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Abstract. An inclusion under a hill would amplify the ground motion tremendously. However, Few
analytic solutions achieved for this problem have limitations on a special semi-cylindrical hill or a
underground cavity. Here we derive one for a new model with the wave functions expansion and
auxiliary functions technique. It is reduced to solving a set of infinite linear agebraic equation using
Fourier expansion for auxiliary functions based on boundary condition. The solution can be
degenerated to the ones of the model ignoring the hill or theinclusion. Finally, numerical solutionsare
obtained by truncation of the infinite equations. The results indicate that the ground motion could be
seen as the superposition of the effect of the inclusion and the hill qualitatively; and when the
inclusion degenerates to a cavity, amplification frequencies on the hilly boundary can be obtained by
the wave speed in half-space and the vertical distance between the flat surface and the tunnel. The
influence of softness and hardness of inclusion and incident anglesis aso discussed here.

Introduction

Analyses show that special surface topographies (e.g. hills, aluvial valleys, canyons) and
underground topographies (e.g. underground inclusions and cavities) have a complex effect on
ground motion. This paper will put both types of topographies together, which investigated here
would be the case of avariable circular-arc hill on top of an underground circular inclusion.

To study the problem, few previous analytical solutionsrelated to diffraction of SH waves by a hill
and a subsurface inclusion in the elastic half-space will first be summarized here. The diffraction of
SH waves by avariable circular-arc hill with ainside concentric circular cavity has been solved [1].
Thediffraction of SH waves by a semi-cylindrical hill above asubsurface cavity has also been studied
[2].

All of the investigations above were confined to a special semi-cylindrical hill or a subsurface
circular cavity concentric with the hill, and they analyzed the effect without comparing with the
degraded situations ignoring the underground and surface topography respectively. In this paper we
obtain the analytical solutions of the scattering of SH wave by a variable circular-arc hill above a
subsurface inclusion with wave functions expansion, and it can be degraded to the ones without the
inclusion or without the hill.

M athematical mode

The model as shown in fig 1 consists of an elastic, isotropic and homogeneous half-space and a
circular-arc hill of radius al above an inclusion of radius a,. The free surface of the half-space consists
of aflat surfaceI" and a circular-arc hilly boundary L. The boundary of the inclusion is marked as C.
The vertical distance between origin o; and the flat surface is d;; the distance between origin 0, and
origin o is dy; and ds=d;+d, presents the buried depth of origin o,. The height and half-width of the
hill ish and b. Theratio of h/b is named as height-to-width ratio. The materia properties are given by
the shear modulus x and the velocity c. The subscript 1, 2 on u, ¢ designate these constants in the
half-space and that in the inclusion.
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Theincident SH wave u®” with incident angle o can be expressed in the Cartesian coordinate x-0-y
as:
(- XY 1
u®(x,y) =u,e e @
Where time factor exp(-iwt) was omitted, and it
is same for the following equations; c.=c/sina I
and c,=c/coso. are the phase velocities in the x
and y direction, respectively; and  and ug are
the circular frequency and amplitude of the
incident SH wave, respectively. e
The total displacement u in the half-space
must satisfy the wave equation

‘ﬂu2+‘ﬂu U  w?

> ror * r*96° * @ 0 @) SH
The traction-free boundary conditions are
c,=0(r,O) T 3) La
o, =0,(r,0)1 L (4)

Where the radial stress and the hoop stress are
given by

Fig.1 Model

flu _#Tu
o’ Og, = X7 ®)

The model isdivided into three parts as shown in fig 2, oneis circular region II including the hill,
whose upper and lower boundaries are L and’ L, one is circular region III including the inclusion,
whose boundary is C, and the rest of the model is region I, which has common boundaries’ L and C
with region II and IIL.

O-TZ :ILL

O &

Fig. 2 The division of the solution domain

The displacement field in the three regions can be expressed by

Tu™ +u® +u® (r,ol 1
u=tu® (r,o)1 11
fu® (r,O)1 11

Where u® represents the free field displacement in the half-space, u® represents the scattering

displacement from boundary |, u® represents the scattering displacement from boundary C, u®
represents the scattering displacement in the region I1, and u® represents the scattering displacement
in the region III.
For the convenience of the problem, we create three cylindrical coordinates system as showninfig
1: (r,0), (r1,01), (r2,62). Finaly, the displacement and stress continuity conditions on the interface |
and C need satisfy the following equations, respectively.
u®(r,,6,) =u™(r,,6,),(r,,0,)1 L (6)
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o¥(r,0,) =0 (r,,6,),(r,,6)1 L @
u(r,,0,) =u"(r,,0,),(r,,0,)1 C ©)
0'53([‘2,02) =ar(2“z‘)(r2,92),(r2,92)i C (9)

Where superscript I, II, III represent the corresponding region.

Analytical solutions

In this section the displacement and stress expression in region I, II, III in the coordinate system
(r1,61), (r2,62) will be obtained for the convenience of solving the boundary equations.
Region L. The displacement u® can be expressed by
U =y +y® (10)
Where u® represents the incident SH wave, u®” represents the reflected SH wave on the flat ground
surface, u®™ can be written as

o
u“(xy)=ue ~ (11)
Inserting u®, u®” into equation (10) leadsto
u(f ) (rl’ 91) = Uofi 1 elﬁlrlcos€4 + uoél el Pary COSO5 (12)
Whereﬁ1=a)lcl, Oa=nl2-0-01, Os=rl2+a-01, Xlzébldlsma .
By transform formula
. ¥
e’ =3¢ i"J (B,r)cosnd (13)
n=0
Eq. (12) can be written as
¥
u® (r,0) =Uy @ &, "x1, 3, (Bi1) (14)
n=0
Whereep=1, €1 23..n=2, and Jn(X) are the Bessel functions of thefirst kind with argument x and order n,

and
—x P P 2gnnP-- inn® -
K., =[x cosn(2 a)+xicosn(2+a)]cosrqi+[xi smn(2 a)+xismn(2+a)]smnqi
Inserting Eq. (14) into Eq. (5) leadsto
S, & .n
s (%) =28 &/ k,R (biy) (15)

1'1 n=0
Where oo=w11U0, representing the stress amplitude of the incident wave, and
R,(Air) =nd, (Br) - Aindna(Bin) _

Similarly, u'™,s in the coordinate system (r2,65) can be expressed as

z

¥
ut? (ry0,) =4, é}fn' Kondn(Bil2) (16)
() _0g & _in
0y, (ry,6,) = & & "R, (Bl i, (17)
Bir, n=0

Where X2: ib,d;sina
Eq. (14)~(17) strictly satisfy The traction-free boundary condition (4).

Next , u® in coordinate system (r,6) is obtained with satisfying equation (2) and the boundary
condition (4):

¥
u(r.q) =u,@ H® (br)(Ad® cosng +B,d” sinr) (18)

n=0
Where A, and B, are constants to be determined , dn(1)=1+(-1)n, d,(1)=1-(-1)n, and H,P(x)are the
Hankel functions of the first kind order with argument x and order n.
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This scattered field has also automatically satisfied the traction-free boundary condition (4).
To transform the Hankel functions in coordinate system (r,6) into those in coordinate system
(r1,61), the followi ng exterior region form of Graf’s addition theorem is used [3]:

3 i [Jmn(byd) + (- "I, (b,d,)] cosny, i
HP (byr) i) me . e m-nA-1eL LY a9
( )I g ( ) ( ) T [‘]m+n(b dl) ( 1) ‘]m n(b dl)]snnqlty)

Inserting equation (19) into equatlon (18) leads to
¥
U (r,0,) =t @ Hy (bir,)(Acosig, - Bsinmg,) <0

Where "~
AE =2 & (-"0P13,, (A) + (73, (BAIA
Bt =2 & (- "0, (60) - ('3, (BB,
Inserting equation (20) into equation (5) leadsto

s® So 3 - (21)
( ql) =—a Tm(blrl)(Agcoanl- Bgsmrrql)
1~1 m=0
Where Tm(ﬁlr) = ﬂlHrg-) (ﬁlrl) - ﬁlr H (l)l(ﬁl l)
Similarly, u® in coordinate system (r»,6,) can be obtained by the interior form of the Graf’s
addition theorem:
S : 22
u(l)(rZ’qZ) :UOé ‘Jm(rZ’qZ)(Agb Coanz - Brgsnn-qZ) ( )
m=0
Where
Ag="n °( D OV HG(B) +(- D"HS L (Bd:)A,
B.QF‘ n & J) A[H(Bd)- (- D"HD (BB,
From u™(r2,0), 6{(r,,0,) can be obtained:
3 : 23
s (r,,0,) =2 & R, (byr,)(Agcosnm, - B§sinnm,) &)

b .
2M1 m=0

To obtain the scattered wave by the inclusion, we use theimage method. The model isbuilt asfig 3,
theorigin oz isthevirtual source of the origin o, and corresponding coordinate systems are (xs,ys) and

(r 3, 93) .
3 03
d| /b,
I& 1 x3 1"
r x2
d
6, 2
%) L>J’z

Fig. 3 diagram of scattered wave of virtua source

In the approach, u® is expressed as
u®@ =@ 4 y® (24)

460



ATLANTIS . . .
PRESS Advances in Engineering Research, volume 112

Where u® represents the scattered displacement by source 0,, u® represents the scattered
displacement by source 0.
The genera solution of equation (2) is

U9(r,10) =ty & HO (B1,)(G, cos¥, +D,sinre) @)
Where C,,, D, are the constants to be detenrgomi ned.
Similarly, u® satisfying the wave function (2) can also be obtained as
U (1,.6) =ty & HO (41)(G, Co¥, - D, Sinne) (26)
u® satisfies the traction-free boundary cc::diti on automatically(Y uan 1999).

From the interior Graf’s addition theorem, u® in coordinate system (r1,61) can be obtained by
transforming coordinate system (r,,6,) and (r3,83) into (r1,61), respectively.

U2(1,6) = & 3,,(A1,) Clcoss, + DNy @7
Where d4:d1+d3
cs= a{( DI 3" HE, (bh) + HE, (b ) +(- D"HE, (o,dy) +HE, (bd )G,

D#?——a{( DI D"HL(0d,) - HL ()] - [ D"H (bd,) - HR, (b d)I}D,

n—O

Inserting equation (28) into (5) leadsto
r(lzz)(rl’el) = [),_ a Rn (A1)

1l m=0

" (C®cosmy, + D&sinmd,)
To obtain u®, {2 in coordinate system (r5,6,), from the interior Graf’s addition theorem, we obtain

(28)

U2 (1,0,) = Uy H (b,1,)(C, COSIT, + D, ST +y &, 3, (bur,)(Chcosn, +Dgsnm,) (29

m=0 m=0

where

+w®

C="2 A[H, (260, + (- )"HY,(2AA)C,

D¢ =2 & [H{,(26,0,)- (- D"H, (28D,
n=0
Inserting equation (29) into (5) leadsto
S (2)(r21q2) __a T, (b rz)(C cosng, + D sin I’qu) (30)

1'2 m=0

5o & R, (byr,)(Cécosnm, + Dgsinm,)

bl 2 m=0

Region II. The general solution of EQ. (2) inregion II can be expressed as

¥
U9 (1,0,) = U@ JInn(b41,)(E,, cOSNT, + F, SNy (31)
m=0
where E,,, F, are constants to be determined.
o (r,,6,) can be obtained as follows
(32)

r(li)(r11q1) __a Rm(b rl)(Encoan1+ F Slanql)

bl 1 m=0
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Region II1. The genera solution of equation (2) in region I1I can expressed as

¥
U9 (r,,0,) = U@ I, (b,1,)(G, cosmm, +H,, sinm,) (33
m=0
Where G,,, Hn, are constants to be determined.
a(r,,0,) can be obtained as follows
s O(1,,0,) =2 & R (b,1,)(G, cosma, + H, sin,) (34)

bz 2 m=0

Solving equations

From boundary conditions, the boundary L meets the stress-free condition, and the boundary

L meets the conti nuity condition. To solve the mixed boundary value problem, we define the
functions ¢(¢1) and y(61) asfollows:

169 (a,0,),- 9+ 2kn £6, £ ¢+ 2kx

0(60) =1 0 (8,0~ o) (3,6,) (35)
’I‘ (l) (a1 01) 0'(2)(31 91) other
k=0,+1,+2 ..
1o, - 9+ 2k £0, £ o+ 2kn
w(0) = 1u® (a,0,) - u(a,6,) (36)
1. u®@,6)- u?(,0,), other
k=0,+1,+2 ..

From the boundary condition of region II, we can obtain the condition as follows:
9(0,)=0,-7+2kn £ 60, £ 7w+ 2kn
w(0,) =0,-w+2kr £0, £ +2kr
Make their Fourier series expansions over [-z,z], and let the coefficients of the series equal zero.

Rearrange the equation yields
¥ ¥
R.(ba)E, - a [A¢T,(ba) +CIR, (ba)l ., =a R.(ba)J,l (37)
n=0 m=0
¥ ¥ ¥
a J((a)El - alHy (ba)At+J,(ba)CHl ,, =a Jn(b.a) m (38)
k=0 m=0 m=0
n=0,123.
¥ ¥
a [BeT.(ba) - DIR,(ba)m, + R, (ba)F, =a R.(baV,m, (39)
m=0 m=0
¥ ¥ ¥
alHy (ba)Bt- J.(ba)Dim, +a J(ba)rm,=a J.baN.m, (40)
m0 k=0 m0
n=123..
Where
}. -9 , n=m=0
F1"- sinzn
irm:I'_ M‘FH-Q)) n=m1l0
i 2n

i & - Sin(m+n)p sin(m- n)(p) Nt m
t2r m+n m- n

462



£

ATLANTIS

PRESS Advances in Engineering Research, volume 112

i
10, n=m=0
u = % 1 sin2np
T 2n
i & sin(m+ n)gp sin(m- n)go) ntm
t2r® m+n m- n
From the continuity condition on the boundary C, inserting equations (16) (22) (29) (33)
and (17) (23) (30> (34) intoequation(8)and (9) respectively, the equationsto determinethe
unknown constants can be obtained as follows:

- @), n=m?!0

9R,(0,3,)G, - R (b;a,) A% T (b,a,)C, - R (b,a,)C¢= R, (b,a,)W, (41)
J.(b,2,)G, - J,(b,3,) A¢- HP (ba,)C, - J,(b,a,)C¢= I, (b,a,)W, (42)
9gR,(b,3,)H, +R,(ba,)BE T,(b,a,)D, - R (0,3,)D§=R,(b,a,) X, (43)
Jo(b,a,)H,+J, (b,8,)B¢ HP(b,8,)D, - J,(b.a,)D¢=J,(ba) X, (44)
Rearranging equations (37)~(44) leads to a set of infinite linear algebraic equations as follows:
¥ ¥ ¥
a DA +a D&C,=a U, [J,(ba)l - R (b,a)R,] (45)
n=0 n=0 n=0
¥ ¥
a DA, +F G, +a DEC, =[9R.(b,a,)J(b.8,) - I (D,3,)R,(D,8,) W, (46)
n=0 n=0
m=0,12,3...
3 3 3
aLlmB.,+a L&D, =a Vi[J.(ba)m,, - R (0,2)Q,] (47)
n=0 n=0 n=0
¥ ¥
aL$B +F&D,+a L&D, =[J,(0,3,)R,(ba,)- 9J,(b.2,)R,(b,3)] X, (48)
n=0 n=0
m=123...
Where
d(l) g n @
D =—-a & [(- D" Iy (bydy) + I (B, AT, (B12) Ry - HZ (D)1 ]
k=0

% a:~ [ I:ek (/Blai) F)km ‘]k (/Blai)ikm] Skn

_d? 3 : ,

L =228 &3 (0.0) - ("3, (AT (B2)Q - HY (ba)m, ]
k=0

¥

A%n a [ Rk (ﬁlal)ka ‘]k (/Blal)/ukm]Tkn

"0 & (- D'dOH, (b +(- "HE, (I, (b2)R, (b)- O, (0,2)J, (b))

2

@ QJO-K

Df =
D% Emé_[a (b,2)R,(02)- 9R, (02,3, (b Hy (20,d,) +(- )" HY  (2b,dy)]

L6 =8 (D'dCIHD, (b)- (I HE (NI, (0:2)R ()~ 9 (0.2, (b

ﬁ Q)o«
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L =ez“"5 [- In(bL)R,(b.0) +9R, (b,0) 3, (B.O)IHy, (20,d;) + (- )"HY (2b,d)]
Se :%{ (- 9[- D"HZ, (bydy) - HE (b, )+ D™HE, (bd,) - HE, (byd,)T}

T = 2 DI DTHE, (00,) - HEL (A +IHE, (0,0)- (- J"HE, (b,d,)])

k+n k+n

D, = Jn(B:2,)T(B13,) - yRm(ﬁzaz)Hr(nl) (8.3,) U, =¢i"e? COSI’](% - a)+¢ COSI’](% +0)]
_ ¢ J(Ba)
i R (ﬁla'l)ikljﬁn D& =- Jn(B:2)R.(Bia,) +1R(B8.) I (B3,)
_f(Ba) W, =, i"[&;  cosm(™ - ) +¢&, cosm(Z +a)]
Qum |§o R (ﬁlai)ﬂklﬂlm 2 2
V, :sni”[filsinn(lzr- a)+¢, sinn(7—2[+a)] Xin :8mim[fé13inm(5 - a) +§zsinm(5 +a)]

The constants A, , By , C,, , D, can be obtained with truncation order n, and E, , F,, G, , H, can be
obtained by inserting A, , B, , C, Dy intoequations (37) (39) (41) (43) .Theerrorsbetween
the numerical results and the theoretical results can be checked with the stress-free condition on

boundary L and the continuity condition on Land C.

When ¢=0, we will obtain the solution without the hill. In the situation, A’m=0, A'm=0, and the
right val ues of equation (45) and equation (47) are equal to zero, which lead to A,=0, B,=0. Finally the
solution simplify to the known solutions [4] as following:

F oo +§_l DEC, =[9R.(b,2,) I (Bi3r) - I (b,2,) R, (0,3,) W,

m=0.1,2,3...
F¢D, +éil L&D, =[J,(b,a,)R,(ba,)- 9J,(b.a,)R,(b,a,)] X,
m=123...

When y=1 and p1=f,, we will obtain the solution without the underground inclusion. A" ,=0,
A"m=0, A"m=0, A""m=0, and the right values of equation (46) and equation (48) are equal to zero
which lead to C,=0, D,=0. Finally, the solution simplify to the known solutions [5] as following:

EOA mnAh = EOU n[ ‘Jn (/Blal)inm - Rn (ﬁlai) an]

m=012,3...
¥ ¥
goAman = goVn[Jn(ﬁlai)ﬂnm - R/(82)Qnnl
m=123...

Numerical results

Define a dimensionless parameter ud, representing displacement amplitude of stress-free surface.
ug=|ul/uo, (r,0) T',L
Define dimensionless parameter 7, representing frequency of incident wave.
_2b_pb
1 A T
where 1 represents incident wavelength. We study the effect of an underground circular inclusion
under acircular-arc hill on ground motion with the dimensionless parameter ug.
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The effect of a hill and an inclusion on surface displacement.

R

BB
W,
Sy

oA
“‘ 2 I‘“‘g})“ 0 \\;‘;‘“\“ g
W) X/ . “:’|

S :‘W Vi,

(b1 hb=0 (b2) h/b=0.5

Fig. 4 The surface displacement amplitudes uy versus the dimensionless frequency » and the
dimensionless distance y/b under vertical incidence for the following cases: (al) and (bl) are the
model with only an underground cavity and inclusion respectively, and (a2) and (b2) are the model
with a hill (h/b=0.5) above a cavity and an inclusion respectively. The buried depth and radius of the

subsurface structures above ds=6b, a,=b.

In this section, the surface displacement amplitudes of a hill above an underground structure under
vertical incident SH wave are obtained. Furthermore, to discuss the respective effect of the hill and the
underground structures, three degraded models are discussed as well: one with only the cavity, one
with only the inclusion, and last one with only the hill.

Figdal shows that there are periodic peaks and troughs due to large and small displacement
amplitudes on the surface exhibited. To interpreter the distribution law, we analyze uq at the point y=0
firstly. We know that if the phase difference of the incident wave reaching surface directly and its
reflections from the boundary of the cavity is 2nz and (2n-1)z (n represents a positive integer), their
superposition on the ground would be maximum and minimum respectively. The observation that
these phase difference corresponding to a maximum or minimum displacement is a group of
arithmetic progression suggests that they relate to the periodicity of the peaks and troughs. To support
the conjecture, from phase difference wAt=2nz and (2n-1)z we obtain the equation:

n=na,/(d;- a) (49)
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n=(2n-Da,/2(d;- a,) (50)
where equation (49) is same with that concluded in the previous work [4]. Substituting the known
parametersinto the equation (49) and (50), the frequencies estimated (peaks: 0.2, 0.4, 0.6, 0.8, 1.0 and
troughs: 0.3, 0.5, 0.7, 0.9) are in good agreement with that shown in fig 4al. Next, the propagation
path length of the reflections reaching ground surface -3<y/b<3 between the boundary of the cavity
and ground surface is unequal, symmetrical by the line y=0. This leads to the bent ripplesin fig 4al.
Compared with the cavity, fig 4bl shows the ground displacement with a inclusion filled with
softer medium with respect to the surrounding medium (y=u/u1=1/4, c,/c;=1/2). The displacement
amplitudes in the surface direction y change. There are also severa peaks in the figure. Unlike the
peaks in the fig 4al, the distances between them is not equal. However, specidly, the distribution of
the peaks at low frequencies of 1>5a, can be estimated with reasonable accuracy by equation (49).
Fig 5 shows that the maximum displacement amplitude appear on the hilltop at the frequencieswe

ahill (Wb=0.5)

discussed, and the vibration near the hill rims
(y/b=x1) is weakened with the frequencies
increasing.

With combining the characters of the effect
of the underground structure and the hill we
anayze their combined effect on ground
motion. Figda2 and figdb2 show that the
surface displacement would be large (small) in
the region where it is amplified (weakened)
both in its two degraded models (as the point
n=0.4, y=0 shown in fig 4a2, corresponding to
that shown in fig 4al and fig 5). So we can
easily estimate the dangerous frequencies at
the hilltop under vertica incidence with
eguation (49). Here we conclude that the effect
can be seen asthe superposition of the effect of
the incluson and the hill each other
gualitatively. Yet the superposition effect is

not equal to the sum or the product of that of each other.

The effect of the medium of inclusion and the shape of hill on surface displacement.

R —cl/cz=l
O -=-c/c72
- cl/cz=4
/n R ¢ /o=

LN 7 )
FUN IS £
1 /“..: /!. \ // \

(al) «=0°,h/b=0

(82) a=0°,h/b=0.25
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(a3) a=0°,h/b=0.5

—cl/cz=l
-- cl/cz=2

- c/c=4

(b2) 0=90°,hb=0.25

(bl) a=90°,h/b=0

—cl/cz=l
-- cl/cz=2

- c/c=4

(b3) a=90°,h/b=0.5

Fig. 6 Several surface displacement amplitude obtained for the computed parameters as
following: n=1, h/b=0, 0.25, 0.5, ds=6b, a,=b, and the density and the wave velocity of the inclusion
palp2=1, c1/c=1,2,4,00, where h/b=0 represents the results without the hill, and c;/c,=1 presents the
model without ainclusion, c;/c,=2,4 presents a soft and softer inclusions respectively, and c;/c,=
presents a cavity. Fig 6al~a3 isfor horizontal incidence, and fig 6b1~b3 isfor vertical incidence.

Fig 6al isin the circumstances without the hill. It can be noted that the displacement with the soft
inclusion and the tunnel is large around two points y/b=-1.4, 0.5; when the inclusion is soft enough
(like ci/c=4), its effect isequivalent in functionto a cavity on y/bl (-3,0); Simply, the tough
inclusion cause a weak surface displacement. Fig 6a2 and fig 6a3 indicate that, specia for the soft
inclusion and the tunnel, the surface regions vibrated greatly with a hill is the same with that without
ahill nearly; the tough inclusion only causes alarge displacement amplitude at surface y/b=0.5 when
h/b=0.5.

Next we analyze the situation of vertical incidence. Figéb1~b3 show that the softer the inclusion,
the larger surface displacement amplitude is. For example, in fig 6b3, ug 1.6 at c;/c,=2 while 2.1 and
2.6 a ¢/c,=4 and oo, increasing 31.1% and 62.5% respectively. At hill rims (y/b=+1), the greater
height-to-width, the weaker the ug is. As hill rimsin fig 6b3, the surface displacement amplitude is
unchanged nearly with changing the softness and hardness of the inclusion. The hard inclusion
weakensthe ground vibration aboveit, lessthan 0.5, decreasing 75% than free surface of a half-space.

Conclusion

The analytical solution of scattering of SH wave by an underground inclusion under an arc-circular
hill has been obtained in this paper. It can be concluded that:

1) The effect of a hill and an inclusion on surface displacement amplitude can be seen as the
superposition effect of each other qualitatively. Generally speaking, the displacement would be large

467



£

ATLANTIS

PRESS Advances in Engineering Research, volume 112

in the common amplified region of the two degenerated models: the one without the hill, the other one
without the inclusion.

2) The computation results show that flat ground surface above atunnel vibrate greatly and weakly
under vertical incidence at periodic frequencies, and the amplified dimensionless frequencies are
obtained n=nb/(ds-az). Specialy, it is aso applied in the circumstance of a soft inclusion at low
frequency band (y<2b/5ay). Dangerous region can be forecasted by combining with concentration of
dangerous region on the hill.

3) The ground motion is remarkably affected by softness and hardness of inclusion. Under
horizontal incidence, the soft inclusion (like ci/c2>2) makes it violent on the same position with the
circumstance of the tunnel. It behaves as a simple kinetic characteristic under vertical incidence.
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