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Abstract

Graphs are the backbone of many real systems like social networks, image segmentation, scheduling, etc.
To input uncertainty to such systems, generalized fuzzy graphs are used. Generalized fuzzy tree is one
generalized fuzzy subgraph of a generalized fuzzy graph which characterizes the whole graph. In this
study, generalized fuzzy trees are introduced. The concepts of strongly connectedness, nearly disconnect,
distance between two nodes, bridges are exemplified.
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1. Introduction

Motivation of graph theory is present from Leonhard

Euler(1730) paper of the problem for seven bridges

of köningsberg. Graphs are very important tools for

expressing the relationships among units, which are

represented by nodes. Relationships among nodes

are expressed by connections. In general, any sys-

tem involving points and lines among them can be

represented as a graph. At present, graph theory is

a large field of research for theory and applications

both. For, further of graph theory, readers may look

into 6.

Nowadays, graphs do not represent any systems

properly due to the uncertainty or haziness of the

parameters of systems. For example, a social net-

work may be expressed as a graph where nodes ex-

press an account (person, institution, etc.) and edges

represent the relation between the accounts. If the

relations among accounts are measured as good or

bad according to the frequency of contacts among

the accounts, fuzzyness can be added for such repre-

sentation. This and many other problems lead to de-

fine fuzzy graphs. The first concept of a fuzzy graph

was established by Kaufmann 8 in 1973. But, it was

Rosenfeld 25 who discussed relations on fuzzy sets

and improved the theory of fuzzy graphs in 1975.

Using this concept of fuzzy graph, Koczy 10 used

fuzzy graphs in the optimization of networks. For

further details of fuzzy graphs, readers may look in
7,9,11,12,15,16,17,18,19,20,21,22,23,27.

There are several types of fuzzy graphs avail-

able in the literature. Intuitionistic fuzzy graph 14,

interval-valued fuzzy graphs 1, and bipolar fuzzy
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graphs 2 are some of them. In all these fuzzy graphs,

there is a common property that edge membership

value is less than to the minimum of it’s end node

membership values. Suppose, a social network is

to be represented as fuzzy graphs. Here, all social

units are taken as fuzzy nodes. The membership

values of the nodes may depend on several parame-

ters. Suppose, the membership values are measured

according to the sources of knowledge. The rela-

tion between the units is represented by fuzzy edge.

The membership value is measured according to the

transfer of knowledge. But, transfer of knowledge

may be greater than one of the social actors/units

as more knowledgeable person informs less knowl-

edgeable person. But, this concept can not be rep-

resented in fuzzy graphs as edge membership value

should be less than membership values of the end

nodes. Thus, all images/networks can not be repre-

sented by fuzzy graphs. To remove the restriction,

generalized fuzzy graphs are introduced.

In 1999, Sunitha 24 et al characterized the fuzzy

trees. They have used the concept of strong edges.

This concept depends on all edges of a graph. But, it

is comparative and hard to compute for an edge to be

strong or not. In this paper, effective edges are de-

fined. Effective edges are easy to compute and non-

comparative. According to the effectiveness, trees

are defined here. For further details of tree, readers

may look into 13,26. Akram et al. 3,4,5 defined differ-

ent types of trees namely soft trees, fuzzy soft tress

and bipolar soft trees.

After introductory section, some basic notions

are discussed in Section 3. In that section, Gener-

alized fuzzy graphs of type 1 and type 2 (GFG1,

GFG2) [Section 3.1] are described with suitable ex-

amples. In Section 3.2, generalized fuzzy directed

graphs are described. In Section 4, generalized

fuzzy trees are introduced. After that, in Section 5,

distance function and distance between two nodes

are discussed. In Section 6, strongly connected

GFGs are described with suitable examples. Here,

bridges are also defined. In Section 7, generalized

fuzzy directed trees are introduced and some prop-

erties are proved. Insights of this study are discussed

in the Section 8. At last, conclusion is drawn in Sec-

tion 9.

2. Problem definition of this work

This study focuses on generalization of fuzzy

trees (GFTs) and generalized fuzzy directed trees

(GFDTs). In this paper, it is considered that any gen-

eralized fuzzy graph (GFG) which is a cycle in crisp

sense may be considered as a tree if it fulfills the cri-

teria of trees. Length between two nodes in GFT is

to be measured. Also, Strongly connected GFTs will

be discussed. Also, the sufficient rule for a cycle to

be a GFT will be established.

3. Preliminaries

A fuzzy graph ξ = (U,σ ,μ) is a non-void set V with

a pair of mappings σ : V → [0,1] and μ : U ×U →
[0,1] as if for each x,y ∈V , μ(x,y)� σ(x)∧σ(y).

Underline crisp graph of a fuzzy graph ξ =
(U,σ ,μ) is |ξ | = (U,E) with E = {(x,y)|μ(x,y) �
0}.

3.1. Generalized fuzzy graphs (GFGs)

The membership value of nodes of graphs depend

on membership values of the adjacent edges. For

isolated nodes, the membership values of nodes are

taken as 0. The membership mapping is defined

from a non-void set to a closed interval [0,1]. Thus,

any linguistic term can be defined by membership

values. Some times, node membership values are

considered first and depending on node membership

values, the edge membership values can be consid-

ered. For example, social networks, where social

actors and its stability are considered first. Depend-

ing on stability, node membership values are given.

After that, relation among the actors are considered.

The membership values may be taken from the pa-

rameter ‘relationship’. Again, in some problems,

edges are considered first and depending on edge

membership values the node membership values are

considered. For example, capacities of pipelines can

be taken as edge membership values and depending

on the capacities, node membership values are de-

cided.

Thus, two types of relations are assumed. In the

following, generalized fuzzy graphs of first kind is
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Table 1. Authors’ contributions towards generalized fuzzy trees.

Authors Year Contributions

A. Kauffman8 1973 Introduction of fuzzy graphs.

A. Rosenfeld25 1975 Modification of the concept of

fuzzy graphs given by Kauffmen 8.

He added that edge membership value

is less than minimum of node

membership values.

M. S. Sunitha et al24 1999 Characterization of fuzzy trees.

J. Yun et al26 2014 Fuzzy decision trees.

M. Akram et al5 2016 Fuzzy soft trees.

S. Samanta et al21 2016 Introduction of generalized fuzzy graphs.

This paper – Characterisation of generalized

fuzzy trees and its

properties.

defined. Here, node membership values are con-

sidered first. Then, depending on node membership

values, edge membership values are considered.

Definition 1. 21 Let V be a non-void set. Two

mappings are considered as follows: ρ : V →
[0,1] as well as ω : V × V → [0,1], A =
{(ρ(x),ρ(y))|ω(x,y) > 0}. The triad (V,ρ,ω) is

said to be generalized fuzzy graph of first kind

(GFG1) if there exists a mapping φ : A → (0,1]
such that ω(x,y) is equal to φ((ρ(x),ρ(y))), where

x,y ∈V .

Now, generalized fuzzy graphs of second kind is

defined. Here, the membership values of edges are

considered first. Then, depending on edge member-

ship values, node membership values of nodes are

assigned.

Definition 2. 21 Let V be a non-void set. Two map-

pings are considered as follows: ρ : V → [0,1] and

ω : V ×V → [0,1]. Also, let B be the range set of ω .

The triad (V,ρ,ω) is said to be generalized fuzzy

graph of second kind (GFG2) if there exists a map-

ping ψ : B → (0,1] with the rule that for each x ∈V ,

ρ(x) is equal to ψ(ω(ex)) where ex = (x,y) such that

y ∈V .

Note 1 In GFG2, the co-domain set of ψ excludes

the number 0, as the membership values of nodes
are always positive.
The order of GFG, ξ is O(ξ ) = ∑x∈V ρ(x). The size

of GFG, ξ is S(ξ ) = ∑x,y∈V ω(x,y).

3.2. Generalized fuzzy directed graphs (GFDGs)

The generalized directed fuzzy graph of first kind

(GDFG1) is defined below.

Definition 3. Let V be a non-void set. Two map-

pings are considered as follows: ρ : V → [0,1] as

well as ω :
−→
E → [0,1], where

−→
E be a set of ordered

elements of V ×V . A = {(ρ(x),ρ(y))|ω−−→
(x,y)> 0}.

The triad (V,ρ,ω) is said to be generalized directed

fuzzy graph of first kind (GDFG1) if there exists

a mapping φ : A → (0,1] with ω
−−→
(x,y) is equal to

φ((ρ(x),ρ(y))), where x,y ∈V .

Example 1. Let the node set be V = {x,y,z, t} and

edge set be {−−→(x,y),
−−→
(x,z),

−−→
(t,x),

−−→
(y, t)} and ρ(x) =

0.2, ρ(y) = 0.9, ρ(z) = 0.3, ρ(t) = 0.8 and

φ(m,n) = m∧ n. Here, A = {(0.2,0.9),(0.2,1.3),
(0.8,0.2),(0.9,0.8)}. Then ω

−−→
(x,y) = 0.2 ∧ 0.9 =

0.2, ω
−−→
(x,z) = 0.2, ω

−−→
(t,x) = 0.2, ω

−−→
(t,y) = 0.8. The

corresponding generalized fuzzy graph is shown in

Fig. 1.
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Fig. 1. A generalized directed fuzzy graph of first kind

(GDFG1)

Degree of a node x in GDFG1 is the pair

(d+(x),d−(x)) where d+(x), out degree of x, is the

sum of the generalized membership values of out-

going edges and d−, in degree of x, is the sum

of the generalized membership values of incoming

edges. Thus, d+(x) = ∑y∈V ω
−−→
(x,y) and d−(x) =

∑y∈V ω
−−→
(y,x). In the Fig. 1, the degree of x is

(0.2+0.2,0.2) which is equal to (0.4,0.2). The degree

of the nodes y,z, t are (0.8,0.2), (0,0.2), (0.2,0.8)
respectively.

Note 2 In GDFG1, out degree or in degree of a
node may be 0. But, when both are 0 then the node
is called null node.

Generalized directed fuzzy graph of second kind

(GDFG2) is introduced below.

Definition 4. Let V be a non-void set. Two map-

pings are considered as follows: ρ : V → [0,1] and

ω :
−→
E → [0,1], where

−→
E be a set of ordered ele-

ments of V ×V . Also, let B be the range set of

ω . The triad (V,ρ ,ω) is said to be generalized

directed fuzzy graph of second kind (GDFG2) if

there exists a mapping ψ : B → (0,1], for all x ∈ V ,

ρ(x) = ψ(ω(ex)) and ex =
−−→
(x,y) or ex =

−−→
(y,x) such

that y ∈V .

By the Definition, 4 it is true that, if a node has

no incoming edge but has outgoing edges, its gen-

eralized membership value is 0. Let us discuss this

situation with an example.

Example 2. Now, it is true that V = {a,b,c,d,e}.

The edge membership values are given as

(
−−−→
(b,a),0.5), (

−−−→
(d,a),0.4), (

−−→
(b,c),0.6),(

−−−→
(c,d),0.5),

(
−−→
(e,c),0.8),(

−−→
(a,e),0.7), (

−−−→
(d,e),0.2). Here, ψ(x) =

max{ω
−−→
(y,x)}, y ∈ V . Now, the generalized mem-

bership value for such node a is ρ(a) = 0.5 +
0.4 = 0.9 as there are only two directed edges−−−→
(b,a),

−−−→
(d,a). Similarly, other nodes have the weights

as b(0),c(1.4), d(0.5),e(0.9). Thus, the graph of

Fig. 2 is GDFG2.
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Fig. 2. A generalized directed fuzzy graph of second kind

(GDFG2)

Degree of a node x in GDFG2 (similarly defined)

is the pair (d+(x),d−(x)), where d+(x), out degree

of x, is the sum of the generalized membership val-

ues of outgoing edges and d−, in degree of x, is

the sum of the generalized membership values of

incoming edges. Thus, d+(x) = ∑y∈V ω
−−→
(x,y) and

d−(x) = ∑y∈V ω
−−→
(y,x).

Note 3 In GDFG2, in-degree and(or) out-degree of
a node may have chance to be zero. If they are zero,
the node is said to null node.

4. Generalized fuzzy trees

In general, if the membership value of an edge is

greater than half of its maximum of membership val-

ues of its end nodes, the edge is said to be an effec-

tive edge. Suppose, someone informs another per-

son about any news. If the transfer of knowledge is

greater than to a minimum amount (may be assumed

half of the source knowledge), then the second per-

son can be informed effectively. Thus, transfer of

knowledge (which indicates the membership value

of an edge) helps a person (a node with lower mem-

bership value) to get more knowledge from a source
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(a node with greater membership value). Formal

definition of an effective edge is given below.

Definition 5. Let ξ = (V,ρ,ω) be a GFG1 (or

GFG2). An edge (x,y) is said to be effective edge

if ω(x,y)� 1
2

max{ρ(x),ρ(y)}. A generalised fuzzy

graph GFG1 (or GFG2) is said to be effective, if for

all edges (x,y) of ξ , ω(x,y)� 1
2

max{ρ(x),ρ(y)}.

Note 4 It is obvious that for GFG1, ω(x,y) =
φ(x,y). Now, if an edge of a generalized fuzzy
graph is effective, then other edges may not be ef-
fective. The following is the analytic description
of this statement. Let ξ be a GFG1 and it has
the node set {a(0.8),b(0.2),c(0.3)} and the edge
set {(a,b),(b,c)} and φ(x,y) = min{x,y}. Then
φ(a,b) = 0.2,φ(b,c) = 0.2. The edge (b,c) is ef-
fective as φ(b,c) = 0.2 > 1

2
max{b,c} = 1.5. Thus,

the edge (a,b) is not effective.

A GFG ξ ′ = (V ′,ρ ′,ω ′) is a subgraph of ξ =
(V,ρ,ω), if V ′ ⊂ V , ρ ′ : V ′ → [0,1] as well as ω ′ :

E ′ → [0,1], where E ′ ⊂ V ′ ×V ′ such that ρ ′(x) �
ρ(x) as well as ω ′(x,y) � ω(x,y). Spanning sub-

graphs contain all nodes of the graph. If all the edges

of the spanning subgraph are effective, then the sub-

graph is called effective spanning subgraph. Now,

the definition of generalized fuzzy trees (GFTs) is

introduced below. In this study, if a GFG is men-

tioned, it is connected in crisp sense, i.e. all nodes

are connected by a path whether the edges of the

path may be effective or not.

Definition 6. A GFG ξ = (V,ρ,ω) is a generalized

fuzzy tree (GFT) if it has an effective spanning sub-

graph F = (V,ρ ′,ω ′) whose underline crisp graph

is a tree and all arcs (u,v) not in F are not effective.

Example 3. In Fig. 3, a GFT is shown. The normal

lines are effective and dotted lines are non-effective.

Thus, the graph contains a subgraph whose all edges

are effective. It is easy to observe that the underline

graph is a tree. Hence, the graph of Fig. 3 is a GFT.

a(0.6)

b(0.7)

e(0.8)

h(0.4)

�

�

�

�

0.4 0.4

0.2

0.3

0.1

0.4
��

� �

g(0.9)

f (0.5)

c(0.5)

d(0.6)

0.25 0.60.5 0.3

0.60.4

Fig. 3. A GFT (dotted lines are not effective).

In classical theory of graphs, crisp trees with n
nodes have n− 1 edges. But, GFT of n nodes may

contain more than n−1 edges. The graph may con-

tain a cycle in crisp sense. The following statement

describes the consequence of the theorem of classi-

cal theory.

Note 5 A GFT of n nodes contains n− 1 effective
edges.

The reverse of the statement is not true. A graph

may have n−1 effective edges but still not GFT. For

example, in Fig. 4, there are 3 effective edges of a

GFG with 4 nodes. As an effective spanning sub-

graph is not found in the graph, the graph can not be

a GFT.

�

� �

�

a(0.5)

b(0.4) c(0.7)

d(0.9)
0.7

0.5

0.2

0.3
0.6

Fig. 4. A GFG with 4 nodes and 3-effective edges but not

GFT

If underline graph of a GFG is a crisp cycle, then

the GFG is called a cycle. Every such cycle may be

a GFT. This statement can be established from the

following theorem.

Theorem 1. Every cycle is a GFT if and only if the
cycle has only one non-effective edge.

Proof. Let ξ = (V,ρ,ω) be a cycle. Also let, ξ be

a GFT. Then there exists an effective spanning tree.

As spanning tree contains all the nodes of ξ , one
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edge must be removed from cycle to construct span-

ning tree. Hence, that edge must be non-effective.

The conclusion is that every cycle which is a GFT

must contain a non-effective edge.

Conversely, let ξ = (V,ρ,ω) be a cycle and it

has only one non-effective edge. If the non-effective

edge is removed from the cycle, it becomes a tree

in crisp sense. Also, all the edges of the spanning

subgraph are effective and it includes all the nodes

of the graph. Hence, ξ is a GFT.

Theorem 2. Let ξ be a GFG of n nodes and its un-
derline crisp graph be complete. If ξ is GFT, then it
has (n−1)(n−2)

2
non-effective edges.

Proof. In complete graph of n nodes, the edge

number is
n(n−1)

2
. So ξ has the same number of

edges. If ξ is a GFT, then it has an effective

spanning tree. Again, crisp trees with n nodes

have n− 1 edges. Thus, for the effective spanning

tree, the number of non-effective edges is described

as
n(n−1)

2
− (n − 1) i.e.,

(n−1)(n−2)
2

. Hence, ξ has
(n−1)(n−2)

2
non-effective edges.

Note 6 The converse of the statement is not correct.
Suppose a GFG has 4 nodes, then it may have max-
imum 6 edges. If it has (4−1)(4−2)

2
= 6 non-effective

edges, it may not be GFT.

5. Length between two nodes in GFT

The definition of distance mapping is given below.

Definition 7. Let us consider ξ = (V,ρ,ω) be a

GFG. Now, the length mapping on ξ is dξ : E → R,

where E is the edge set of ξ with the following rule:

For each x,y ∈V
(i) dξ (x,y) is greater or equal to 0

(ii) dξ (x,y) is equal to dξ (y,x).
Paths are very important and useful concept in

graphs. One node may not be connected directly.

By different paths, many nodes may be connected.

In fuzzy graphs, paths are of different types. A path

is said to be strong if all edges of the path are effec-

tive. Otherwise, i.e. at least one edge is not effec-

tive, the path is called weak path. Now, the lengths

between two nodes are stated as follows:

Definition 8. Let ξ = (V,ρ,ω) be a GFG with

the length mapping on ξ as dξ : E → R, where

E is the edge set of ξ . The length measure-

ment within the nodes x as well as y is D(x,y) =
min(P∈P)(dξ (x,u1) + dξ (u1,u2) + . . . + dξ (uk,y)),
where ui ∈ P, i = 1,2, . . . ,k as well as P is a set of

every paths between x and y.

In this paper, the length is measured according to

the effectiveness of the edges. The effectiveness of

an edge (x,y) in GFG is determined as
ω(x,y)

ρ(x)∨ρ(y) . An

example is given as follows:

Example 4. In Fig. 4, the length between the nodes

b and d is to be measured. Here, the number of paths

between b and d are P1 : {b → a → d}, P2 : {b → d}
and P3 : {b → c → d}. Now, the length between

the nodes along the path P1 is 0.5
0.5 + 0.7

0.9 =1.78. Now,

the length between the nodes along P2 is 0.6
0.9 = 0.67.

The same along the path P3 is 0.2
0.7 +

0.3
0.9 = 0.62. Thus,

D(b,d) = min{1.78,0.67,0.62}= 0.62.

Note 7 Triangle inequality does not hold for fuzzy
length.
This statement is verified in the Example 4. Here,

D(b,d) = 0.62, D(b,c) = 0.285, D(c,d) = 0.333.

Thus, D(b,d) = D(b,c)+D(c,d).

The centre of a GFG is defined below. Let ξ =
(V,ρ,ω) be a GFG. The centre of the GFG is the set

of nodes whose lengths from farthest nodes are min-

imum. Now for large networks, it is convenient that

the nodes with approximately same lengths from far-

thest nodes are to be considered. Before the formal

definition of centre, definition of farthest nodes from

a node are defined here.

Definition 9. Let ξ = (V,ρ,ω) be a GFG. The far-

thest nodes of x is the set of nodes Fx = {z|D(x,z)>
D(x,y)∀y ∈V}.

Generalization of the definition of centre is given

below.

Definition 10. Let ξ = (V,ρ,ω) be a GFG. Also,

let ε > 0 be a small pre assigned positive number

such that 0 � ε � 1. The centre of ξ is the set

C = {x|D(x,y)+ ε < D(t,z)∀t ∈V |y ∈ Fx,z ∈ Ft}
Example 5. In Fig. 4, the farthest node of a is c
with the length 1.21, that of b is a with the length 1.
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Similarly, for other nodes c and d, the farthest nodes

are a (with length 1.21) and a (with length 0.77). So

the node with minimum lengths from their farthest

node is d. Hence, the centre of the graph is d. Now,

if generalization concept is used, and take ε = 0.3,

then the centre of the graph is C = {d,b}.

Radius and diameter are also defined. Radius is

the length from the center(s) to the farthest node in a

GFG. On the other hand, diameter is the length mea-

surement between two end nodes of a longest path (a

path with maximum length).

6. Strongly connected GFG and spanning GFT

In this paper, it is assumed that a tree may contain

effective and non-effective edges. It is known that a

spanning tree includes all nodes of the graph.

Definition 11. Let T = (V,ρ,ω) be a GFT. T is

defined to be spanning tree of a GFG, ξ if T is a

subgraph of ξ and T contains all nodes of ξ .

Thus, every GFG may or may not contain span-

ning tree. Here, connectivity of a graph is repre-

sented in terms of spanning tree. The following

study introduces two concepts namely, strongly con-

nected and nearly disconnected GFG.

Let ξ = (V,ρ,ω) be a GFG. If the GFG has a

spanning tree, then it is strongly connected (Type

1). If GFG does not contain any spanning tree, then

the graph may contain one or more trees as sub-

graphs. In that case, two cases may arise. Some

nodes are not incident to effective edges. Suppose,

every such node, say x, is connected by some non-

effective edges, say (x,y1),(x,y2), . . . ,(x,ym) with

the rule ∑m
i=1

ω(x,yi)
ρx∨ρ(yi)

� 0.5. Then the graph is

strongly connected (Type 2). There is another case,

where some non-effective edges connects two trees

in a GFG, i.e. one end node of such edges lies

in one tree and other in another tree. Suppose

the edges are (x1,y1),(x2,y2), . . . ,(xp,yp). Now, if

∑p
i=1

ω(xi,yi)
ρxi∨ρ(yi)

� 0.5, then the GFG is called strongly

connected (Type 3).

Example 6. In Fig. 5(a), a GFG is drawn. The

dotted lines are non-effective and normal lines are

effective. In the figure, a spanning tree is shown.

Thus, the graph is strongly connected GFG of type

1. In Fig. 5(b), a node x is incident to non-effective

edges (x,y1),(x,y2),(x,y3),(x,y4). If it is assumed

that ∑4
i=1

ω(x,yi)
ρx∨ρ(yi)

� 0.5, the graph is strongly con-

nected GFG of type 2. In Fig. 5(c), two trees are

given. Between two trees, there may be more than

one set of edges connecting them. One such set is

{(xi,y j)|i = 1,2 as well as j = 1,2,3. Similarly, if

sum of the effectiveness of the edges is greater than

0.5, then the graph is defined to be strongly con-

nected GFG of type 3.

�

�

�

�

�

�

�

(a): Strongly connected GFG of type 1.

�

�

�

�

�

�

�

x

y1

y2 y3

y4

(b): Strongly connected GFG of type 2

�

�

�

�

�

�

�x1

y1

y2

x2

y3
(c): Strongly connected GFG of type 3

Fig. 5. Strongly connected GFGs

On the other hand, weakly connected graphs are

the graphs which are not strongly connected. Now,

nearly disconnected graphs are defined below. Let

ξ = (V,ρ,ω) be a GFG. Let ε be a small positive

number such that 0 < ε < 0.5. If the graph con-

tains a spanning GFT, then the graph is strongly
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connected. If a graph does not contain an effective

spanning tree, there may arise two cases. Firstly,

some nodes are not incident to effective edges. Sup-

pose, every such node, say x, is connected by some

non-effective edges, say (x,y1),(x,y2), . . . ,(x,ym)

such that ∑m
i=1

ω(x,yi)
ρx∨ρ(yi)

� ε . Then, the graph is

nearly disconnected. In the last case, there may

be some non-effective edges which connects two

trees in a GFG, i.e. one end node of such edges

lies in one tree and other end in another. Suppose

the edges are (x1,y1),(x2,y2), . . . ,(xp,yp). Now, if

∑p
i=1

ω(xi,yi)
ρxi∨ρ(yi)

� ε , then also the GFG is called nearly

disconnected.

Example 7. Let us consider a GFG shown in Fig. 6

and ε = 0.13. Here, a node x is connected to nodes

y1,y2,y3. Also, sum of the effectiveness of the edges

(x,y1),(x,y2),(x,y3) is 0.1268 < ε . As the graph

contains at least one such node with weak effective-

ness, then the graph is nearly disconnected.
�

� � �

�

x(0.5)

y1(0.8) y2(0.7) y3(0.4)

0.01
0.01

0.05

�

Fig. 6. An example of nearly disconnected graph

Theorem 3. Let ξ be a GFG whose underline graph
is a cycle. Also let, ξ has no effective edges. Then
ξ is strongly connected if sum of effectiveness of any
pair of edges of ξ is greater than 0.5.

Proof. Here, ξ is a GFG whose underline graph

is a cycle. Also, ξ has no effective edges. Let

x be any node of ξ with the rule (x,y) and (x,z)
are incident edges. Now, according to the rule,

ω(x,y)
ρ(x)∨ρ(y) +

ω(x,z)
ρ(x)∨ρ(z) > 0.5. As it is true for all pair of

edges, the graph is strongly connected.

In the theory of graphs, bridges are such edges

whose removal disconnects the graphs. Now, bridge

in GFG is introduced as follows:

Definition 12. An edge in strongly connected GFG

is said to be bridge if its removal turns the graph as

nearly disconnected.

In the Definition 7, it is easy to verify that bridge

is an effective edge (type 1) or non-effective edges

(type 2). The following example verifies the defini-

tion properly.

Example 8. Let us assume that ε = 0.25. In the Fig.

7, normal lines are effective edges and dotted lines

are non-effective edges. Now, it is easily seen that

the edge (y,z) is a bridge if effectiveness of (x,y) is

less than 0.25.

�

� �

�
�

�

�

�

�

x

y

If the effectiveness of (x,y) is < ε , then (y,z) is bridge

z

Fig. 7. A bridge in GFG

It is easy to state that a GFT whose underline

graph is cycle, has only one non-effective edge. If

another edge is non-effective, then the graph has the

following property.

Theorem 4. Let ε be a small pre assigned positive
number such that 0 < ε � 0.5. Every edge in a GFT
whose underline graph is cycle, is a bridge if the ef-
fectiveness of the non-effective edge of the GFT is
less than ε .

Proof. Let ε be a pre assigned small positive num-

ber such that 0 < ε � 0.5. Let ξ be a GFT whose

underline graph is a cycle. It is easy to state that a

GFT whose underline graph is cycle, has only one

non-effective edge. By the definition of bridge, an

edge is said to be bridge if its removal, creates the

graph as nearly disconnected. Thus, if every edge is

a bridge in ξ , then effectiveness of the non-effective

edge is less than ε .
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7. Generalized fuzzy directed trees

The definition of generalized fuzzy directed trees

(GFDTs) can be similarly introduced. A GFDG is

said to be GFDT, if it has effective spanning directed

tree.

Definition 13. A GFDG ξ = (V,ρ,ω) is a general-

ized fuzzy directed tree (GFDT) if

(i) it has an effective spanning subgraph F =
(V,ρ ′,ω ′) whose underline crisp graph is a tree and

all arcs (u,v) not in F are not effective.

(ii) one node, say a, of F has null in-degree, i.e.

d−(a) = 0.

A GFDT is shown in Fig. 8. Here, dotted lines

are non-effective edges. Thus, in GFDT, there is no

cycle whose all edges are effective.

�

� �

� � �

�

� �

�


�

�

� � � ��

� � � 
 �

�
�




�

�

�

 


�

� 


��

Root

Non-effective edge
effective edges






Fig. 8. Generalized directed fuzzy trees

In GFDT, there is one node whose in-degree is

less than all other nodes. In GFDT, there is a node

in which all effective edges are out-coming and in-

coming edges are non-effective, if there be any. This

special node is known as root of GFDT. The infor-

mation regarding the in-degree nodes in GFDT, can

be found in the following theorem.

Theorem 5. Let ξ be a GFDT. The effectiveness
of each in-coming edges is greater than 0.5 except
root.

Proof. Let ξ be a GFDT. Now, ξ has a spanning

tree. By the definition of spanning tree, all edges of

the tree are effective. Hence, all nodes in the tree

has in-coming effective edges exactly once. Thus,

the effectiveness of the in-coming edges are greater

than 0.5. The only node, the root has no effective

in-coming edge.

8. Insights for this study

• GFTs are introduced. Cycles in crisp sense are not

assumed as trees, but in this case if the cycle has

one weak edge, it may be assumed as trees.

• Length within nodes in GFT is introduced. De-

pending on the definition, centre and radius are

described.

• Strongly connected trees and spanning trees are

discussed. Thus, a cycle may be assumed as span-

ning tree but strongly connected cycle is not con-

sidered as spanning trees. This is the importance

of strongly connected graphs.

• The rule of a cycle to be tree is established. The

rule of a GFG to be nearly disconnected is also

provided.

• Generalized fuzzy bridge is described. Also,

GFDTs are defined and some properties are given.

9. Conclusions

This study described a major part of generalized

fuzzy graphs known as generalized fuzzy trees.

Length between two nodes were assumed as effec-

tiveness of the corresponding edges. Also, the length

may be measured by some other ways depending the

application and expert opinion. Strongly connected

and nearly disconnected graphs were discussed. For

nearly disconnected GFG, it was assumed that ε sat-

isfies the inequality 0 < ε � 0.5. This assumption

could be changed as per application. According to

different situations ε can be changed. Also, bridges

in GFG were discussed. For an image representa-

tion, objects were assumed as effective edges, and

backgrounds were taken as the non-effective edges

in GFGs. In Wassenberg algorithm and earlier algo-

rithms, objects are taken as crisp spanning. So these

algorithms are based on backgrounds (taking value

0) and objects (taking value 1). If the image is con-

verted to GFG, then objects are considered as span-

ning fuzzy tree and backgrounds may be taken as

part of GFG which are constructed by non-effective

fuzzy edges. Then, steps of the algorithms will be

changed. So our aim, in near future, is to modify

the algorithms. These theoretical developments will

help larger fields of computer vision.
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