
A Combined-Learning Based Framework for Improved Software Fault Prediction

Chubato Wondaferaw Yohannese, Tianrui Li

School of Information Science and Technology
Southwest Jiaotong University

 Chengdu 611756, China
 freewwin@yahoo.com, trli@swjtu.edu.cn

Abstract

Software Fault Prediction (SFP) is found to be vital to predict the fault-proneness of software modules, which
allows software engineers to focus development activities on fault-prone modules, thereby prioritize and optimize
tests, improve software quality and make better use of resources. In this regard, machine learning has been
successfully applied to solve classification problems for SFP. Nevertheless, the presence of different software
metrics, the redundant and irrelevant features and the imbalanced nature of software datasets have created more and
more challenges for the classification problems. Therefore, the objective of this study is to independently examine
software metrics with multiple Feature Selection (FS) combined with Data Balancing (DB) using Synthetic
Minority Oversampling Techniques for improving classification performance. Accordingly, a new framework that
efficiently handles those challenges in a combined form on both Object Oriented Metrics (OOM) and Static Code
Metrics (SCM) datasets is proposed. The experimental results confirm that the prediction performance could be
compromised without suitable Feature Selection Techniques (FST). To mitigate that, data must be balanced. Thus
our combined technique assures the robust performance. Furthermore, a combination of Random Forts (RF) with
Information Gain (IG) FS yields the highest Receiver Operating Characteristic (ROC) curve (0.993) value, which is
found to be the best combination when SCM are used, whereas the combination of RF with Correlation-based
Feature Selection (CFS) guarantees the highest ROC (0.909) value, which is found to be the best choice when
OOM are used. Therefore, as shown in this study, software metrics used to predict the fault proneness of the
software modules must be carefully examined and suitable FST for software metrics must be cautiously selected.
Moreover, DB must be applied in order to obtain robust performance. In addition to that, dealing with the
challenges mentioned above, the proposed framework ensures the remarkable classification performance and lays
the pathway to quality assurance of software.

Keywords: Software Fault Prediction, Software Metrics, Feature Selection, Data Balancing, Machine Learning.

1. Introduction

Software faults are the root causes for software failures
when get executed. These affect the reliability and
quality of the software system. Thus many studies has
made fault prediction with a common goal of reliability
and quality assurance to ensure that developed software
meets and complies with defined or standardized quality
specifications. A targeted software quality inspection
can detect faulty modules and reduce the number of
faults occurring during operations. Nevertheless,
software may have thousands of modules and it’s very
tiresome and time consuming to allocate human as well

as financial resources to go through all modules
exhaustively. Thus, statistical and Machine Learning
(ML) techniques have been employed in most studies so
as to predict the fault-prone modules of the software [1]
– [8], [10, 13], [15] – [19], [23, 24], [27, 28, 33, 34].
Therefore, effective prediction of fault-prone software
modules can enable to direct test effort and reduce costs,
help to manage resources more efficiently, and be useful
for software developer. This in turn can lead to a
substantial improvement in software quality.
Identification of fault-prone software modules is
commonly achieved through binary prediction models
that classify a module into either defective or not-

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

647

Received 21 August 2016

Accepted 10 January 2017

Copyright © 2017, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

defective category. These prediction models utilize
different software metrics [4], which have been
associated with defects, as independent variables. In this
study, we develop a new framework which incorporates
eight widely used classifiers: Naïve Bayes (NB), Neural
Network (NN), Support Vector Machine (SVM),
Random Forest (RF), K-Nearest Neighbor (KNN),
Decision Table (DTa), Decision Tree (DTr) and
Random Tree (RTr) for building Software Fault
Prediction (SFP) models.

Fundamentals to employ ML for effective and
improved SFP are consideration of different software
metrics [4] – [7], [11] – [14], [29, 30], Feature Selection
(FS) [1, 8, 9], [15] – [17], [25], [28, 34] and Data
Balancing (DB) [9, 18], [35] – [38]. For SFP, many
software metrics have been proposed but we favor to
separate the studies according to the most frequently
used metrics: Chidamber and Kemerer’s (CK) Object
Oriented Metrics (OOM) and McCabe and Halstead
Static Code Metrics (SCM) [11]. FS is carried out by
removing less important and redundant data, so that
only beneficial features are left for training the
classification models and the performance of learning
algorithm could be improved. The benefits of FS for
learning can include a reduction in the amount of data,
improve the predictive performance, learn knowledge
that is more compact and easily understood, and reduce
the execution time [15]. Therefore, this study
investigates three Feature Selection Techniques (FST)
to build SFP models with datasets that suffer from a
large number of irrelevant features (software metrics),
each of which has been proven good in different SFP
models [13], [15] – [17], namely Correlation Based
Feature (CFS), Principal Components Analysis (PCA)
and Information Gain (IG). Employing different FST
would help us to attain the objective of identifying
which FST are suitable in various contexts (software
metrics).

On the other hand, the nature of software defect
datasets consists of Fault-Prone (FP) and Not-Fault-
Prone (NFP) modules. It has been seen that these
datasets are highly skewed toward the NFP modules and
the number of FP modules are relatively very small. The
skewed data problem, also known as class imbalance,
brings a unique challenge when building the
classification model. However, practitioners and
researchers often build fault prediction models without
regard to the imbalance problem. Therefore, the class

imbalance problem must be addressed when building
fault predictors. Thus, another fundamental aspect of
SFP is the imbalance nature of defect datasets, which
the ML community has addressed in two ways. One is
to assign distinct costs to training examples. The other is
to re-sample the original dataset, either by oversampling
the minority class and/or under-sampling the majority
class [18, 35, 36]. As shown in different studies [35] –
[38], balancing data using Synthetic Minority
Oversampling Techniques (SMOTE) gives better
classification performance. Therefore, this study
explores the algorithm of SMOTE for building SFP
models with datasets that suffer from class imbalance.

Unlike most other studies, to assure the
improvement of classification performance, our
proposed framework examines both OOM and SCM
with efficient combination of FS and DB techniques.
With our framework, we will get a balanced dataset for
training the classification models, which in turn improve
the performance and help to identify best classifiers and
FST for each software metrics.

Therefore, the objective of this study is to
independently examine software metrics and see their
performance as well as investigate multiple FST to
identify which FST could be suitable for which metrics
with the application of DB technique to guarantee the
improvement of classification performance.
Accordingly, the primary contribution of this study is
the empirical analysis of multiple software metrics and
FST in combination with DB. Interestingly, the
proposed framework has exhibited the robustness of
combined techniques, which constitutes a major
contribution credited to this study. The secondary
contribution is recognizing FST suitability in various
contexts to reduce features as well as improve the
performance in SFP.

The remainder of this study is organized as follows:
Section 2 provides an overview of related works.
Section 3 discusses hypothesis and details of the
proposed framework. Section 4 presents the
experimental design. Section 5 reports our results and
discussion, comparison of eight modeling techniques,
three FST and DB technique with ROC evaluation
measure for both OOM and SCM. Section 6 discusses
what we consider the most important threats to validity.
Section 7 concludes and outlines directions for future
research.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

648

2. Related Work

In this section, we focus on the studies that have
attempted to address classification problems to build
fault-proneness prediction models.

Fault prediction modeling is an important area of
research and the subject of many previous studies.
These studies typically produce fault prediction models
which allow software engineers to focus development
activities on FP code, thereby improving software
quality and making better use of resources [22]. Many
researchers have been employing ML and statistical
techniques for SFP [26, 32, 33, 34]. Shivaji et al. [1]
employed NB and SVM to investigate multiple FST for
bug prediction on 11 software projects. NB provided
21% improvement in buggy F-measure and SVM
provided 9% improvement in buggy F-measure. Gondra
[2] assessed the possible benefits of neural networks
versus SVMs to perform classification. He found the
accuracy was 87.4% when using SVM compared to
72.61% when using neural networks using a threshold
of 0.5, suggesting that SVM is a promising technique
for classification within the domain of fault-proneness
prediction with the data he used from NASA’s metrics
data program repository. Elish and Elish [3] evaluated
the capability of SVM in predicting defect-prone
software modules and compared its prediction
performance against eight statistical and ML models,
using four NASA datasets. The results indicated that the
prediction performance of SVM is generally better than,
or at least, is competitive against the compared models.
On the other hand, Arisholm et al. [4] evaluated eight
selected modeling techniques on different
measurements. The findings are that the measures and
techniques which are put forward as the “best” are
highly dependent on the evaluation criteria applied.
Note that all these studies don’t consider different
variety of software metrics, mostly build models on
static code metrics and don’t apply FST as well as DB
which is the most crucial part for performance
improvement, except that Shivaji et al. and Arisholm et
al. used only FST and considered different software
metrics, respectively [1, 4].

In the same work, Arisholm et al. [4] evaluted the
impact of using different metric sets such as source code
structural measures and change/fault history (process
measures). They compared several alternative ways of
assessing the performance (accuracy, precision, recall,

ROC and cost-effectiveness) of the models to
systematically evaluate how to build and evaluate fault-
proneness models in large Java legacy system
development project. Furthermore, they compared eight
modeling techniques and observed large differences
between the individual metric sets in terms of cost-
effectiveness. Kim et al. [5] used deltas from 61
traditional complexity metrics (including Lines of Code
(LOC), lines of comments, cyclomatic complexity, and
max nesting) and a selection of process metrics, and
applied them on twelve open source projects. Kanmani
et al. [6] introduced two neural network based SFP
models using Object-Oriented metrics. The results were
compared with two statistical models using five quality
attributes and found that neural networks do better.
Among the two neural networks, Probabilistic Neural
Networks outperform in predicting the fault proneness
of the Object-Oriented modules developed. Gyimothy et
al. [7] calculated the Object-Oriented metrics given by
Chidamber and Kemerer to illustrate how fault-
proneness detection of the source code of the open
source software can be carried out, using regression and
ML methods to validate the usefulness of these metrics
for fault-proneness prediction. It is also important to
note that both of these studies don’t consider employing
FST as well as DB for performance improvement in
SFP.

In addition to that, it has been realized that the
performance of classifiers can be increased by keeping
the quality of software datasets, which can be done by
applying either suitable FST on respected software
metrics and/or applying and building model on the
dataset which has recommended percentage of faulty
and non-faulty instances. Some researchers have
employed those techniques separately. For instance, as
discussed earlier, Shivaji et al. [1] investigated multiple
FST using NB and SVM classifiers. Wang et al. [8]
presented a comprehensive empirical study evaluating
17 ensembles of feature ranking methods including six
commonly-used feature ranking techniques and 11
threshold-based feature ranking techniques. This study
utilized 16 real-world software measurement datasets
including a very large telecom software system, the
Eclipse project, and NASA software project.
Experimental results indicated that ensembles of very
few rankers are very effective and even better than
ensembles of many or all rankers. In both studies, they

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

649

don’t consider employing different software metrics
distinctly as well as DB for performance improvement.

Though some studies attempt to employ both FS and
DB, few researchers have tried to combine them. Liu et
al. [9] combined FS with DB using sampling
techniques. But the purpose of the sampling was to
reduce the total number of instances instead of handling
class imbalance. To the best of our knowledge, no
research attempt has been made combining the three
(metrics, FS and DB/over sampling) concepts together
explicitly for SFP.

Having this gap in mind, which has not been
addressed by many studies, we design a new framework
that treats the following three concepts step by step:
Firstly, we consider different software metrics
individually and build classification models. Secondly,
we apply multiple FST for each software metric to
identify which FS best suits for which metrics. Finally,
we apply DB technique on the best features selected and
build the classification model. Details of our new
framework for improved SFP are presented in the
following sections.

3. A Framework for Improving Software Fault
Prediction

3.1. Hypothesis

H1. A Combined learning of FS with DB on both OOM
and SCM, particularly applied with SMOTE can
guarantee the improvement of classification
performance for SFP.

H2. Suitable FST may vary in various software metrics
(OOM and SCM) to reduce features as well as improve
the performance in SFP.

3.2. The Proposed framework for software fault
prediction

A framework for improving SFP is shown in Fig. 3.1 to
Fig 3.3. We follow three strategies to train and build the
classification models.

First, we start with treating multiple software
metrics individually, though the natures of metrics are
different. And we build classification models using
eight selected, most frequently used ML algorithms
(NB, NN, SVM, RF, KNN, DTa, DTr, and RTr) carried
out by running a 10-fold cross-validation for SCM and
OOM. Then the results are captured using ROC
Performance Evaluation (PE) criteria. As shown in Fig

3.1, this strategy serves as a comparable reference in the
subsequent performance experiments.

Second, we perform FS using three attribute
evaluation methods (CFS, PCA and IG) and three
search methods (BestFirst (BF), GreedyStepwise (GS)
and Ranker (R), with 0.02 threshold to discard
attributes) to identify useful features for learning. The

Fig 3.2 A framework for improving SFP (strategy two)

Fig 3.1 A framework for improving SFP (strategy one)

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

650

input of the framework for this step is also SCM and
OOM. Then we build the classification models on the
selected features. As shown in Fig 3.2, this strategy
serves as to compare with previous performance
experiment and realize the effect of applying different
FST on performance in different software metrics. Also
we use these results as comparable reference in the
subsequent performance experiment.

Third, we implement DB using SMOTE to manage
data disproportion. To get reasonably balanced data for
classification, we make the target ration for NFP and FP
module as recommended to be 65% and 35%,
respectively by Khoshgoftaar et al. [10]. The DB is
done on the selected features only. As shown in Fig 3.3,
this strategy serves as to prove the performance
improvement by comparing with the previous
performance experiment and finally to realize the best
classifiers with respect to recommended FST for both
SCM and OOM.

3.2.1. SCM and OOM

As discussed earlier, many software metrics have been
proposed for SFP. But according to Radjenovic et al.
[11], mostly used metrics are Object-Oriented metrics
(49%) and traditional source code metrics (27%).
Chidamber and Kemerer’s (CK) object-oriented metrics
and McCabe and Halstead traditional or static code
metrics were most frequently used once. Therefore, we
favor to separate the studies according to these metrics.
Static Code Metrics (SCM): McCabe and Halstead
feature attempts to objectively characterize code
features that are associated with software quality. Their
measures are “module” based where a “module” is the

smallest unit of functionality. McCabe [12] argued that
codes with complicated pathways are more error-prone.
His metrics therefore reflect the pathways within a code
module. His metrics are a collection of four software
metrics such as Cyclomatic Complexity (CC), Essential
Complexity (EC), Design Complexity (DC) and LOC.
Whereas, Halstead argued that code which is hard to
read is more likely to be fault-prone [13]. Halstead
metrics estimates the complexity by counting the
number of concepts in a module, for instance, the
number of unique operators/operands. His metrics falls
into three groups, such as the Base Measures (BM), the
Derived Measures (DM), and LOC Measures (LOCM).
The value of using static code metrics to build SFP
models has been empirically illustrated by Menzies et
al. [13], who stated that static code metrics are useful,
easy to use, and widely used.
Object Oriented Metrics (OOM): According to
Chidamber and Kemerer [14], object-oriented software
metrics used at a class-level can be grouped under three
stages of Object Oriented (OO) design processes. The
first stage is Identification of Classes (IoC) which
includes Weighted Methods for Class (WMC), Depth of
Inheritance Tree (DIT) and Number of Children (NOC);
The second stage is Semantics of Classes (SoC) which
includes Weighted Methods for Class (WMC),
Response for Class (RFC) and Lack of Cohesion of
Methods (LCOM); The last stage is Relationships
Between Classes (RBC) which includes Response for
Class (RFC) and Coupling Between Objects (CBO).

Fig 3.3 A framework for improving SFP (strategy three).

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

651

3.2.2. Feature selection techniques

To improve the quality of software datasets and build
classification models for SFP, selecting useful features
has been found to be beneficial. FST could identify and
extract most useful features of the dataset for learning,
and these features are very valuable for analysis and
future prediction. In most cases, the classification
accuracy using the reduced feature set equaled to or
bettered than that of using the complete feature set [1, 8,
15, 25, 31]. Nevertheless, as stated by Hall [15] in some
cases, FS degraded ML performance in cases where
some features are eliminated which are highly
predictive of very small areas of the instance space or
some features which are not predictive are selected.
This shows that all FST don’t have equal performance
and their performance can be varied in various software
metrics. Thus for this study we employ three different
kinds of FST, each of which has been proven good in
SFP [13], [15] – [17], namely Correlation Based Feature
(CFS), Principal Components Analysis (PCA) and
Information Gain (IG). Employing different FST would
help us to attain the objective of identifying which FST
are suitable for which software metrics.
Correlation-Based Feature Selection (CFS): According
to Hall [15], CFS quickly identifies and screens
irrelevant, redundant, and noisy features, and identifies
relevant features as long as their relevance does not
strongly depend on other features. A feature is said to be
redundant if one or more of the other features are highly
correlated with it. In his work, Hall [15] has discussed
the definition formalized by Kohavi and John, which is
shown as follows.
Definition 1: A feature iV is said to be relevant iff there

exists some iv and c for which () 0i ip V v= > such

that

 () () | .i ip C c V v p C c= = ≠ = (1)

In this study, we use CFS in conjunction with a
BestFirst and GreedyStepwise search method, but both
of them yield the same type and number of features
from each dataset in both metrics employed.
Principal Components Analysis (PCA): The PCA
approach was developed to reduce the dimensionality of
the input features for both supervised and unsupervised
classification purposes by Malhi et al. [16]. As they
pointed out that the PCA technique transforms n

vectors ()1, 2 , , ,i nx x x x… … from a d -dimensional
space to n vectors ()' ' ' '

1 2, , , ,i nx x x x… … in a new,
d ′ -dimensional space as

 '
,

1

,
id

i k i k
k

x a e d d
=

′= ≤∑ (2)

where ke are the eigenvectors corresponding to the d ′
largest eigenvalues for the scatter matrix S and ,k ia are
the projections of the original vectors ix on the
eigenvectors ke . These projections are called the
principal components of the original data set. In this
study, we use PCA in conjunction with a ranker search
method.
Information Gain (IG): IG feature selection technique
evaluates attributes by measuring their information gain
with respect to the class. It measures the expected
reduction in entropy caused by partitioning the class
according to a given attribute. The entropy characterizes
the impurity of an arbitrary collection of class. In this
study, we use IG in conjunction with a ranker search
method. According to Witten et al. [17], the IG
associated with an attribute and a dataset is calculated
using a straightforward implementation of Equation (3).
First, the entropy of the dataset is computed. Then the
difference between the former entropy and the weighted
sum of the latter ones gives the information gain.

InfoGain = H(parent) – [weighted] average H(child),
where H is the information entropy.

 () ()1 2 2
1

, , , log
n

n i i
i

entropy p p p p p
=

… = −∑ (3)

3.2.3. Data balancing

The performance of ML algorithms is typically
evaluated using predictive accuracy. However, this is
not appropriate when data is not proportional. A dataset
is imbalanced if the classification categories are not
approximately equally represented. Often software
defect datasets are composed of none faulty instances
with only a small percentage of faulty instances.
According to Nitesh et al. [18], ML community has
addressed the issue of class imbalance in two ways. One
is to assign distinct costs to training instances. The other
is to re-sample the original dataset, either by
oversampling the minority class and/or under-sampling
the majority class. For this study, we employ the special
form of over-sampling the minority class, which has

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

652

proposed in [18]. They confirmed that previous
research has discussed over-sampling with replacement
and has noted that it doesn’t significantly improve
minority class recognition. Hence, they came up with
their proposed over-sampling approach, in which the
minority class is over-sampled by creating “synthetic”
examples rather than by over-sampling with
replacement. In conclusion to get reasonably balanced
data for classification, we make the target ration for
NFP and FP module as recommended to be 65% and
35%, respectively by [10].

3.2.4. Performance evaluation

The performance of ML algorithms is typically
evaluated using predictive accuracy. However, this is
not appropriate when the data is imbalanced. For
instance, a typical software defect dataset might contain
95% NFP instances and 5% FP instances. A simple
default strategy of guessing the majority class would
give a predictive accuracy of 95%. However, SFP
requires fairly high rate of correct detection in the
minority class and allows for a small error rate in the
majority class in order to achieve this. Simple predictive
accuracy is clearly not appropriate in such situations.
Therefore, we adopt the Receiver Operating
Characteristic (ROC) curve, which is a standard
technique for summarizing classifier performance over a
range of tradeoffs between true positive and false
positive error rates, which has been employed by
different studies [1, 4, 8, 13, 18].

Table 4.1 A description of datasets

4. Experimental Design

 As recommended by Kohavi [19], in this study,
performance evaluation is carried out by running a 10-
fold cross-validation. Each dataset is randomly
partitioned into 10 mutually exclusive subsets (the

folds) of approximately equal size. For 10 times, 9 folds
are picked to train the models and the remaining fold is
used to test them, each time leaving out a different fold.
The performance of each classifier is evaluated against
each software metrics. Experimental results are
generated and analyzed by using WEKA version 3.6
[20] and MATLAB R2014a. Classification performance
is measured using the ROC measure. As discussed
earlier, ROC curves are popular metrics to evaluate
classification algorithms against imbalanced datasets.

The proposed SFP framework is implemented step
by step following three strategies, staring from building
models normally using the widely used eight classifiers
(NB, NN, SVM, RF, KNN, DTr, DTa, and RTr), which
has been employed by many studies [1] - [8], [13], [15]
– [19], [23, 24]. Moreover, three FS (CFS, PCA and IG)
and DB techniques, in our case SMOTE are used to
attain the study objective. Finally, the classification
performance based on the proposed framework is
evaluated using four publicly available software defect
datasets.

 Datasets: Four datasets which are publicly
accessible from PROMISE repository of NASA
software projects [21] are selected. These datasets have
been widely used by many studies [22]. Table 4.1
summarizes some main characteristics of the datasets
used in this study. The datasets are different in software
metrics used, number of metrics, number of rows, and
percentage of defects. Two datasets (mc1 and jm1)
consist of commonly used Static Code Metrics (SCM).
Camle1.6 and prop-4 datasets are based on OOM and
consist of commonly used CK object-oriented software
metrics. A comprehensive list of the metrics included in
SCM and OOM of software defect datasets is listed in
Table 4.2. In addition to SCM and OOM, to show the
effect of our proposed framework while tackling the
challenges of SFP mentioned in this study and ensure
robust classification performance, we also used other
group of software metrics (AEEEM ML and LC
datasets) which combine six different groups of
software metrics. This dataset was gathered by
D'Ambros et al. [41] and have been used in different
studies [39, 40]. It contains 61 metrics: 17 object
oriented metrics, 5 previous-defect metrics, 5 entropy
metrics measuring code change, and 17 churn-of-source
code metrics. Details of this metrics are discussed in
[41]. Note that data imbalance is consistently observed
in all datasets.

Dataset Metrics level size #Features #Instances NFP/FP
Instances

prop-4
OOM

class 670k 23 8718 7878/840
89.44%/10.56%

camel-
1.6 class 119k 24 965 777/188

80.5%/19.5%

mc1
SCM

module 998k 39 9466 9398/68
99.28%/0.72%

jm1 module 841k 22 10885 8779/2106
80.65%/19.35%

ML Combined class 374k 61 1862 1617/245
86.84%/13.16%

LC Combined class 146k 61 691 627/64
90.74%/9.26%

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

653

Before the experiments, during the data cleaning, we
remove non-numeric attributes like name, which has
only one value that is the name of the dataset. It’s found
to be unnecessary and increase the prediction time. In
addition to that, some modules that contain one or more
faults are labeled as FP.

5. Analysis and Discussions

In this section, we present the experimental analysis and
discussions based on the objective of the study.
Performance comparison in terms of ROC among
widely used three feature selection (CFS, PCA and IG),
one DB (SMOTE) and eight supervised ML techniques
(NB, NN, SVM, RF, KNN, DT, DTr and RTr)
investigating both OOM and SCM datasets have
presented in the following figures and tables. The
results are based on the performance of classifiers
before FST (Normal), after FS and combining FST with
DB.

5.1. Classification performance evaluation

According to Fig 5.1 (a), (b), and (c) referring to Table
5.1 using three FST, except NB using CFS and IG, all
other classifiers after DB exhibit better performance
than performance before FS and using FST for mc1
SCM dataset. Specifically RF, KNN, DTa, DTr and RTr
demonstrate the highest ROC values in all three FST
when applied with DB technique, particularly RF (close
to 1.0 ROC value) outperforms other classifiers,
followed by DT, DTr and RTr using CFS; KNN, NN,
DTr and DTa using PCA; and also DTa, DTr, RTr, and
KNN using IG after DB.

Although FS with DB contributes for the highest
classification performance, the performance
inconsistency has been observed when employing FS
without DB. For instance, CFS approach seems to pick
many poor features, which affects negatively the
classification performance except DTr and SVM (which
generates the same ROC value in all FST), as evidenced
by Fig. 5.1(a). In the case of PCA for the same dataset
mc1, slight differences have been exhibited, where RF
and NB attains high values when compared with their
values before using FS, as evidenced by Fig. 5.1(b).
When it comes to IG, all classifiers achieve higher ROC
value using FS when compared with ROC values before

Fig 5.1 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for mc1 SCM

Table 4.2 Metrics used in the study,

Code Metrics Code Metrics Code Metrics Code Metrics
Att1 McCabe's line count of code Att17 unique operators Att33 HALSTEAD_CONTENT Att49 Response for a Class
Att2 McCabe "cyclomatic complexity" Att18 unique operands Att34 HALSTEAD_ERROR_EST Att50 Lack of Cohesion in Methods
Att3 McCabe "essential complexity" Att19 total operators Att35 HALSTEAD_LEVEL Att51 Afferent Couplings
Att4 McCabe "design complexity" Att20 total operands Att36 MAINTENANCE_SEVERITY Att52 Efferent Couplings
Att5 Halstead total operators + operands Att21 the flow graph Att37 MODIFIED_CONDITION_COUNT Att53 Number of Public Methods
Att6 Halstead "volume" Att22 CALL_PAIRS Att38 MULTIPLE_CONDITION_COUNT Att54 Normalized version of LCOM
Att7 Halstead "program length" Att23 CONDITION_COUNT Att39 NODE_COUNT Att55 Lines Of Code
Att8 Halstead "difficulty" Att24 CYCLOMATIC_DENSITY Att40 NORMALIZED_CYLOMATIC_COMPLEXITY Att56 Data Access Metric
Att9 Halstead "intelligence" Att25 DECISION_COUNT Att41 PERCENT_COMMENTS Att57 Measure Of Aggregation
Att10 Halstead "effort" Att26 DESIGN_DENSITY Att42 LOC_TOTAL Att58 Measure of Functional Abstraction
Att11 Halstead Att27 EDGE_COUNT Att43 Name Att59 Cohesion Among Methods
Att12 Halstead's time estimator Att28 ESSENTIAL_DENSITY Att44 version Att60 Inheritance Coupling
Att13 Halstead's line count Att29 LOC_EXECUTABLE Att45 Weighted Methods per Class Att61 Coupling Between Methods
Att14 Halstead's count of lines of comments Att30 PARAMETER_COUNT Att46 Depth of Inheritance Tree Att62 Average Method Complexity
Att15 Halstead's count of blank lines Att31 GLOBAL_DATA_COMPLEXITY Att47 Number of Children Att63 Maximum values of methods in the same class

Att16 lOCodeAndComment Att32 GLOBAL_DATA_DENSITY Att48 Coupling between Object classes Att64 Mean values of methods in the same class

*codes are assigned to metrics for the purpose of ease

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

654

FS except for NB, as shown in Fig. 5.1(c). The
performance inconsistency of classifiers can be
considered to prove that not all FST are suitable for all
metrics and classifiers. This also has been seen in
different studies [15], as discussed earlier in Section 3,
FS degrades ML performance in cases where some
features are eliminated which are highly predictive of
very small areas of the instance space or some features
which are not predictive are selected. It is also
confirmed that the performance can increase with fewer
features due to noise reduction but can also decrease
with fewer features due to important features missing.
This is what has observed in this particular experiment.
Generally, it shows that using IG selected features has
been shown to be able to improve the ROC value of the
classifiers. So that IG becomes better FST for mc1 SCM
because except KNN, the rest seven classifiers reveal
better performance. One thing should be noted here that

under all circumstances (using all three FST), the
combination of FST and DB yields improved
performance results.

Yet again interesting development in classification
performance has achieved after combined
implementation of FST and DB in jm1 SCM dataset,
except that to some extent NB in all selected FST shows
less performance Fig 5.2 (a), (b), (c1), and (c2) referring
Table 5.2 reveal different facts before FS (Normal),
after FS and also applying FS with DB techniques.
Furthermore, since IG FST is found to be a good choice
for FS in this metric, we apply IG FS with 20 metrics
(20f) and 7 metrics (7f) to realize the effect of reducing
features on the classification performance. As discussed
under Section 3, we have used threshold to select useful
features as well as to discard less useful features from
the datasets. In this case 20 metrics (20f) and 7 metrics
(7f) were selected from jm1 SCM dataset based on the

Fig 5.2 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for jm1 SCM dataset

Table 5.1 Classification results of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST, and
combined FS and DB for mc1 SCM dataset.

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOTE IG IG&SMOTE
Naïve Bayes (NB) 0.909 0.881 0.891 0.921 0.915 0.833 0.865
Neural Network (NN) 0.800 0.748 0.941 0.705 0.982 0.877 0.896
Support Vector Machine

0.500 0.500 0.774 0.500 0.785 0.500 0.800

Random Forest (RF) 0.925 0.848 0.987 0.933 0.998 0.925 0.999
K-Nearest Neighbor (KNN) 0.778 0.734 0.954 0.756 0.986 0.778 0.970
Decision Table (DTa) 0.864 0.826 0.982 0.856 0.973 0.900 0.990
Decision Tree (DTr) 0.791 0.795 0.978 0.623 0.979 0.801 0.980
Random Tree (RTr) 0.806 0.764 0.974 0.776 0.965 0.820 0.974

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

655

Table 5.3 Classification result of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST, and
combined FS and DB for camel-1.6 OOM dataset.

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOT

IG IG&SMOTE
Naïve Bayes (NB) 0.675 0.665 0.690 0.629 0.653 0.597 0.606
Neural Network (NN) 0.688 0.661 0.738 0.690 0.756 0.636 0.623
Support Vector Machine (SVM) 0.504 0.502 0.508 0.500 0.517 0.500 0.502
Random Forest (RF) 0.739 0.729 0.856 0.716 0.843 0.680 0.825
K-Nearest Neighbor (KNN) 0.593 0.576 0.716 0.557 0.734 0.539 0.718
Decision Table (DTa) 0.641 0.649 0.724 0.607 0.639 0.671 0.702
Decision Tree (DTr) 0.616 0.599 0.736 0.571 0.636 0.543 0.680
Random Tree (RTr) 0.587 0.597 0.678 0.573 0.662 0.554 0.682

Table 5.2 Classification result of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST,
and combined FS and DB for jm1 SCM dataset

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOTE IG(7f)

IG&SMOTE(7f) IG(20f) IG&SMOTE(20f)
Naïve Bayes (NB) 0.679 0.665 0.661 0.635 0.638 0.632 0.64 0.676 0.68
Neural Network (NN) 0.69 0.68 0.691 0.696 0.698 0.691 0.694 0.688 0.691
Support Vector Machine

0.502 0.5 0.53 0.501 0.514 0.50 0.519 0.502 0.533

Random Forest (RF) 0.755 0.745 0.862 0.741 0.844 0.73 0.84 0.753 0.866
K-Nearest Neighbor (KNN) 0.612 0.608 0.735 0.614 0.759 0.613 0.702 0.611 0.694
Decision Table (DTa) 0.703 0.701 0.775 0.701 0.708 0.709 0.741 0.703 0.799
Decision Tree (DTr) 0.653 0.664 0.776 0.661 0.712 0.671 0.748 0.669 0.768
Random Tree (RTr) 0.593 0.592 0.721 0.589 0.68 0.597 0.692 0.593 0.693

threshold value of 0.02 and 0.05, respectively. RF
outperforms other classifiers, followed by DTr, DTa,
KNN and RTr using CFS; KNN, DTr and DTa using
PCA and also DTr, DTa, and KNN using IG after DB.

The highest classification performance has exhibited
using FS with DB, as shown in Fig. 5.2(a) to (c2) and
Table 5.2 but classification performances varied when
applying FS without DB. This once again proves that
DB is an important part to build classifiers for SFP. As
we can see from Table 5.2, except DTr, CFS approach
seems to pick many poor features, which affects
negatively the classification performance. In the case of
PCA for the same static code metrics (jm1), minor ROC
value differences have exhibited, where NN, KNN and
DTr attains high values when compared with their
values before using FS, as shown in Fig. 5.2(b). As
discussed earlier IG FST applied with 20f and 7f. With
7f all classifiers achieve higher ROC values using FS
when compared with ROC values before FS except for
RF and NB, as shown in Fig. 5.2(c1). But for 20f except

RF, NB and KNN, the rest classifiers exhibit either
equal (SVM, DTa and RTr) or higher (NN and DTr)
performance. The finding here confirms that, not only
performance inconsistency among classifiers but also
the performance improvements observed when applying
IG FS with less number of features (7f) (NN 0.691,
KNN 0.613, DTa 0.709, DTr 0.671, and RTr 0.597) can
also be considered as a proof that if we employ suitable
FST for software mercies and classifiers, then the better
result can be attained with small features which in turn
reduces training and prediction time and memory
requirement for classification [1, 9, 15]. Therefore,
considering appropriate FST for software metrics is
another important part to build SFP model.

Referring to Fig 5.3 (a), (b), and (c) and Table 5.3
using three FST, except NN using IG FST, all other
classifiers after DB exhibit better performance than
those before FS and using FS techniques for camel-1.6
OOM dataset. Considering the general performance of
classifiers, RF, NN, DTr, DTa, and KNN demonstrate

Fig 5.3 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for camel-1.6 OOM dataset

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

656

Table 5.4 Classification result of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST, and
combined FS and DB for prop-4 OOM dataset.

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOTE IG IG&SMOTE
Naïve Bayes (NB) 0.708 0.711 0.711 0.70 0.705 0.709 0.703
Neural Network (NN) 0.772 0.746 0.786 0.755 0.823 0.691 0.724
Support Vector Machine (SVM) 0.500 0.500 0.549 0.50 0.569 0.500 0.548
Random Forest (RF) 0.840 0.833 0.961 0.837 0.952 0.747 0.923
K-Nearest Neighbor (KNN) 0.697 0.671 0.831 0.677 0.865 0.573 0.749
Decision Table (DTa) 0.784 0.790 0.909 0.727 0.814 0.752 0.880
Decision Tree (DTr) 0.731 0.743 0.885 0.734 0.831 0.667 0.869
Random Tree (RTr) 0.666 0.662 0.837 0.660 0.806 0.594 0.821

highest ROC values after DB. Specifically RF
outperforms other classifiers, followed by NN, DTr,
DTa and KNN using CFS; NN and KNN using PCA;
and also KNN and DTa using IG after DB. Alike SCM,
here we also observe the performance discrepancy due
to the suitability of FST in OOM datasets (camel-1.6).
This reconfirms that regardless of the software metrics
if FST are not suitable enough, the prediction
performance can be compromised. To mitigate that as
well as to get good prediction performance, data must
be balanced, which is proved to be useful and give
much better prediction performance irrespective of all
three FST employed, as supported by the results in Fig
5.3 (a), (b), and (c), and Table 5.3. Another interesting
finding observed in this OOM is using CFS selected
features have shown to be able to improve the ROC
value of the classifiers. So that CFS is found to be more
suitable than other FST because CFS with four
classifiers (NB, RF, DTa and DTr) outperforms other
FST followed by PAC with three classifiers (NN, SVA
and KNN) and IG with one classifier (RTr).

The second OOM datasets called prop-4
performances are presented in Fig 5.4 (a), (b), and (c)
and Table 5.4 using three FST. Except NB using PCA
and IG, and NN using IG FST, all other classifiers
exhibit better classification performance after DB.
Again in this OOM, CFS is found to be more suitable
than other FST because CFS outperforms other FST
with five classifiers (NB, RF, DTa, DTr and RTr)
followed by PAC with three classifiers (NN, SVA and

KNN). However, all classifiers show great performance
improvements in prop-4 OOM, RF outperforms other
classifiers, and its ROC value is close to 1.0. It’s very
surprising that some FST when implementing alone
have performed poorly in the case of OOM than SCM.
This inconsistency in classification performance may
require further investigation on the nature of OO
software metrics particularly camel-1.6 and prop-4
datasets, and its underlying features.

From the above, we tried to show the classification
performance evaluation with respect to two groups of
datasets (SCM and OOM). Because of lack of datasets,
we couldn’t be able to perform a comparison between
these two groups of metrics from the same project.
However, we used AEEEM ML and LC datasets to
show that our proposed framework tackling the
challenges of SFP mentioned in this study and ensure
robust classification performance. The experimental
analysis and discussions based on these datasets and
focusing on the objective of the study are presented as
follows:

Referring to Fig 5.5 (a), (b), and (c) and Table 5.5
using three FST, except NB using PCA, all other
classifiers after DB exhibit better performance than
those before FS and using FS techniques for ML
combined software metrics dataset. Considering the
general performance of classifiers, RF, KNN, NN, DTa,
and DTr demonstrate the highest ROC values after DB.
Specifically RF outperforms other classifiers, followed
by DTa, NN, KNN and DTr and RTr using CFS; KNN,

Fig 5.4 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for prop-4 OOM dataset

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

657

Table 5.5 Classification result of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST, and
combined FS and DB for ML combined metrics dataset

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOTE IG IG&SMOTE
Naïve Bayes (NB) 0.689 0.727 0.734 0.678 0.685 0.723 0.725
Neural Network (NN) 0.735 0.740 0.819 0.705 0.832 0.707 0.792
Support Vector Machine (SVM) 0.508 0.500 0.594 0.500 0.588 0.504 0.635
Random Forest (RF) 0.827 0.819 0.937 0.809 0.931 0.824 0.938
K-Nearest Neighbor (KNN) 0.623 0.639 0.813 0.624 0.859 0.607 0.810
Decision Table (DTa) 0.752 0.747 0.820 0.673 0.757 0.765 0.823
Decision Tree (DTr) 0.660 0.694 0.807 0.639 0.751 0.661 0.814
Random Tree (RTr) 0.627 0.649 0.792 0.602 0.732 0.623 0.781

NN, DTa, and DTr using PCA; and also DTa, DTr,
KNN, NN and RTr using IG after DB. Alike SCM and
OOM, here we also observed the performance
discrepancy due to the suitability of FST in combined
metrics (ML). This reasserts that regardless of the
metrics selected and/or combined if FST are not suitable
enough, the prediction performance can be
compromised. Moreover, the power of DB has also
observed again with the combined metrics. Better
prediction performance has achieved, as demonstrated
by the results in Fig 5.5 (a), (b), and (c), and Table 5.5.
Another interesting finding observed in this combined
metrics is using IG selected features have shown to be
able to improve the ROC value of the classifiers. So that
IG is found to be more suitable than other FST in the
case of combined metrics as well, because IG with four
classifiers (RF, SVM, DTa and DTr) outperforms other
FST followed by both PAC with two classifiers (NN
and KNN) and CFS with two classifier (NB and RTr).

Regarding LC combined software metrics, results
are presented in Fig 5.6 (a), (b), and (c) and Table 5.6
using three FST. Except NB using CFS, PCA and IG all
other classifiers after DB exhibit better performance
than those before FS and using FS techniques.
Considering the general performance of classifiers, RF,
DTa, KNN, NN, DTr and RTr demonstrate the highest
ROC values after DB. Specifically RF outperforms
other classifiers, followed by DTa, KNN DTr, RTr, NN
and NB using CFS; KNN, NN, RTr, DTr and DTa using

PCA; and also DTa, KNN, NN, DTr and RTr using IG
after DB. In this case, the performance inconsistency
due to the suitability issue of FST in combined metrics
(LC) has also been observed. This could be mitigated by
employing suitable FST for combined metrics. This
once again reaffirms that the prediction performance
can be compromised if FST are not suitable enough
regardless of the software metrics are selected and/or
combined. In addition to that, contribution of DB for the
performance of classifiers has also observed with the
combined software metrics. Better prediction
performance has achieved, as demonstrated by the
results in Fig 5.6 (a), (b), and (c), and Table 5.6.
Another interesting finding observed in this combined
metrics is that it seems using both IG and CFS, selected
features have shown to be able to improve the ROC
value of the classifiers. IG with three classifiers (RF,
SVM and DTa) as well as CFS with three classifiers
(NB, DTr and RTr) perform better than PCA FST,
which show good performance with two classifiers (NN
and KNN). However, considering the average
performance of eight classifiers, IG (0.835) outperforms
other FST followed by CFS (0.824) and PCA (0.805).
Therefore, it is found that IG FST is more suitable than
CFS and PCA FST in the case of LC combined metrics.

Finally, the performance results, observed
consistently from Fig 5.1–Fig 5.4, including Fig 5.5 and
Fig. 5.6 for both datasets, confirm the assertion given by
the first hypothesis of this study. As claimed, combining

Fig 5.5 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for ML dataset

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

658

Table 5.6 Classification result of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST, and
combined FS and DB for LC combined metrics dataset

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOTE IG IG&SMOTE
Naïve Bayes (NB) 0.761 0.810 0.791 0.766 0.713 0.760 0.752
Neural Network (NN) 0.661 0.713 0.796 0.657 0.871 0.632 0.856
Support Vector Machine (SVM) 0.592 0.561 0.682 0.516 0.656 0.569 0.695
Random Forest (RF) 0.800 0.781 0.954 0.774 0.955 0.793 0.960
K-Nearest Neighbor (KNN) 0.597 0.637 0.851 0.541 0.894 0.583 0.873
Decision Table (DTa) 0.746 0.739 0.864 0.716 0.776 0.741 0.921
Decision Tree (DTr) 0.639 0.654 0.843 0.640 0.784 0.653 0.816
Random Tree (RTr) 0.591 0.642 0.809 0.601 0.791 0.601 0.807

FS with DB assures the classification performance
improvement in terms of ROC value. Interestingly
enough, this is true with all employed FST, even
including with some irrelevant elements seems selected
in the feature set except inconsistent performance
shown by certain classifiers (NB and NN) in some
cases. This in turn shows the robustness nature of
combined techniques. Therefore, we accept the first
Hypothesis.

5.2. Comparison: SCM and OOM

As it has been seen above, a combination of FS and DB
gives best classification performance using all eight
employed ML techniques in all three employed FST
applied on four datasets used in this study except minor
performance inconsistency. Therefore, the following
comparison between object oriented and static code
metrics are based on the ROC value generated from
balanced data.

5.2.1. FS and ML techniques performed best

Fig 5.7 (a) (SCM) and (b) (OOM) presents the average
result of ROC value generated by each classifiers with
respect to FST for four datasets employed using both
SCM and OOM. The results reveal that high performing
classifiers are RF, DTa, DTr and RTr if using CFS; the
high performing classifiers are RF, KNN, DTr and DTa
if using PCA; and the high performing classifiers are

RF, DTa DTr and RTr if using IG. This shows that RF,
DTa, DTr, KNN and RTr are high performing classifiers
in a decreasing order for SCM, as evidenced by Fig
5.7(a) (SCM).

On the other hand, as shown by Fig 5.7(b) (OOM),
the results reveal that the high performing classifiers are
RF, DTa, DTr and KNN if using CFS; the high
performing classifiers are RF, KNN, NN and RTr if
using PCA; and the high performing classifiers are RF if
using IG, DTa DTr and RTr. This shows that the high
performing classifiers are RF, DTa, DTr, KNN, RTr and
NN in a decreasing order for OOM. Thus based on the
amazing performance of RF in all datasets (including
the combined metrics datasets) irrespective of metrics,
we can conclude that RF is the best classifiers.

One interesting finding here is a combination of RF
with IG FS yields the highest ROC (0.993) value and is
found to be the best combination for SFP when SCM
are used, with regard to the combined metrics RF with
IG yields better performance results as well (see Fig. 5.5
and 5.6), whereas the combination of RF with CFS
generates the highest ROC (0.909) value and is found to
be the best choice for SFP when OOM are used.

In conclusion, the performance results, summarized
in Fig 5.7 (a) (SCM) and (b) (OOM), confirm the
assertion given by the second hypothesis of this study.
As expected, the suitable FST vary for both software
metrics. The IG and CFS techniques in our case are
suitable for SCM and OOM, respectively. It has not

Fig 5.6 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for LC dataset

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

659

only contributed significantly in improving the
classification performance but also reducing execution
time and the number of features (software metrics)
required to achieve such performance. Therefore, we
accept the second Hypothesis.

5.2.2. Static Code and Object Oriented Metrics
contributed for classification performance

As discussed earlier, IG feature selection is found to be
better choice for SCM because IG is able to pick better
features as indicated by the ROC values shown in
Tables 5.1 – 5.2. However, this performance of IG does
not compete with that of achievement by the CFS
method for OOM as shown in Tables 5.3 – 5.4. So CFS
turns out to be good choice for OOM. On the other
hand, a careful inspection of the feature list produced
indicates that the Att1, Att13, Att29, Att18, Att12,
Att10, Att5, Att20, Att19, Att42, Att6, and Att2 (refer to
Table 4.2) by the IG technique and the Att46, Att47,
Att48, Att51, Att49, Att50, Att52, and Att53 (refer to
Table 4.2) by the CFS technique are the most
meaningful features that help to boost the classification
performance.

6. Threat to Validity

There are a number of threats that may have an impact
on the results of this study. The prediction models
proposed in this study were built by using default
parameters. That is, we have not investigated how the
models are affected by varying the parameters. In
addition to that, many software metrics are defined in
literature. Thus other metrics might be better indicator
to defects. However, we used metrics which were
widely used in different studies [11] and that were
available from the selected datasets. The study
conclusions presented are based on the selected

software metrics. These datasets may not be
characteristic of all industrial domains. These datasets
may not also be good representatives in terms of the
numbers and sizes of classes. However, this practice is
common among the fault prediction research area.

7. Conclusion and Future Works

This study has empirically evaluated the capability of
eight widely used classifiers (NB, NN, SVM, RF, KNN,
DTr, DTa, and RTr) in predicting defect-prone software
modules and compared its prediction performance
normally, after FS and combined FST with DB
technique in the context of four NASA datasets of
which two of them are based on SCM and the rest two
datasets are based on OOM. Moreover, the study has
verified the proposed framework on other groups of
software metrics using AEEEM Datasets. We also
employed three carefully selected FST, namely CFS,
PCA and IG, with DB techniques, in our case SMOTE.
The experimental results demonstrated both robust and
little inconsistent results while employing FST on both
software metrics based on ROC measurement criteria.
This confirms that regardless of the software metrics if
not suitable FST are used, the prediction performance
can be compromised. To mitigate that as well as to get
good prediction performance, data must be balanced.
Our combined technique assures the classification
performance improvement in terms of ROC value. This
in turn shows the robustness nature of combining
techniques. On the tested datasets, the suitable FST
were found to be varied for both software metrics. The
IG and CFS techniques outperformed the rest. So that
they are found to be suitable for SCM and OOM,
respectively. In our case, a combination of RF with IG,
FS yields the highest ROC (0.993) value when SCM
and combined metrics are used whereas the combination

Fig 5.7 Average Performance of FS and ML techniques of SCM and OOM

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

660

of RF with CFS generates the highest ROC (0.909)
value when OOM are used. It has not only contributed
significantly in improving the classification
performance but also reducing the number of features
(software metrics) required to achieve such
performance. Therefore, this study shows that software
metrics used to predict the fault proneness of the
software must be carefully examined and the FST which
is suitable for metrics must be cautiously selected.
Moreover, DB must be applied in order to get robust
results. Thus, dealing with the challenges of SFP
mentioned in this study, our proposed framework
ensures remarkable classification performance and lays
the pathway to software quality assurance.

For the future work, we plan to apply more datasets
which consist of process and delta software metrics
including SCM and OOM generated from single
projects; investigate why several classifiers shows
inconsistency in some FST and metrics as well; explore
more FST and realize how the proposed framework
improves the performance of classifiers. We also
planned to incorporate and explore the benefit of using
combined over-sampling and under-sampling DB
techniques with our new framework. In addition to that,
we found that, the problem of cross-project fault
prediction and the bugs with more specific features [42]
are very interesting and if this problem area can be
broadly addressed, it will have invaluable contribution
in the area of SFP, which we plan to work on it in the
future.

References

1. S. Shivaji, E. J. W., Jr., R. Akella, and S. Kim, “Reducing
features to improve code change-based bug prediction,”
IEEE Transactions on Software Engineering, 39: 552–
569, 2013.

2. I. Gondra, “Applying machine learning to software fault-
proneness prediction,” Journal of Systems and Software,
81: 186–195, 2008.

3. K.O. Elish, M.O. Elish, “Predicting defect-prone
software modules using support vector machines,”
Journal of Systems and Software, 81: 649–660, 2008.

4. E. Arisholm, L.C. Briand, and E.B. Johannessen, “A
systematic and comprehensive investigation of methods
to build and evaluate fault prediction models,” Journal of
Systems and Software, 83: 2–17, 2010.

5. S. Kim, J.E.J. Whitehead, Y. Zhang, “Classifying
software changes: clean or buggy?” IEEE Transactions
on Software Engineering, 34: 181–196, 2008.

6. S. Kanmani, V. Uthariaraj, V. Sankaranarayanan, and P.
Thambidurai, “Object-Oriented Software Fault
Prediction Using Neural Networks,” Information and
Software Technology, 49: 483-492, 2007.

7. T. Gyimothy, R. Ferenc, and I. Siket, “Empirical
Validation of Object-Oriented Metrics on Open Source
Software for Fault Prediction,” IEEE Transactions on
Software Engineering, 31: 897- 910, 2005.

8. H. Wang, T. M. Khoshgoftaar, and A. Napolitano, “A
comparative study of ensemble feature selection
techniques for software defect prediction,” International
Conference on Machine Learning and Applications, 9:
135–140, 2010

9. H. Liu, H. Motoda, and L. Yu, “A selective sampling
approach to active feature selection,” Artificial
Intelligence, 159: 49–74, 2004

10. T. M. Khoshgoftaar, C. Seiffert, J. V. Hulse, A.
Napolitano, and A. Folleco, “Learning with limited
minority class data,” International Conference on
Machine Learning and Applications, 6: 348–353, 2007.

11. D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovic,
“Software fault prediction metrics: A systematic
literature review,” Journal of Information and Software
Technology, 55: 1397–1418, 2013.

12. T.J. McCabe, “A complexity measure,” IEEE
Transactions on Software Engineering, SE-2: 308–320,
1976.

13. T. Menzies, J. Greenwald, and A. Frank, “Data mining
static code attributes to learn defect predictors,” IEEE
Transactions on Software Engineering 33: 2–13, 2007.

14. S.R. Chidamber, C.F. Kemerer, “A metrics suite for
object-oriented design,” IEEE Transactions on Software
Engineering, 20: 476–493, 1994.

15. M. A. Hall, “Correlation-based Feature Subset Selection
for Machine Learning,” PhD. dissertation, Hamilton,
New Zealand, 1999.

16. A. Malhi, R. Gao, “PCA-Based feature selection scheme
for machine defect classification,” IEEE Transactions on
Instrumentation and Measurement, 53: 1517- 1525, 2004.

17. I. H. Witten, E. Frank and M. A. Hall, “Data Mining:
Practical Machine Learning Tools and Techniques,”
Morgan Kaufmann, 3rd edition, 2011.

18. V. C. Nitesh, W. B. Kevin, O. H. Lawrence, and W. P.
Kegelmeyer, “Synthetic minority over-sampling
technique,” Journal of Artificial Intelligence Research,
16: 321-357, 2002.

19. R. Kohavi, “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” International
Joint Conference on Artificial Intelligence (IJCAI), 14:
1137– 1143, 1995.

20. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, and I. H. Witten, “The WEKA data mining
software: an update; SIGKDD Explorations,” Retrieved
01 Sep 2015.

21. T. Menzies, R. Krishna, and D. Pryor, “The Promise
Repository of Empirical Software Engineering Data,”
http://openscience.us/repo. North Carolina State

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

661

University, Department of Computer Science bibtex.
Retrieved 11 Jan 2015.

22. T. Hall, S. Beecham, D. Bowes, D. Gray, and S.
Counsell, “A systematic literature review on fault
prediction performance in software engineering,” IEEE
Transactions on Software Engineering 38: 1276–1304,
2012.

23. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect
prediction using ensemble learning on selected features,”
Information and Software Technology, 58: 388–402,
2015.

24. W. Li, Z. Huang, and Q. Li, “Three-way decisions based
software defect prediction,” Knowledge-Based Systems,
91: 263–274, 2016.

25. S. Liu, X. Chen, W. Liu, J Chen, Q. Gu, and D. Chen,
“FECAR: A feature selection framework for software
defect prediction,” Annual International Computers,
Software and Applications Conference, 38: 426-435,
2014.

26. C. Catal, “Software fault prediction: A literature review
and current trends,” Expert Systems with Applications,
38: 4626–4636, 2011.

27. G. Abaei and A. Selamat, “A survey on software fault
detection based on different prediction approaches,”
Vietnam Journal of Computer Science, 1: 79–95, 2014.

28. K. Dejaeger, T. Verbraken, and B. Baesens, “Toward
Comprehensible Software Fault Prediction Models Using
Bayesian Network Classifiers,” IEEE Transactions on
Software Engineering, 39: 237-257, 2013.

29. H. B. Yadav,and D. K. Yadav, “A fuzzy logic based
approach for phase-wise software defects prediction
using software metrics,” Information and Software
Technology, 63: 44-57, 2015.

30. P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical
study on software defect prediction with a simplified
metric set,” Information and Software Technology, 59:
170-190, 2015.

31. F. Song, Z. Guo, and D. Mei, “Feature selection using
principal component analysis,” International Conference
on System Science, Engineering Design and
Manufacturing Informatization, 1: 27-30, 2010.

32. H.A. Al-Jamimi, and M. Ahmed, “Machine Learning-
based Software Quality Prediction Models: State of the

Art,” International Conference on Information Science
and Applications, 1-4, 2013.

33. A.K. Tripathi, and K. Sharma, “Optimizing Testing
Efforts Based on Change Proneness Through Machine
Learning Techniques,” Power India International
Conference, 1-4, 2014.

34. R. Malhotra, “A systematic review of machine learning
techniques for software fault prediction,” Applied Soft
Computing, 27: 504-518, 2015.

35. V. García, J.S. Sánchez, and R.A. Mollineda, “On the
effectiveness of preprocessing methods when dealing with
different levels of class imbalance,” Knowledge-Based
Systems, 25: 13-21, 2012.

36. A.A. El-Sayed, M.A.M. Mahmood, N.A. Meguid, and
H.A. Hefny, “Handling Autism Imbalanced Data using
Synthetic Minority Over-Sampling Technique (SMOTE),”
Third World Conference on Complex Systems, 1-5,
2015.

37. P. Sarakit, T. Theeramunkong, and C. Haruechaiyasak,
“Improving emotion classification in imbalanced
YouTube dataset using SMOTE algorithm,” International
Conference on Advanced Informatics: Concepts, Theory
and Applications, 1-5, 2015.

38. J. Li, H. Li, and J. Yu, “Application of Random-SMOTE
on Imbalanced Data Mining,” International Conference
on Business Intelligence and Financial Engineering, 130-
133, 2011.

39. J. Nam and S. Kim, “Heterogeneous defect prediction,”
The 2015 10th Joint Meeting on Foundations of Software
Engineering-ESEC/FSE 2015, 508–519, ACM Press,
2015

40. R. Krishna, T. Menzies, and W. Fu, “Too Much
Automation? The Bellwether Effect and Its Implications
for Transfer Learning,” The 31st IEEE/ACM
International Conference on Automated Software
Engineering, 122-131, 2016.

41. M. D'Ambros, M. Lanza, and R. Robbes, “Evaluating
defect prediction approaches: a benchmark and an
extensive comparison,” Empirical Software Engineering,
17: 531–577, 2012.

42. F. Qin, Z. Zheng, C. Bai, Y. Qiao, Z. Zhang, and C.
Chen, “Cross-Project Aging Related Bug Prediction,”
The 2015 IEEE International Conference on Software
Quality, Reliability and Security, 43-48, 2015.

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662

662

http://openscience.us/repo/promisebib.txt

	1. Introduction
	2. Related Work
	3. A Framework for Improving Software Fault Prediction
	3.1. Hypothesis
	3.2. The Proposed framework for software fault prediction
	3.2.1. SCM and OOM
	3.2.2. Feature selection techniques
	3.2.3. Data balancing
	3.2.4. Performance evaluation

	4. Experimental Design
	5. Analysis and Discussions
	5.1. Classification performance evaluation
	5.2. Comparison: SCM and OOM
	5.2.1. FS and ML techniques performed best
	5.2.2. Static Code and Object Oriented Metrics contributed for classification performance

	6. Threat to Validity
	7. Conclusion and Future Works
	References

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /LeaveColorUnchanged

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

