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Abstract. One of the most widely-used multivariate conditional volatility models is the dynamic 

conditional correlation (or DCC) specification. However, the underlying stochastic process to derive 

DCC has not yet been established, which has made problematic the derivation of regularity 

conditions, such as stationarity and invertibility, and asymptotic properties of the Quasi-Maximum 

Likelihood Estimators (QMLE). To date, the statistical properties of the QMLE of the DCC 

parameters have been derived under highly restrictive and unverifiable regularity conditions, which 

essentially leads to proof by assumption. The paper shows that the DCC model can be obtained from 

a vector random coefficient moving average process, and derives the stationarity and invertibility 

conditions of the DCC model. The derivation of DCC from a vector random coefficient moving 

average process raises three important issues: (i) demonstrates that DCC is, in fact, a dynamic 

conditional covariance model of the returns shocks rather than a dynamic conditional correlation 

model; (ii)  provides the motivation, which is presently missing, for standardization of the conditional 

covariance model to obtain the conditional correlation model; and (iii) shows that the appropriate 

univariate conditional volatility model for DCC is based on the standardized shocks rather than the 

returns shocks. The derivation of the regularity conditions, especially stationarity and invertibility, 

should subsequently lead to a solid statistical foundation for the estimates of the DCC parameters. 

Keywords: Eigen values and eigenvectors, dynamic conditional correlation, dynamic conditional 
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1 Introduction 

In a prescient and innovative paper, Laloux et al. (1999) examined dynamic correlation matrices for 

portfolios of financial assets for purposes of risk management based on eigen values and 

eigenvectors. The primary purpose of their contribution was to test whether the correlation matrix 

was purely random. A serious question remains as to how to estimate the time-varying or dynamic 

correlations when the null hypothesis of randomness is rejected. The primary purpose of this paper is 

to analyse a subsequent development on dynamic correlations based on the financial econometrics 

literature on multivariate conditional correlations and conditional volatility. 

There has been little research on analyzing dynamic correlations, possibly because of the difficulty in 

establishing regularity conditions for the internal consistency of models, and the subsequent proofs of 

asymptotic properties of the estimators, namely consistency and asymptotic normality, for purposes 

of valid statistical inference. Among multivariate conditional volatility models, the dynamic 
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conditional correlation (or DCC) specification of Engle (2002) is one of the most widely used in 

practice. The basic DCC modelling approach has been as follows: (i) estimate the univariate 

conditional variances using the GARCH(1,1) model of Bollerslev (1986), which are based on the 

returns shocks; and (ii) estimate the conditional correlation matrix of the standardized residuals. The 

first step is arbitrary as the conditional variances could just as easily be based on the standardized 

residuals (that is, the returns shocks standardized by the conditional variance), as will be shown in 

Section 4 below. 

A similar comment applies to the varying conditional correlation model of Tse and Tsui (2002), 

where the first stage is based on a standard conditional volatility model using returns shocks. The 

second stage is slightly different from the DCC formulation as the conditional correlations are 

defined appropriately. However, no regularity conditions are presented, and hence no statistical 

properties are given. 

The DCC model has been analyzed critically in a number of papers as its underlying stochastic 

process has not yet been established, which has made problematic the derivation of the asymptotic 

properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical properties 

of the QMLE of the DCC parameters have been derived under highly restrictive and unverifiable 

regularity conditions, which in essence amounts to proof by assumption. 

This paper shows that the DCC specification can be obtained from a vector random coefficient 

moving average process, and derives the conditions for stationarity and invertibility of the DCC 

model. The derivation of regularity conditions should subsequently lead to a solid statistical 

foundation for the estimates of the DCC parameters. 

The derivation of DCC from a vector random coefficient moving average process raises three 

important issues: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance model of the 

returns shocks rather than a dynamic conditional correlation model; (ii) provides the motivation, 

which is presently missing, for standardization of the conditional covariance model to obtain the 

conditional correlation model; and (iii) shows that the appropriate conditional volatility model for 

DCC is based on the standardized shocks rather than the returns shocks.  

The remainder of the paper organized is as follows. In Section 2, the standard conditional volatility 

model is derived from a random coefficient autoregressive process to provide a background for the 

remainder of the paper. In Section 3, the DCC model is discussed. Section 4 presents a vector random 

coefficient moving average process, from which DCC is derived in Section 5. The conditions for 

stationarity and invertibility of DCC are given in Section 6. Some concluding comments are given in 

Section 7. 

2. Random Coefficient Autoregressive Process 

 

Consider the following a random coefficient autoregressive process of order one: 

 

tttt   1           (1)  

 

where 

 

t  ~ iid
),0( 

, 

 

t  ~ iid 
),0( 

, independent of 
 t . 

 

The ARCH(1) model of Engle (1982) can be derived as (see Tsay (1987)): 
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2 )|(   tttt IEh 
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where th
 is conditional volatility, and 1tI

 is the information set at time t-1. The use of an infinite lag 

length for the random coefficient autoregressive process leads to the GARCH model of Bollerslev 

(1986).  

 

The scalar and diagonal BEKK models of Baba et al. (1985) and Engle and Kroner (1995), which lead 

to dynamic multivariate covariance models, can be derived from a vector random coefficient 

autoregressive process (see McAleer et al. (2008)). As the statistical properties of vector random 

coefficient autoregressive processes are well known, the statistical properties of the parameter 

estimates of the ARCH, GARCH, scalar BEKK and diagonal BEKK models are straightforward to 

establish. 

 

3. DCC Specification 

Let the conditional mean of financial returns be given as: 

 

tttt IyEy   )|( 1           (3) 

where 
)'( ...,,1 mttt yyy 

, ity
 = itPlog

 represents the log-difference in stock prices ( itP
), i = 

1,…,m, 1tI
 is the information set at time t-1, and t  is conditionally heteroskedastic. Without 

distinguishing between dynamic conditional covariances and dynamic conditional correlations, Engle 

(2002) presented the DCC specification as: 

1

'

11)1(   tttt QQQ 
        (4)  

where 
Q

 is assumed to be positive definite with unit elements along the main diagonal, the scalar 

parameters are assumed to satisfy the stability condition,   < 1, the standardized shocks, 

)'( ...,,1 mttt  
, which are not necessarily iid, are given as ititit h/ 

 , with ttt D 
, and 

tD
 is a diagonal matrix with typical element ith

, i = 1,…,m.  

If m is the number of financial assets, the multivariate definition of the relationship between t  and 

t  is now given as ttt D 
. 

Define the conditional covariance matrix of t  as tQ
. As the 1m  vector, t , is assumed to be iid 

for all m elements, the conditional correlation matrix of t  , which is equivalent to the conditional 

correlation matrix of t , is given by t . Therefore, the conditional expectation of t is defined as: 

 tttt DDQ 
.            (5)  
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Equivalently, the conditional correlation matrix, t , can be defined as: 

11  tttt DQD
.          (6) 

Equation (5) is useful if a model of t  is available for purposes of estimating tQ
, whereas equation 

(6) is useful if a model of tQ
 is available for purposes of estimating t . 

In view of equations (5) and (6), as the matrix in equation (4) does not satisfy the definition of a 

correlation matrix, Engle (2002) uses the following standardization: 

2/12/1 ))(())((  tttt QdiagQQdiagR
        (7) 

There is no clear explanation given in Engle (2002) for the standardization in equation (7) or, more 

recently, in Aielli (2013), especially as it does not satisfy the definition of a correlation matrix, as 

given in equation (6). The standardization in equation (7) might make sense if the matrix tQ
 were the 

conditional covariance matrix of t  or t , though this is not made clear. It is worth noting that the 

unconditional covariance matrix of t  is not analytically tractable as its stochastic process is not 

stated explicitly. 

Despite the title of the paper, Aielli (2013) also does not provide any stationarity conditions for the 

DCC model, and does not mention invertibility. Indeed, in the literature on DCC, it is not clear 

whether equation (4) refers to a conditional covariance or a conditional correlation matrix. In this 

respect, some caveats regarding DCC are given in Caporin and McAleer (2013). 

4. Vector Random Coefficient Moving Average Process 

Marek (2005) proposed a linear moving average model with random coefficients (RCMA), and 

established the conditions for stationarity and invertibility. In this section, we extend existing 

theoretical results by deriving the stationarity and invertibility conditions of a vector random 

coefficient moving average process. 

Consider a univariate random coefficient moving average process given by: 

tttt   1            (8)  

where t ~  iid ),0(  . The sequence 
 t  is supposed to be independent of 

,...,, 11  ttt 
, which is 

called the future independence condition, with a mean zero and variance  . It is also assumed to be 

measurable w.r.t. tI
, where  tI

 is the information set generated by the r.v. { ,...1, tt 
}. Furthermore, 

assume that the process { t } is stationary and invertible such that tt I
.  

Without the measurability assumption on 
 t  it would be difficult to obtain results on the 

invertibility of the model, which is essential for purposes of deriving the likelihood equation for 

estimating the associated parameters. However, an important special case of the model arises when 

 t  is iid, that is, not measurable with respect to tI
, in which case the conditional and unconditional 

expectations of t  are zero, and the conditional variance of t  is given by: 
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2 )|(   tttt IEh 
         (9) 

which differs from the ARCH(1) model in equation (2) in that the returns shock is replaced by the 

standardized shock. As t  ~ iid 
),0( 

, the unconditional variance of t  is given as: 

)1()( thE
. 

The use of an infinite lag length for the random coefficient moving average process in equation (8), 

with appropriate restrictions on t , would lead to a generalized ARCH model that differs from the 

GARCH model of Bollerslev (1986) as it would replace the returns shock with a standardized shock. 

 

The univariate ARCH(1) model in equation (9) is contained in the family of GARCH models 

proposed by Hentschel (1995), and the augmented GARCH model class of Duan (1997). 

It can be shown from the results in Marek (2005) that a sufficient condition for stationarity is that the 

vector sequence 
)',( 1 tttt 

 is stationary. Moreover, by Lemma 2.1 of Marek (2005), a 

sufficient condition for invertibility is that: 

  0log tE 
.          (10) 

The stationarity of 
)',( 1 tttt 

 and the invertibility condition in equation (10) are new results 

for the novel univariate ARCH(1)-type model given in equation (9), as well as its direct extension to 

associated GARCH-type models.  

Extending the analysis given above to the multivariate case and to a vector random coefficient 

moving average (RCMA) model of order p, we can derive a special case of DCC(p,q), namely 

DCC(p,0), as follows: 

t

p

j

jtjtt  




1           (11) 

where t  and t  are both 1m  vectors and jt
, j = 1,…,p are random mm  matrices, 

independent of 
,...,, 11  ttt 

. Under the following Assumption 1, it is possible to derive the 

conditional covariance matrix of t  in equation (11): 

Assumption 1:  

(i) tE ( 0)| 1 tI
, 

'( ttE   )| 1tI
. 

(ii) The random coefficient matrices jt
have the following properties, for all j=1,…,p, t=1,…,T:  

jtE ( )| 1tI
=0, 

'( ,, mnjtkljtE  ')| ,,1 mnjkljt AAI  , and 
'( ,, mniskljtE  0)| 1 tI

, ,ji  and/or .ts   

Advances in Economics, Business and Management Research (AEBMR), volume 26

12



 

Using the conditions in Proposition 1 of McAleer et al. (2008), it follows that the conditional 

covariance matrix is given by: 

')|'( '

1

1 jjtjt

p

j

jtttt AAIEH 



  

 

)())((
1














 



vecAAIHvecE j

p

j

jmt

. 

This approach can easily be extended to include autoregressive terms. For example, in a model 

analogous to GARCH(p,q), namely: 

 
 

 
p

i

j

q

j

jtjiititit BHBAAH
1 1

' ''

 

where the parameter matrices jB
 are such that the maximum eigenvalue of 

j

q

j

j BB



1  is smaller than 

one in modulus, it follows that: 

)())((
1

1

1




























 







vecAAIBBIHvecE j

p

j

jmj

q

j

jmt

. 

The derivation given above shows that, as compared with the standard DCC formulation, which is not 

based on any known stochastic process, the formulation given above permits straightforward 

computation of the unconditional variances and covariances.  

It should also be noted that in Aielli’s (2013) variation of the standard DCC model, it is possible to 

calculate the unconditional expectation of the tQ
 matrix, as in equation (4), but this is not equal to the 

unconditional covariance matrix of t  , which is analytically intractable. This is an additional 

advantage of using the vector random coefficient moving average process given in equation (11). 

5. One Line Derivation of DCC 

If jt
 in equation (11) is given as: 

mjtjt I 
, with 

),0(~ jjt iid 
,    j = 1, …, p,  

where jt
 is a scalar random variable, then the conditional covariance matrix can be shown to be: 




 
p

j

jtjtjtttt IEH
1

'

1

' )|( 

.       (12) 
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The DCC model in equation (4) is obtained by letting p , setting 
1 j

j 
, and 

standardizing tH
 to obtain a conditional correlation matrix.  For the case p = 1 in equation (12), the 

appropriate univariate conditional volatility model is given in equation (9), which uses the 

standardized shocks, rather than in equation (2), which uses the returns shocks. 

The derivation of DCC in equation (12) from a vector random coefficient moving average process is 

important as it: (i) demonstrates that DCC is, in fact, a dynamic conditional covariance model of the 

returns shocks rather than a dynamic conditional correlation model; (ii) provides the motivation, 

which is presently missing, for standardization of the conditional covariance model to obtain the 

conditional correlation model; and (iii) shows that the appropriate ARCH or GARCH model for DCC 

is be based on the standardized shocks rather than the returns shocks. 

6. Derivation of Stationarity and Invertibility 

The formulation of DCC given in the previous section is more natural than the standard treatment as it 

can be derived from an underlying stochastic process, and can be also analyzed in terms of properties 

such as stationarity and moments.  

This section derives the stationarity and invertibility conditions for the DCC model in Theorem 1, 

based on Assumption 2: 

Assumption 2. 
  pmE kt  log

        (13)  

where t
 is the Frobenius norm, and t

 is given by: 

 



















 



01...0

....

0...01

...21 pttt

t



 

 

Theorem 1. A sufficient condition for stationarity is that the vector sequence: 

'

11 ),...,,( ptpttttt  
 

is stationary. Furthermore, under Assumption 2, the vector random coefficient moving average 

process, t , is invertible. 

Proof: The proof of stationarity is similar to that given above for the univariate random coefficient 

moving average process. For invertibility, note that:  
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which can be written as: 
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where  

'
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 ptttt 
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Hence, 
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Now let: 
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1

log
11

log
1

1
 

 

0
1

log
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 ktsa
pm

E

 

as 
pmE kt  log

, by assumption. This implies that 
0

..


sa

n

tt 
 and, hence, t  is 

asymptotically measurable with respect to {
...,, 21  tt 

 }, and t  is invertible.         
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Note that a sufficient condition for equation (13) is that: 
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0 . 

The condition given in equation (14) may be easier to check in practice than the condition given in 

equation (13).  

For the special case mjtjt I 
, with 

),0(~ jjt iid 
,    j = 1, …, p,  discussed in Section 5 above, 

the condition in equation (14) simplifies to the well-known condition on the long-run persistence to 

returns shocks, namely: 

1
11

2 


p

j

j

p

j

jtE 

.  

7. Conclusion 

The paper was concerned with one of the most widely-used multivariate conditional volatility models, 

namely the dynamic conditional correlation (or DCC) specification. As the underlying stochastic 

process to derive DCC has not yet been established, this has made problematic the derivation of the 

asymptotic properties of the Quasi-Maximum Likelihood Estimators (QMLE). To date, the statistical 

properties of the QMLE of the DCC parameters have been derived under highly restrictive and 

unverifiable regularity conditions. 

The paper showed that the DCC specification could be obtained from a vector random coefficient 

moving average process, and derived the stationarity and invertibility conditions of the DCC model. 

The derivation of the regularity conditions should eventually lead to a solid foundation for the 

statistical analysis of the estimates of the DCC parameters. 

The derivation of DCC from the vector random coefficient moving average process demonstrated that 

DCC is, in fact, a dynamic conditional covariance model of the returns shocks rather than a dynamic 

Advances in Economics, Business and Management Research (AEBMR), volume 26

16



 

conditional correlation model. Moreover, the derivation provided the motivation, which is presently 

missing, for standardization of the conditional covariance model to obtain the conditional correlation 

model. The standardization of the estimated DCC models in practice does not satisfy the definition of 

a correlation matrix, which has always been problematic in interpreting the DCC model. 

The derivation also showed that the appropriate univariate conditional volatility model for DCC is 

based on the standardized shocks rather than the returns shocks. The derivation of regularity 

conditions should subsequently lead to a solid statistical foundation for the QMLE of the appropriate 

univariate specifications that underlie the DCC model. 
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