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Abstract: In the present paper, an analytical study of the effects of radiation on the buoyancy induced heat and 

mass transfer by natural convection from an isothermal paraboloid embedded in a saturated porous medium has 

been done in case of constant temperature and concentration. For the analysis of the problem, an integral method 

of Von Karman type has been used. The governing parameters for the problem under study are the buoyancy ra-

tio    , Lewis number      and radiation parameter    . The computed results have covered a wide range of 

the governing parameters. It has been concluded that the local Nusselt number decreases while the local Sher-

wood number increases for aiding flow for increasing Lewis number. But an opposite trend is observed for op-

posing flow. The local Nusselt number decreases while the local Sherwood number increases for increasing val-

ues of the radiation parameter in case of aiding flow . An opposite trend is observed for opposing flow. 
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1 Introduction 

The study of coupled heat and mass transfer due to buoyancy and radiation                                                              

effects in saturated porous media is of considerable interest due to its energy-related engineering and geophysi-

cal applications such as thermal insulation of buildings, enhanced recovery of petroleum resources, filtration 

process, groundwater pollution, etc. One problem of special interest is when the intrusive magma is trapped in 

an aquifer such that the free convection in the ground-water is generated adjacent to the hot intrusion. Due to the 

concentration gradient between the intrusion and ground water, the mass transfer wall occurs simultaneously. 

On account of the afore-mentioned facts only, Bejan and Khair [1] were the first researchers to report a system-

atic study of heat and mass transfer along a wall embedded in a saturated porous medium with constant tempera-

ture and concentration. For the general case of an axi-symmetric body of arbitrary shape, however, the literature 

is still very scanty. Only a few authors [2-3] have made investigations to report heat transfer related results. 

From the fundamental perspectives, Nield [4] made the first attempt to study the stability of the convective flow 

in horizontal layers with imposed temperature and concentration gradients. This was then followed by Khan and 

Zebib [5] in the study of flow stability in vertical porous layer. Trevisan and Bejan [6-8] have also conducted a 

series of investigations of these effects on natural convection for various geometries. Y  cel [9] investigated the 

problem of heat and mass transfer along vertical surface embedded in saturated porous media. Lai et al. [10] 

studied the heat and mass transfer by natural convection from slender bodies of revolution embedded in porous 

media. Lai and Kulacki [11] generalized the problem tackled by Bejan and Khair [1] and obtained the similarity 

solutions of the boundary layer equations adjacent to at vertical surfaces with variable wall temperature and 

concentration, together with aiding buoyancies. Nakayama and Hossain [12] and Singh and Queeny [13] ob-

tained integral solutions for problems for aiding buoyancies adjacent to vertical surfaces. Angirasa et al. [14] ob-

tained the finite-difference solutions for natural convection with opposing buoyancy effects in a fluid saturated 

porous medium. Amahmid et al. [15] presented a numerical study for buoyancy layer type flows in a vertical po-

rous enclosure induced by opposing buoyancy forces. Yih [16] studied the heat and mass characteristics of natu-

ral convection about a truncated cone embedded in a saturated porous medium. Chamakha [17] focused on the 

study of coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnet-

ic field and radiation effects. Bansod et al. [18] investigated the heat and mass transfer by natural convection 

from a vertical surface to a stratified Darcian fluid. Bansod [19] studied the Darcy's model of buoyancy layer 

flows in a horizontal porous medium induced by combined buoyancy forces.  
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Singh and Chandarki [20] studied the coupled heat and mass transfer by natural convection from a vertical cyl-

inder embedded in a saturated porous medium. The objective of the present paper is to extend the work of Singh 

and Chandarki [20] by taking into consideration the radiative properties of the fluid. To analyse the problem, an 

integral approach of Von Karman type has been used. Most of the problems governing various flow-fields in 

fluid mechanics are non-linear. So, it becomes significant to develop efficient methods to solve them. Ever since 

the advent of high speed computers, the numerical techniques for finding the solutions of highly non-linear dif-

ferential equations have also been developing very quickly. However, it is still very difficult task to obtain the 

analytic approximations of these equations, despite the availability of much higher quality symbolic computa-

tion software such as MATHEMATICA, MATLAB, Maple, NAG, and so on. The reason might be that we do 

not have a satisfactory analytic tool valid for finding the solutions of problems with stronger non-linearity. The 

perturbation techniques are also not applicable in all the cases, for they are essentially based on the existence of 

small/large parameters, called the perturbation quantities, in the equations governing the flow-fields. The ab-

sence of such perturbation quantities largely restricts the application of these perturbation techniques.  

The integral technique of Von Karman type, on the other hand, is different from the perturbation techniques in 

the sense that it is applicable even for non-linear problems where the governing equations and/or boundary con-

ditions do not contain any small/large parameters at all. This method with great freedom and precision provides 

highly accurate approximations to non-linear problems. On account of this reason only, Nakayama and Hossain 

[12], Singh and Queeny [13], Bansod et al. [19], Singh and Chandarki [20] and Singh and Sharma [21] have 

successfully applied this integral approach to find analytical solutions of equations governing the combined heat 

and mass transfer by natural convection in porous media for various geometries. 

The radiative effects have important applications in physics and engineering. The radiation heat transfer effects 

on different flows are very important in space technology and high temperature processes. But, a very little at-

tention has been paid towards investigating the effects of radiation on boundary layers. The thermal radiation ef-

fects play an important role in controlling heat transfer in polymer processing industry where the quality of the 

final product depends on the heat controlling factors to some extent. High temperature plasmas, cooling of nu-

clear reactors, liquid metal fluids, magnetohydrodynamic accelerators, power generation systems are some im-

portant applications of radiative heat transfer from a vertical wall to conductive gray fluids. Recent develop-

ments in hypersonic flights, missile re-entry, rocket combustion chambers, power plants for inter-planetary 

flights and gas cooled thermal reactors have attracted the attention of researchers towards radiation as a mode of 

energy transfer. It is worth mentioning that unlike convection and conduction, the radiative heat transfer mecha-

nism is rather more complex. However some reasonable approximations have been found satisfactory to make 

the radiative system solvable. The works of Sparrow and Cess [22], Howell [23] and Vyas and Rai [24]describe 

the essentials of the radiative heat transfer. Many other pertinent radiative heat transfer studies for different con-

figurations have also been reported by researchers like Plumb et al. [25], Hossain and Takhar [26], Raptis [27], 

Sadeek and Salem [28], Al-Odat[29], Prasad et al.[30], Mukopadhyay [31], Vyas and Shrivastava [32], Vyas 

and Ranjan [33], Chauhan and Kumar [34], Baoku et al. [35], Babu et al. [36], etc. 

2  Problem Formulation 

Let us consider the problem of the radiation effect on the buoyancy induced heat and mass transfer of optically 

dense viscous incompressible fluid by natural convection over an isothermal slender body of revolution embed-

ded in a saturated porous medium, with a prescribed axial symmetric wall temperature    which is higher than 

the ambient temperature     (see Fig.1). Thus, as a result of the buoyancy force, an upward convective fluid 

movement is induced. The variations of the fluid properties are limited to density variation which affects the 

buoyancy force term only. The origin of the co-ordinate system is placed at the vertex of the slender body of 

revolution where x represents the distance along the body of revolution and   represents the distance normal to 

the surface of the revolving slender body. 

 
Fig. 1: A slender body of revolution embedded in saturated porous medium 
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So, the governing equations for the problem under consideration with boundary layer and Boussinesq approxi-

mations, Darcy's law and radiative fluid properties are given in cylindrical co-ordinate system as 
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   are the velocity components along  - and  -directions respectively and   is 

the stream function.    and    are the coefficients of thermal and concentration expansion.   is the permeabil-

ity,   is the acceleration due to gravity,    and   are the kinematic viscosity and density of convective fluid. Al-

so,   is the thermal diffusivity of porous medium,    is the specific heat at constant pressure,     is the radiative 

heat flux and   is the diffusivity.  

 If the transfer process is assumed to occur at low concentration-difference such that the interfacial velocity due 

to mass diffusion can be neglected, the boundary conditions are,  

at the body surface, i.e. at       , 
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at infinity, i.e.     ,  

 
              
                       

     
(2.7) 

where      describes the surface shape of the axi-symmetric body and        and   are constants.  Using 

the Rosseland approximation for radiation (Brewster [37]), one can write 
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where      is the Stefan Boltzmann constant and    is the absorption coefficient. 

 

Assuming that the temperature difference within the flow is such that    may be expanded in a Taylor series 

about    , the free stream temperature after neglecting higher order terms can be linearized to obtain 
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In view of equations (2.8) and (2.9) equation (2.3) reduces to  
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where     
 

   
 is thermal diffusivity of the porous medium and     

       
 

         is the radiation parameter ( 

   effective thermal conductivity).  

To solve the above simultaneous equations, the following dimensionless parameters are introduced: 
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where     
               

   
  is the modified Rayleigh number. 

Setting      , where    is a constant and is numerically small for a slender body,  equation (2.11) prescribes 

both the shape and size of the body with its surface given by 
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For problems of practical interest, the value of the constant ‘ ’ is less than or equal to unity. For instance, the 

body is circular cylinder when    , a paraboloid when    , and a cone when      .  

 

After the transformation, the resulting equations are 
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with boundary conditions given by  
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                                                                                                      (2.18) 

 

where the parameter   is the buoyancy ratio defined as    
          

     
. Thus,   measures the relative im-

portance of mass and thermal diffusion in the buoyancy driven flow. It is clear that   is zero for purely thermal 

buoyancy driven flow, infinite for mass driven flow, positive for aiding flow and negative for opposing flow.  

The prime denotes differentiation with respect to             . Here      is non-dimensional velocity related 

to the stream function       ,       and      are the dimensionless temperature and concentration profiles. 

     
 

 
  is Lewis number. 

In this work, it has been shown that the similarity solutions exist for the case of thermal buoyancy driven flow 

(i.e. for    ). Similarly, it has been shown that equations (2.14)-(2.16) also permit solutions for the important 

case           which corresponds to paraboloid with constant temperature and concentration. 

3 Integral Treatment 

The transformed energy equation (2.15) and the constituent mass transfer equation (2.16) can be integrated with 

respect to   from      to      to obtain from  
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The temperature and concentration profiles are now expressed in terms of the following exponential functions : 

                                                                                        (3.3)  

                                                                                    (3.4) 

which satisfy the boundary conditions (2.17) and (2.18). Here    is the arbitrary scale for thermal boundary lay-

er thickness, while   is its ratio to the concentration boundary layer thickness. Using the relations (3.3) and 

(3.4), the equations (3.1) and (3.2) by taking into account the relation (2.14), reduce to two distinct expressions 

for     as 
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The above equations govern the thermal boundary layer thickness for the coupled heat and mass transfer by nat-

ural convection from a vertical cylinder embedded in a saturated porous medium. 

From equations (3.5) and (3.6), we obtain 
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The equations (3.5) and (3.6) can be combined to obtain the algebraic equation 
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The value of    is determined from equation (3.8) by using computer software MATHEMATICA. 

As   is determined from equation (3.8), the local Nusselt and local Sherwood numbers, which are of 

maininterest in terms of heat and mass transfer respectively, are given as 
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           [from  Eq.(3.4)] 

where    is given by expression (3.7). 

Here our calculations are restricted to the specific case of         only. 
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The accuracy acquired in the foregoing approximate expressions may be examined by comparing the approxi-

mate heat and mass transfer results against the similarity solution [10] in case of    
    for two limiting cases 

of pure thermal driven flow (i.e      ) and pure mass driven flow (i.e.    ), as follows : 
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Our approximate expression given by equations (3.9) and (3.10) tend to overestimate heat and mas transfer rates 

under these physical limiting conditions. It is not unusual to have anerror of 10 percent or more, depending on 

the assumed profile. However, this situation can be remedied by adjusting the multiplicative constant, namely, 

replacing 0.020 by 0.018. Thus, we propose the following final approximate formulae : 
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where the boundary layer thickness ratio    is given by equation (3.8) 

 

Table1.Variation of local Nusselt and local Sherwood numbers for   
      

 

       

    
 
 

 
  

    
 
 

 
       

    
 
 

 
  

    
 
 

 

-1 1  0.004779  0.058933 4 1  0.007638   0.144815 

4  0.005169  0.122622 4  0.006473  0.270644 

10  0.005328  0.196870 10  0.006120   0.394637 

50  0.005488  0.446858 50  0.005825  0.678956 

100  0.005527  0.634239 100 0.005765  0.802726 

0 1  0.005589 0.085427 10 1   0.010603   0.1982 

4  0.005589  0.169265 4  0.007416   0.35501 

10  0.005589 0.261505 10  0.006658   0.495479 

50  0.005589 0.533848 50  0.006102   0.758757 

100  0.005589 0.703914 100 0.006004   0.846576 

    1 1  0.006174 0.104370  

4  0.005868  0.202319 

10  0.005760  0.306205 

50  0.005661  0.587893 

100  0.005639  0.743497 
 

Table2. Variation of local Nusselt and local Sherwood numbers for      

 

    
    

    
 
 

 
  

    
 
 

 
    

    

    
 
 

 
  

    
 
 

 

0 2  0.002244   0.086745 6 2  0.002627  0.16484 

4  0.000749   0.087419 4  0.000788  0.164883 

6  0.000449   0.087561 6  0.000463  0.164903 

8  0.000321   0.087622 8  0.000328  0.164912 

10  0.000250   0.087657 10  0.000254  0.164917 

1 2  0.002336  0.105158 8 2  0.002718  0.181970 

4  0.000759  0.105587 4  0.000796  0.181983 

6  0.000453   0.105678 6  0.000466 0.181992 

8  0.000323   0.105718 8  0.000330  0.181997 

10  0.000251 0.10574 10  0.000255  0.1820 

2 2  0.002409   0.120249 10 2  0.002804  0.197162 

4  0.000767  0.120543 4  0.000803 0.197079 

6  0.000456 0.120608 6 0.000468  0.19708 

8  0.000324 0.120636 8  0.000331  0.197081 

10  0.000252  0.120652 10  0.000256 0.197083 

 

 

Table3. Variation of local Nusselt and local Sherwood numbers for     

 

     
    

    
 
 

 
  

    
 
 

 
     

    

    
 
 

 
  

    
 
 

 

1 2  0.002336 0.105158 20 2  0.002263  0.410816 

4  0.0007594  0.105587 4  0.0007524  0.410938 

6  0.0004533 0.105678 6  0.0004505 0.410994 

8  0.0003231 0.105718 8  0.0003217 0.411022 

10  0.0002510  0.10574 10  0.0002501 0.411036 

4 2  0.002289 0.002289  40 2  0.002257  0.5398 

4  0.0007542  0.202978 4  0.0007508  0.539874 

6  0.0004515  0.203058 6  0.0004503  0.539913 

8  0.0003222  0.203094 8  0.0003215 0.539934 

10  0.0002504  0.203114 10  0.0002500 0.539949 

10 2  0.002272 0.306042 50 2  0.002255  0.586223 
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4  0.0007529 0.306042 4  0.0007506 0.586137 

6  0.0004508 0.306343 6 0.0004502 0.586172 

8  0.0003218  0.306376 8  0.0003205  0.586189 

10  0.0002502  0.306393 10  0.000249 0.58622 

 

Table4. Variation of local Nusselt and local Sherwood numbers for       

 

     
    

    
 
 

 
  

    
 
 

 
     

    

    
 
 

 
  

    
 
 

 

1 2  0.002101 0.061574 20 2  0.002215 0.282731 

4  0.0007327  0.062919 4  0.0007460  0.283936 

6  0.0004437 0.063203 6  0.0004485  0.284199 

8  0.0003182  0.063327 8  0.0003207  0.284313 

10  0.0002480  0.063395 10  0.0002495  0.284377 

4 2  0.002173  0.125239 40 2  0.002225  0.400757 

4  0.0007412  0.126571 4  0.0007472  0.401856 

6  0.0004468  0.126851 6  0.0004489 0.402103 

8  0.0003198  0.126972 8  0.0003209  0.402211 

10  0.0002490 0.12704 10  0.0002496  0.402274 

10 2  0.002201  0.199278 50 2  0.002227  0.448321 

4  0.0007444  0.200556 4  0.0007475  0.449377 

6  0.0004479  0.200828 6 0.0004491  0.449618 

8  0.0003204  0.200946 8  0.0003210  0.449726 

10  0.0002493  0.201012 10  0.0002497  0.449785 

 

4  Results and discussion 

The numerical values of the local Nusselt and local Sherwood numbers have been computed in Tables 1-4. 

From Table 1, it is obvious that for a fixed value of the radiation parameter   
     

      , the values of the lo-

cal Nusselt and local Sherwood numbers increase alongwith the increasing values of buoyancy ratio   in case of 

aiding flow          Although both the local numbers show increasing trend alongwith  , but this trend 

ofincrease in local Sherwood number is more pronounced as compared to that of the local Nusselt number. 

Also, for       and   
     , the local Nusselt number exhibits a constancy in its trend for increasing values 

of Lewis number     . This trend is also clear from the Figs. 4 and 5. However for      , the local Nusselt 

number shows a decreasing trend and the local Sherwood number an increasing trend along with increasing val-

ues of   . 

It is also evident from Table 1 that for opposing flow        , both the local Nusselt and local Sherwood 

numbers show an increasing trend alongwith the increasing values of    in case of opposing flow ( i.e. for 

     ) and for   
     . This trend is also explainable from Figs.2 and 3. 

From Table 2, it is observed that for different values of                      and for       , the local 

Nusselt number shows a decreasing trend along with the increasing values of the radiation parameter   
 , where 

as the local Sherwood number shows an increasing trend. But this effect of radiation parameter on local Nusselt 

and local Sherwood numbers is considerably small. 

From Table 3, it is also observed that for a fixed value of   (i:e: for      ) and for different values of 

                               the local Nusselt number shows a decreasing trend alongwith increasing val-

ues of the radiation parameter   
 , whereas the local Sherwood number shows an increasing trend. But these 

trends of decrease in the local Nusselt number or increase in local Sherwood number are very small, thereby im-

plying that the radiation effects do not play signicant role in governing the characteristics pertaining to tempera-

ture and concentration of the flow-field. 

From Table 4, for the opposing flow (i.e. for      ), the local Nusselt number shows a decreasing trend for a 

fixed value of    and for increasing values of   
   On the contrary, the local Sherwood number shows an in-

creasing trend for increasing values of   
 . Moreover, both the local Nusselt and Sherwood numbers exhibit an 

increasing trend for increasing values of    and for fixed values of   
 . 
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Fig.2. Heat transfer coefficient as a function of buoyancy ratio for   
      

 

Fig.3. Mass transfer coefficient as a function of buoyancy ratio for   
      

 
 

Fig.4. Heat transfer coefficient as a function of the Lewis number for   
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Fig.5. Mass transfer coefficient as a function of the Lewis number for   
      

5  Concluding remarks 

For the coupled heat and mass transfer by natural convection in a porous medium, the solutions have been pre-

sented for the important case of radiating paraboloid with constant temperature and concentration. The govern-

ing parameters for the problem under consideration are the Lewis number   , buoyancy ratio   and the radia-

tion parameter   
 . From the numerical and graphical results, it is observed that the Lewis number has a more 

pronounced effect on the concentration field than it does on the temperature field. The radiative fluid properties 

past the paraboloid have also been taken into consideration. It has been found that although the radiation param-

eter affects both the temperature and concentration fields, the effects are very meagre in terms of numerical val-

ues. Also, the results obtained in this study for   
   are in close agreement graphically with the corresponding re-

sults of Lai et al.[10] who tackled the problem in the absence of radiation effect by using shooting technique in 

conjunction with Runge-Kutta fourth order method. Finally, the integral approach of Von Karman type adopted 

in this problem is very efficient and handy for making use of for engineering applications. Thus, the integral 

treatment remains a powerful means to attack boundary layer problems, since it naturally captures correct as-

ymptotic behaviours as compared to the scale arguments which are not completely free from the risk of misin-

terpretation. 
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