
  

2

1|  t t t tV R E R F
,      (15) 

 

where 1tF
 is the information set at time t-1, highlights the volatility clustering (see Figure 3).  

 

Figure 3 

Volatility of S&P500 Returns 

 1 January 1999 – 24 June 2014 

 
4.2. Block bootstrapping  

 

In order to increase the power of the three tests used in this analysis, we will use block bootstrapping 

for simulating 500 time series of the S&P500 returns for the 3000-observation rolling window that 

will be used for producing a total of 500 one-step-ahead 97.5%-ES and 99%-VaR forecasts. We 

implement the Circular Block Bootstrapping (CBB) method developed in Politis and Romano (1992) 

for resampling the S&P500 through the MFE toolbox of Sheppard (2013). The block bootstrap is 

widely used for implementing the bootstrap with time series data. It consists of dividing the data into 

blocks of observations and sampling the blocks randomly, with replacement. 

 

In the CBB, let the data consist of observations 
 : 1,..., ,iX i n

 and let 
  1,..., and 1l n b

denote the length and the number of blocks, respectively, such that 
lx b n

. Let n and m be the 

initial data size and the bootstrap sample size, m n  and k the number of blocks chosen. CBB consists 

of dividing the time series into b blocks of consecutive observations denoted by: 
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   
 

1 1
,..., , 1,..., .i ili l

B X X i n
 

 

A random sample of k blocks, 1k  , 
* *
1 ,..., kB B

is selected with replacement from 
* *
1 ,..., kB B

. 

Joining the k blocks with m = k×l observations, the bootstrap sample is given as: 

 

  * * * *
1 1 1
,..., ,..., ..., .l lk l

X X X X
   

 

The CBB procedure is based on wrapping the data around a circle and forming additional blocks 

using the “circularly defined” observations. For i n , it is defined that 1 ni
X X

, where 

modni i n  and 0 nX X
. The CBB method resamples overlapping and periodically extended 

blocks of length l. Notice that each Xi appears exactly l times in the collection of blocks and, as the 

CBB resamples the blocks from this collection with equal probability, each of the original 

observations X1, ..., Xn receives equal weight under the CBB. This property distinguishes the CBB 

from previous methods, such as the non-overlapping block bootstrap of Carlstein (1992). Note that 

and 97.5%-ES and99%-VaR are estimated for each drawn sample, thereby generating the bootstrap 

(subsample) distribution of the test statistics.  

 

The next section describes several volatility models that are widely used to forecast the 1-day ahead 

conditional variances and VaR thresholds for the parametric cases. 

 

4.3.Models for Forecasting VaR 

 

ADIs can use internal models to determine their VaR thresholds. There are alternative univariate time 

series models for estimating conditional volatility. In what follows, we present several well-known 

conditional volatility models that can be used to evaluate strategic market risk disclosure, namely 

GARCH, GJR and EGARCH, with Gaussian and Student-t distributions. These univariate models are 

chosen because they are widely used in the literature. For an extensive discussion of the theoretical 

properties of several of these models see, for example, Ling and McAleer (2002a, b, 2003a), McAleer 

(2005), Caporin and McAleer (2012), McAleer and Hafner (2014), and McAleer (2014).  

 

 

4.3.A.- GARCH 

 

For a wide range of financial data series, time-varying conditional variances can be explained 

empirically through the autoregressive conditional heteroskedasticity (ARCH) model, which was 

proposed by Engle (1982). When the time-varying conditional variance has both autoregressive and 

moving average components, this leads to the generalized ARCH(p,q), or GARCH(p,q), model of 

Bollerslev (1986). It is very common in practice to impose the widely estimated GARCH(1,1) 

specification in advance.  

 

Consider the stationary AR(1)-GARCH(1,1) model for daily returns, ty
: 

 

 t 1 2 t-1 t 2y =φ +φ y +ε , φ <1
     (16) 

 

For t =1,…, n, where the shocks to returns are given by:  
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t t t t

2

t t-1 t-1

ε = η h , η ~ iid(0,1)

h =ω+αε + βh ,
     (17) 

 

and 
0, 0, 0    

 are sufficient conditions to ensure that the conditional variance 
0.th 

 

The stationary AR(1)-GARCH(1,1) model can be modified to incorporate a non-stationary 

ARMA(p,q) conditional mean and a stationary GARCH(r,s) conditional variance, as in Ling and 

McAleer (2003b). Tsay (1987) shows that   0  in the derivation of the GARCH model. 

 

 

4.3.B. - GJR 

 

In the symmetric GARCH model, the effects of positive shocks (or upward movements in daily 

returns) on the conditional variance, th , are assumed to be the same as the effects of negative shocks 

(or downward movements in daily returns) of equal magnitude. In order to accommodate asymmetric 

behaviour, Glosten, Jagannathan and Runkle (1992) proposed a model (hereafter GJR), for which 

GJR(1,1) is defined as follows:  

 

 
2

t t-1 t-1 t-1h =ω+(α+γI(η ))ε + βh ,
 (18) 

 

where 0,0,0,0 ³³+³> bgaaw  are sufficient conditions for 
0,th 

 and 
( )tI 

 is an indicator 

variable defined by: 

 

 

 






 



1, 0

0, 0

t

t

t

I

 (19) 

 

as t  has the same sign as t . The indicator variable differentiates between positive and negative 

shocks, so that asymmetric effects in the data are captured by the coefficient g . For financial data, it 

is expected that 0  because negative shocks have a greater impact on risk than do positive shocks 

of similar magnitude. The asymmetric effect, 
,
 measures the contribution of shocks to both short 

run persistence, 
  2

, and to long run persistence, 
    2

.  

 

Although GJR permits asymmetric effects of positive and negative shocks of equal magnitude on 

conditional volatility, the special case of leverage, whereby negative shocks increase volatility while 

positive shocks decrease volatility (see Black (1976) for an argument using the debt/equity ratio), 

cannot be accommodated, in practice (for further details on asymmetry versus leverage in the GJR 

model, see Caporin and McAleer (2012)). McAleer (2014) showed that   0  and   0  in the 

derivation of the GJR model. 

 

 

4.3.C.- EGARCH 

An alternative model to capture asymmetric behaviour in the conditional variance is the Exponential 

GARCH, or EGARCH(1,1), model of Nelson (1991), namely:  
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t-1 t-1
t t-1

t-1 t-1

ε ε
logh =ω+α +γ + βlogh , | β |<1,

h h
 (20) 

 

where the parameters , b  and g  have different interpretations from those in the GARCH(1,1) and 

GJR(1,1) models presented above. 

 

EGARCH captures asymmetries differently from GJR. The parameters   and g  in EGARCH(1,1) 

represent the magnitude (or size) and sign effects of the standardized residuals, respectively, on the 

conditional variance, whereas   and    represent the effects of positive and negative shocks, 

respectively, on the conditional variance in GJR(1,1). As in the case of GJR, EGARCH cannot 

accommodate leverage (further details can be found in McAleer et al. (2007) and McAleer (2014)). 

McAleer and Hafner (2014) showed that   0  and   0 in the derivation of the EGARCH model, 

which prevents leverage from consideration in the EGARCH model. 

 

In the empirical analysis, the three conditional volatility models given above are estimated under the 

following distributional assumptions on the conditional shocks: (1) Gaussian and (2) Student-t, with 

estimated degrees of freedom. As the models that incorporate the t distributed errors are estimated by 

QMLE, the resulting estimators are consistent and asymptotically normal, so they can be used for 

estimation, inference and forecasting. 

 

 

5. Empirical Results 

 

Let DCC_ES and DCC_ VaR be the DCC produced using the 97.5%-ES and 99%-VaR, respectively. 

Based on definitions 1 and 2, if DCC_VaR first-order stochastically dominates DCC_ES, then the 

DCC_VaR will involve higher probability of lower DCCs than the latter. Similarly, if DCC_VaR 

distribution dominates the DCC_ES distribution stochastically at second order, it would imply that a 

risk averse risk manager would prefer the DCC_VaR distribution because it provides a greater utility 

of costs. In essence, stochastic dominance preference ordering rule would divide the two alternative 

risk measurements to compute DCC into the efficient set of undominated alternatives and the 

inefficient set of dominated alternatives. The expected utility of those alternatives in the efficient set 

is larger than the expected utility of those in the inefficient set. 

 

According to definitions 1 and 2, graphically, DCC_VaR would dominate DCC_ES when its 

cumulative distribution function is above the CDF of DCC_ES. SSD implies that the difference 

between the integral of the cumulative distribution functions (ICDF) (area under CDFs) DCC_VaR 

and ICDF DCC_ES is always positive for every level of probability.  

 

Neither ES nor VaR is observed; they have to be estimated, so we proceed as follows:  

 

(1) We use a 3000-observations long rolling window (from 1 January 1999 to 1 July 2010, around 

75% of the total number of available observations) for smoothing out spikes of volatility 

during the Global Financial Crisis, while estimating the conditional volatility models for 

producing one-step-ahead 97.5%-ES and 99%-VaR forecasts.  

 

(2) In order to obtain the empirical distribution of DCC using both risk measures, block 

bootstrapping is used for simulating 500 time series of the S&P500 returns for the 

3000-observations rolling window chosen in step 1 that will be used for producing a total of 

500 one-step-ahead 97.5%-ES and 99%-VaR forecasts. 
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(3) Steps 1 and 2 are then repeated for the 1040 days remaining in the total sample (from 2 July 

2010 until 26 June 2014), each time leaving out the first observation and adding a new 

observation at the end. This procedure yields a 500×1040 matrix for computing the 

cumulative distribution functions needed for testing SD. 
 

Table 2 

Rejection Rates for First-order SD Tests 

 

 

  Gaussian  Student-t   

Design GARCH EGARCH GJR  GARCH EGARCH GJR  HS 

BB 0.0001 0.0112 0.0010  0.0000 0.0000 0.0000  0.2002 

BD 0.0000 0.0092 0.0000  0.0000 0.0000 0.0000  0.1848 

LMW 0.0061 0.0112 0.0031  0.0000 0.0000 0.0000  0.1848 

 

Note:Rejection rates are from three different tests, namely Donald and Hsu (2013) (BB), Barrett and 

Donald (2003) (BD), and Linton, Maasoumi and Whang (2005) (LMW) for the null hypothesis: H0: 

DCC_VaR FSD DCC_ES, where DCC_VaR and DCC_ES denote the DCC produced using ES and 

VaR risk measurements, respectively. Forecast risk measures are produced using two probability 

distributions, Gaussian (left panel of the table) and Student t, and three conditional volatility models, 

stated in the first row of each table. In the last column, VaR and ES are computed using the Historical 

Simulation (HS) procedure. 

 

 

Table 3 

Rejection Rates for Second-order SD Tests 

 

 

  Gaussian  Student-t   

Design GARCH EGARCH GJR  GARCH EGARCH GJR  HS 

BB 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 

BD 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 

LMW 0.0000 0.0000 0.0000  0.0000 0.0000 0.0000  0.0000 

 

 

Note: Rejection rates are from three different tests, namely Donald and Hsu (2013) (BB), Barrett and 

Donald (2003) (BD), and Linton, Maasoumi and Whang (2005) (LMW) for the null hypothesis: H0: 

DCC_VaR SSD DCC_ES, where DCC_VaR and DCC_ES denote the DCC produced using ES and 

VaR risk measurements, respectively. Forecast risk measures are produced using two probability 

distributions, Gaussian (left panel of the table) and Student t, and three conditional volatility models, 

stated in the first row of each table. In the last column, VaR and ES are computed using the Historical 

Simulation (HS) procedure. 
.  

 

 

Table 2 presents rejection rates from three different tests, namely Donald and Hsu (2013) (BB), 

Barrett and Donald (2003) (BD), and Linton, Maasoumi and Whang (2005) (LMW), for the null 

hypothesis: H0: DCC_VaR FSD DCC_ES. Forecast risk measures, needed for computing DCCs, are 
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produced using two probability distributions, Gaussian (left panel of the table) and Student-t, and 

three conditional volatility models given in the first row of each table. In addition, historical 

simulation (HS) results are shown in the analysis. Table 3 shows rejection rates for SSD tests of BB, 

BD and LMW for the same distributions and volatility models. The p-values for the blockwise 

bootstraps method are approximated based on 200 replications, and the p-values for the subsampling 

method are approximated based on the 176 possible subsamples. 

 

The significance level is set to 5%. For example, in Table 2, under the Gaussian distribution and using 

GARCH to produce DCC_97.5%-ES and DCC_99%-VaR forecasts, the BB test obtained a 0.0001% 

rejection rate for the null hypothesis that DCC_VaR FSD DCC_VaR. Following Donald and Hsu 

(2013), when implementing the blockwise bootstrap, the block sizes are set to 12 and the subsample 

size is set to 25. 

 

Summarizing, the main results are given as follows: 

 

(1) The BB, BD and LMW tests in Table 2 show that DCC_VaR, assuming both Gaussian and 

Student-t distributions and for every conditional volatility model, first-order stochastically dominates 

DCC_ES. This is equivalent to the statement that using VaR for producing DCC provides a higher 

probability of obtaining lower DCCs than using ES. Therefore, the expected utility of the risk 

manager would be higher using VaR instead of ES. Nonetheless, DCC-VaR does not FSD DCC-ES 

when using Historical Simulation. Rejection rates are greater than 0.05. Figure 4 shows CDFs and 

ICDFs for observation 3558 (21 August, 2012) under HS. As CDFs shown in Figure 4 cross, first 

degree stochastic dominance cannot be shown. DCC_VaR model has a much smaller risk of higher 

costs at levels of dcc lower than 12% and greater than 13.5%, nonetheless the risk of higher costs for 

dcc level between 12 and 13.5% is higher. Thus, the risk manager must next test for second degree 

stochastic dominance by plotting the difference in the areas under de CDFs at all daily capital charges 

levels. This is shown in the right panel in Figure 4. In this example, the area between the CDFs of the 

DCC_VaR and the DCC_ES is always greater than or equal to zero for all possible outcomes. 

Therefore the DCC_VaR second order dominates the DCC_ES, even though the uncertainty 

associated with the DCC_VaR is greater than the associated with DCC_ES.  

Figure 4 

CDF and ICDF for DCC_97.5%-ES and DCC_99%-VaR 

 

  

Note: In the left panel, the solid line is the CDF of DCC_97.5%-ES and the dashed line is the CDF of 

DCC_99%-VaR produced by historical simulation. In the right panel, the solid and dashed lines depict the 

integrated cumulative distribution functions (ICDF) of the CDFs shown in the left panel. These are the 
empirical distributions of DCC_99%-ES and DCC_99%-VaR of observation 3559 (21 August, 2012).  

 

(2) As FSD implies SSD, then DCC_VaR SSD DCC_ES for all the conditional volatility models and 

distribution errors used in the paper. Therefore, using VaR for producing DCC would be chosen by 

risk managers who prefer less DCC to more and have loss aversion, who will often be willing to 

accept a gamble with uncertainty and an expected loss than a guaranteed loss of the same amount. 
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Contradictory objectives might exist between regulators and risk bank managers: on the one hand, 

regulators would prefer 97.5%-ES to the non-coherent 99%-VaR as a risk measure because it only 

provides the amount that is at risk with a particular probability. It does not suggest how much is at risk 

at twice that probability, or at half that probability, as it only tells part of the risk condition. On the 

other hand, following the SD analysis in this paper, VaR would be the preferred risk measure of risk 

managers. In addition, it seems that, contrary to the analysis of Danielsson (2013), which was based 

only on a comparison of standard deviations, VaR turns out to be a stochastically different measure of 

tail-risk when compared with ES. 

 

(3) The fact that Student-t has heavier tails than the Gaussian distribution explains why CDFs and 

ICDFs are very close under Gaussianity, while this is not the case when the Student-t is used. This can 

be seen in Figure 5 assuming the Gaussian distribution, and Figure 6 under Student-t. Cumulative 

Distribution Functions (CDF) in the left panel and the integrated CDFs (ICDF) in the right panel are 

for observation 3558 (21 August, 2012). These figures represent DCC_VaR and DCC_ES produced 

using 99%-VaR and 97.5%-ES when GARCH is used. The outcomes of the SD tests for the Gaussian 

distribution, showing that DCC_VaR FSD DCC_ES, are illustrative in the light of previous results 

(see Danielsson, 2013), in which 97.5%-ES and 99%-VaR had similar statistical properties (namely 

mean and standard deviation), thereby making it difficult to uncover any inherent empirical 

differences.  

 

Figure 5 

CDF and ICDF for DCC_97.5%-ES and DCC_99%-VaR 

 

  

Note: In the left panel, the solid line is the CDF of DCC_97.5%-ES and the dashed line is the CDF of 

DCC_99%-VaR produced by a EGARCH model assuming a Gaussian distribution of S&P500 returns. In the 
right panel, the solid and dashed lines depict the integrated cumulative distribution functions (ICDF) of the 

CDFs shown in the left panel. These are the empirical distributions of DCC_99%-ES and DCC_99%-VaR of 

observation 3559 (21 August, 2012). 
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Figure 6 

CDF and ICDF for DCC_97.5%-ES and DCC_99%-VaR 

 

  

Note: In the left panel, the solid line is the CDF of DCC_97.5%-ES and the dashed line is the CDF of 
DCC_99%-VaR produced by a EGARCH model assuming a Student-t distribution of S&P500 returns. In the 

right panel, the solid and dashed lines depict the integrated cumulative distribution functions (ICDF) of the 

CDFs shown in the left panel. These are the empirical distributions of DCC_99%-ES and DCC_99%-VaR of 
observation 3559 (21 August, 2012). 

 

6.Conclusions 

 

This paper proposed a robust comparison between ES and VaR using the SD ranking that is not 

limited to mean variance considerations. It is consistent with the spirit of Basel III concerns with tail 

outcomes, and considers a more general comparison that is robust to particular loss functions (for 

example, mean and variance/quadratic), and underlying (unknown) exact distributions of the 

estimated DCC. While VaR is still in great use, the ES may be a preferable risk measure (Dowd, 

2005). Specifically, ES considers losses beyond the VaR level and is shown to be sub-additive, while 

VaR disregards losses beyond the percentile and is not sub-additive.  

 

However, the calculation of ES will almost always involve greater computation than VaR. In this 

paper, we have presented easily-computed expressions for evaluating the ES for two distributions that 

are commonly used for modelling asset returns, namely the Gaussian and Student-t. For other more 

complicated cases, obtaining ES might be more challenging.  

 

The paper evaluates the optimality of 97.5%-ES and 99%-VaR with respect to the stochastic 

dominance relations induced by the sampling distribution of the Daily Capital Charges produced by 

using both risk measures. SD provides the pairwise comparison of the two risk measures such that 

risk bank managers whose utility functions belong to some set U will prefer one to another. Stochastic 

dominance ordering is theoretically superior to statistical moment rules (for example, mean-variance 

analysis). The SD approach uses as much information as possible from the DCC probability 

distribution.  

Stochastic dominance incorporates alternative risk attitudes (such as risk aversion and loss 

aversion) of decision makers more easily than other decision ranking methods, and provides more 

robust solutions. It was found that, under any risk manager utility-of-cost function such that less DCC 

is preferred to more and showing loss aversion, DCC_VaR stochastically dominated DCC_ES, so 

that DCC_VaR is preferable to DCC_ES in an expected utility sense. Loss aversion may reflect risk 

managers who will often be more willing to accept an expected loss than a guaranteed loss of the 

same amount.  
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According to previous results, some conclusions arise that might shed light on the Basel Committee 

dilemma of moving from 99%-VaR to 97.5%-ES. First, the null hypothesis of dominance of the 

97.5%-ES by the 99%-VaR cannot be rejected. Hence, using VaR for producing DCC would be 

chosen by risk managers who prefer less DCC to more and have loss aversion. SD is even more easily 

perceived for fat-tailed conditional distributions. Secondly, the 97.5%-ES not only accounts for the 

tail-risk, but also provides a more stable measurement of risk, and being less sensitive to extreme 

observations, it might be the preferred option by regulators.  

 

The financial crisis has reinforced the need and highlighted the importance of a well-functioning 

regulatory framework for transparent and efficient markets with the right incentives. This paper, 

providing worthwhile information about the ES and VaR statistical properties, suggests that 

regulators should weight the advantages of moving from VaR to ES in terms of providing a more 

stable risk measure, but bearing in mind how this change can jeopardize bank profits. There is not a 

unique winner in terms of risk management. On the one hand, lacking the tail risk problem, the 

information provided by ES would not mislead investors but, on the other, ES implies a greater 

chance of larger DCC than using VaR. 

 

An important caveat of the paper is that SD between ES and VaR can only be obtained for the class of 

utility function defined above that we consider might fit the bank risk manager preferences. One 

cannot determine the best risk measure with respect to other classes of utility functions. SD has not 

been used to identify the risk measure that is preferred under a regulator’s utility function. The 

regulator choice of the risk measure using the SD approach would require further specification of a 

specific utility function. Note that in certain situations there may be no dominant risk measure. 

 

Finally, while these results are obtained using a single asset and a limited range of models and 

distributions, they are likely to hold in a more general setting. The next step in this research agenda is 

to use a variety of assets, both from the USA and other countries, and also alternative univariate and 

multivariate risk models to ascertain the validity of these empirical results.  
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