
A Study on Load Balancing Techniques for Task Allocation in Big Data
Processing*

Jin Xiaohong1,a, Li Hui1, b , Liu Yanjun1, c, Fan Yanfang1, d
1 Beijing Institute of Science and Technology Information, Beijing 100048, China;

ajinxh@bjstinfo.com.cn, blisa-lh@126.com, cliuyj@bjstinfo.com.cn, d34678883@qq.com

Keywords: Big Data; Job Schedule; Distributed Computing; Clustering; Load Balancing
Abstract. This paper introduces the task allocation techniques with clustering and load balancing in
the field of Internet to the field of image processing job allocation of alternative big data. It designs
and realizes a load balancing cluster architecture for the alternative big data, and an improved load
balancing algorithm applicable to large-scale image processing. The experimental results show that
the cluster architecture can execute task allocation and data processing continuously and stably, and
the improved load balancing algorithm could improve the processing efficiency about 10% and
more .

Introduction
With the increasing expansion of remote sensing image application market, the means and

capability to obtain remote sensing images are greatly improved, and the data scale of remote
sensing images acquired annually grows rapidly. Facing such a large number of image data, the
traditional data processing techniques lag far behind meeting the data processing requirements in
the age of big data. The automation of data processing and the intelligence of task allocation will
certainly become the inevitable development trend in the future.

The production organization and task allocation of data processing still stay in the mode of
traditional manual allocation although automated processing without manual intervention or with
little manual intervention is basically realized in all data preprocessing links of remote sensing
images. Different from traditional Internet big data, the single remote sensing image is large in size
and the single processing task in each link is time-consuming. The data processing period of each
image vary from tens of seconds to tens of minutes (or even longer) based on the data size and
processing link. Although the single batch of data processing tasks do not reach the massive scale,
the expected data processing efficiency is difficult to achieve if hundreds or even thousands of data
processing jobs are fully allocated in a manual way.

In addition, limited by the data processing features of remote sensing image as well as the
processing capacity of a single graphic workstation, it is more inclined to use a multi-device cluster
system featured by high performance, low price and strong scalability in practical production
[1].Therefore, the problem that needs to be addressed urgently is how to automatically allocate a
large number of data preprocessing tasks of remote sensing images to several graphics processing
units with equivalent capacities, and how to keep all processing devices of the cluster system
efficient without allocating unbalanced loads among such processing devices.

This paper uses the Web cluster technology to build a clustered/distributed processing system
for the data preprocessing of remote sensing images, the round robin and quota management
mechanism to allocate processing jobs for each processing node, and the improved load balancing
algorithm to balance the task loading amount of each graphic workstation in the cluster.

* Fund project: This is one of the research results of Beijing municipal finance projects "Information Processing and Analysis Abilit
y Building Against Text Information " (PXM2016-178214-000006) and "Design and Implementation of Specific Entity Relation Extr
action and Data Mining Tools"（PXM2016_178214_000007）in 2016.

International Forum on Mechanical, Control and Automation (IFMCA 2016)

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 113

212

Web cluster architecture
The server cluster is to organize several servers in the intranet. From the view of outside users,

the cluster is just a virtual server; looking from the inside, the task requests generated by the users
are distributed to different processing server nodes by such devices or programs as proxy server or
load balancer through some allocation mechanism. The clustered servers can achieve the high
performance equal to that of a giant server, with high cost performance. The single server in the
server cluster is called node which can independently process a request from the user[2].
Load balancing cluster architecture

The Web cluster for remote sensing image preprocessing consists of a task manager (front-end
dispatcher) and several graphic workstations (back-end server) deployed in LAN. After an operator
uploads the processing tasks to the task pool through the front-end task manager, the system will
distribute the data processing requests in the task pool to the back-end graphic workstation nodes by
using round robin algorithm[3].

The front-end node is the core of the whole cluster system. It needs to respond to the http
request in the operator task submission interface, and also establish a connection with the back-end
server. Compared with the traditional big data processing, there is generally just a parallel task load
of hundreds in the remote sensing image preprocessing, with a small task allocation workload in the
front-end node of the Web cluster and a large operation load in the back-end graphic workstation. In
practical application, the front-end task manager shall be independently configured with special
hardware device whenever possible in order to prevent graphic operation from affecting the task
allocation mechanism due to excessive consumption of system resources.

Reliable information communication is realized between the front-end and back-end nodes
through a heartbeat detection mechanism. At the moment of each heartbeat, the back-end graphic
workstation will returns its own status message to the front-end node through a status reporter, and
the process scheduler will adjust the process quota of the current graphic workstation in a dynamic
way according to the control command returned from the front-end node.

The data processing request of each image is regarded as a data processing job in each link of
image processing. Each job is arranged in the task submission order; the task submitted first will be
processed firstly, and the task submitted late will queue up for processing. To prevent each
computer from overload, the number of jobs that each processing node is able to process in parallel
is designed for the rear-end node by using the thread per connection, and set as a adjustable initial
preset quota according to different data processing task types in combination with the processing
performance of rear-end processing nodes. When all back-end processing nodes reach the maximum
quota, the job submitted late will queue up until the processing node finishes the previous job, so as
to ensure each processing node is not overloaded.

In order to realize the performance isolation of services with different priorities, a queue priority
is arranged for each job when a task is submitted. When the queue priorities are the same, the jobs
in the queue will be executed one by one by the submission time; where the queue priorities are
different, the jobs with a high priority will be processed preferentially.

Advances in Engineering Research, volume 113

213

Figure 1 Load Balancing Model

Information exchange mechanism between front end and back end
This paper uses Apache as server software. The operator end is connected with the front-end

task manager by http protocol, and the front-end task manager is connected with the back-end
graphic workstation by TCP protocol[3]. Figure 2 shows the information exchange between the front
end and back end of the cluster architecture. The system transfers the data request submitted by the
operator to the database through Apache service in a way of HTTP and XML. All graphic
workstations configured respectively establish a connection with the front end. At the moment of
each heartbeat, each graphic workstation actively sends a status message to the front end; at the
same time, in terms of the job queue to be processed in the front-end database, the jobs to be
finished by each graphic workstation are returned to each processing node, according to the preset
job priority and the parallel job quota control for the tasks of different job types.

Figure 2 Information Exchange between Front End and Back End of Cluster Architecture

Load balancing
Resource allocation is a core issue for parallel processing and distributed computing. The load

balancing technique is the key part of the cluster system and affects the performance of the cluster
system [4] [5]. The load balancing technique of the server cluster is aimed to allocate the external

Advances in Engineering Research, volume 113

214

requests to the server cluster in some way through the rational allocation by load balancing strategy
while ensuring the current server cluster network architecture is unchanged. After receiving the
requests allocated by the load balancer, the processing server in the cluster processes them and feed
the processing results back to the front end.
Load balancing algorithm

The common load balancing algorithms include Round Robin, Weighted Round Robin, Least
Connection, Weighted Least Connection and Fastest. The study on the above algorithms is mainly
based on the Internet application in which the number of request at the client is huge while the
processing operation load of each request is small [1]. Whereas, large-scale remote sensing image
processing is significantly different from Internet data processing. The data size of a single remote
sensing image processing job is generally a scale of megabyte to gigabyte. Such data scale only
allows each graphic workstation node to process in parallel several jobs concurrently, and the data
processing time of each job ranges from tens of seconds to tens of minutes. When users submit too
many data requests, there are a large number of data processing jobs to queue up.

The utilization rates of CUP, memory and disk by different job processing types at different
stages can be obtained through deep analysis on the links of remote sensing image preprocessing.
Generally, the processing program will read the data to be processed from the disk first, following
by the operation link featured in high CUP occupation and then by subsequent pyramid building and
result copying process. When the job allocation mechanism with initial preset quota of processing
tasks is used for quota control, the quota is generally pre-computed in a manual way and initially
preset according to the bottleneck link of data processing. For example, in image fusion, the number
of parallel jobs for CPU computation is generally an image fusion processing bottleneck, so the
quota control of job allocation is also set according to the parallel computation ultimate capacity of
CPU. However, the data processing will enter a long and slow pyramid building and result copying
stage (about 20% to 40% in all job stage) when the operation with high CPU occupation is over. At
the moment, the utilization rates of CPU, memory and disk are low. But as the current job is not
finished and the task quota is not released, the subsequent jobs in a queue will not be executed even
though the CPU, memory and disk are in relatively idle status. The processing time of pyramid
building and result copying stage is generally longer than the strong operation time of CPU, which
causes waste of computing resources and reduced efficiency of data processing. As a result, an
improved load balancing algorithm applicable to remote sensing image processing shall be designed
for the load balancing job of remote sensing image preprocessing to dynamically adjust the preset
quota value for the ongoing data processing job. When the data processing enters the relatively idle
status of system resources, the new dynamic balancing algorithm can dynamically adjust the preset
parameter value according to the value obtained, enabling all computing nodes to stay in relatively
full status all the time until all job tasks in the queue are finished.

At the time of designing a new algorithm, it shall be considered that the time of single remote
sensing image processing job is long and the CPU, memory and disk read/write is a long,
dynamically changing process. When computing the CPU, memory and disk read/write of
computing nodes, it is necessary to consider the status at some time point as well as the status
within the recent past time period. Based on the actual testing, it is appropriate to control this time
period within 5s to 10s (determined according to different hardware configurations and different
jobs), and the load balancing algorithm will initiate the status operation every 5s.

In addition, as the data processing job is executed in cluster environment, it is necessary to take
the network mapping disk read/write capacity into consideration when the disk read/write indicator
is considered, rather than local disk read/write capacity.
Improved load balancing algorithm

When computing the overall performance indicator of each computing node over the some past
time period, it is necessary to read the average performance indicator of the CPU, memory and
network disk read/write of each server over a certain past time period, then make statistics on the

Advances in Engineering Research, volume 113

215

average performance indicator of each processing node, find the maximum value from them, obtain
the contrast value by comparing the average performance indicator of each processing node with the
corresponding maximum value, and calculate the current comprehensive indicator of the processing
node by the weight formula [6].

Calculation of the comprehensive performance of each processing node within a certain
time

It is assumed that there are m processing nodes in the cluster, and they can form the set
N{N1,N2,…Nm}.

1) The processing ratio of CPU in the ith processing node: CSi

 CS = INT((, ,…,) × 100) (1)
Where, Ci is the average processing capacity of the CPU of the ith server over a certain past

time, and max(C1, C2, …, Cm) is the maximum processing capacity of the CPU of the server in the
cluster.

2) The processing ratio of memory in the ith processing node: MSi MS = INT((, ,…,) × 100) (2)
Where, Mi is the average processing capacity of the memory of the ith server over a certain past

time, and max(M1, M2, …, Mm) is the maximum processing capacity of the memory of the server
in the cluster.

3) The processing ratio of network disk read/write in the ith processing node: DSi DS = INT((, ,…,) × 100) (3)
Where, Di is the average processing capacity of the network disk read/write of the ith server

over a certain past time, and max(D1, D2, …, Dm) is the maximum processing capacity of the
network disk read/write of the server in the cluster.

To facilitate calculation, all ratio ranges are set as the positive integers from 0 to 100. The value
reflects the degree of the server to control idle resources at present. The above indicators must be
taken into comprehensive consideration to determine whether some server can initiate the next job.
As CPU is the bottleneck for quota allocation in terms of most graphic processing operations,
different weight values must be assigned to CPU, memory and network disk read/write when
considering the comprehensive indicator. As a result, the current comprehensive indicator GS(N)
of the ith processing node is obtained as GS(N) = W × CS + W × MS + W × DS (4)

Where: W -- Weight coefficient of CPU indicator; W -- Weight coefficient of memory indicator; W -- Weight coefficient of network disk read/write.
Calculation of comprehensive load indicator
Over a certain past time, the average values of CPU, memory and network disk read/write are

respectively Ci, Mi and Di; the actual maximum processing capacities of this server are respectively
MaxCi, Max Mi and Max Di; the weighted values of various indicators are respectively W , W
and W . The load parameter LS(N) of this server over a certain past time can be calculated as per
the formula below: LS(N) = INT(W × × 100) + INT(W × × 100) + INT(W × × 100)

(5)

Advances in Engineering Research, volume 113

216

Comprehensive indicator parameter at the processing node
According to the calculated comprehensive performance and comprehensive load indicators

over a certain past time at various processing nodes above, the comprehensive indicator parameter F(N) at the processing node I can be calculated as follow: F(N) = () () (6)
The larger value of F(N), the higher comprehensive performance indicator, and the more

callable resources in the current computer. After the load balancer calculates the comprehensive
indicator parameter of each server in the cluster as per the formula above, the relatively large
parameter value indicates that the server is able to accept new processing tasks when the current job
haven’t been completed. As a threshold is set to the parameter value, when the parameter value
exceeds this threshold, the load balancing algorithm changes the preset quota parameter so that this
processing node can accept the next processing job in queue. After the processing node accepts the
new job, the load balancing algorithm calculates a new parameter value at a fixed interval. When
the parameter value exceeds this threshold again, the processing node accepts the next processing
job in queue repeatedly in this way until all jobs in queue are processed.

Experimental results
1). In the test, we set up a small Web service cluster processing system, including one front-end

task manager and two back-end processing nodes. Distributed cluster processing is conducted to 40
sets of data fusion jobs.

With the new architecture, the system can operate for 7*24 hours without interruption under the
ideal conditions of data, and the initiation response time of each new job is preset within 1s.

2). To test the improved load balanced algorithm,we selected different size imagery from
different sensor. Each group has 20 sets of imageries.

Table 1. The test data

Group Sensor Input_Average_Size
(GB)

Output_Average_Size
(GB)

sets of
imageries

A KOMSAT-DE2 0.55 1.69 20
B KOMSAT-MSC 1.43 4.29 20

Each group imageries will be tested in different test plan:
Test 1: Data fusion with Round Robin method;
Test 2: Data fusion with imporved load balance algorithm.
Compare the consuming time in different test plan. We got the table:

Table 2. Comparation of different test plan.

Group time-consuming(minutes) Efficiency
improvement Test 1 Test 2

GroupA 39.73 36.58 7.93%
GroupB 99.42 87.07 12.42%

According to the experiment, imporved load balance algorithm could improve the processing
efficiency about 10%. And with the increase of the amount of single imagery, there is more space
for the improvement in efficiency.

Conclusion
This paper, based on the cloud processing thinking, introduces the clustering concept into the

field of remote sensing image processing, and designs the automatic allocation mechanism of image
processing jobs as well as a new load balancing algorithm and mechanism. It makes full use of the
computing resources of graphic workstation processing nodes while ensuring the processing node of

Advances in Engineering Research, volume 113

217

the cluster is not overloaded. An ideal outcome has obtained from the practical testing.

References

[1]. LI Kun,WANG. Baijie. Research on Load Balancing of Web·server System and Comparison of
Algorithms [J]. Computer and Modernization.2009,(8):7-15.

[2]. WangliPing. Research and Improvement of the Load Balancing Technology based on Nginx
Server Cluster [D]. ShanDong:ShanDong University,2015.

[3]. Gao Ang,Mu De-jun,Hu Yan-su. Differentiated Service and Load Balancing in Web Cluster [J].
Journal of Electronics & Information Technology.2011,(3):555-562.

[4]. LiuKun. Reaearch on Load_balanced Strategy in Cloud Computing [D].Ji Lin: JiLin
University,2016.

[5]. PengYuhang,Wujijing,Shenyue .Distributed Computing ModeI and Supporting Technologies
for the Dynamic Allocation of Internet Resources[J]. Journal of Computer Research and
Development.2011,48(9):1580-1588.

[6]. RONG Hang.Improved Dynamic Load—balancing Algorithm in the Cluster [J]. Wireless
Communication Technology.2015,(3):34-37.

Advances in Engineering Research, volume 113

218

