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Abstract 

Software Fault Prediction (SFP) is found to be vital to predict the fault-proneness of software modules, which 
allows software engineers to focus development activities on fault-prone modules, thereby prioritize and optimize 
tests, improve software quality and make better use of resources. In this regard, machine learning has been 
successfully applied to solve classification problems for SFP. Nevertheless, the presence of different software 
metrics, the redundant and irrelevant features and the imbalanced nature of software datasets have created more and 
more challenges for the classification problems. Therefore, the objective of this study is to independently examine 
software metrics with multiple Feature Selection (FS) combined with Data Balancing (DB) using Synthetic 
Minority Oversampling Techniques for improving classification performance. Accordingly, a new framework that 
efficiently handles those challenges in a combined form on both Object Oriented Metrics (OOM) and Static Code 
Metrics (SCM) datasets is proposed. The experimental results confirm that the prediction performance could be 
compromised without suitable Feature Selection Techniques (FST). To mitigate that, data must be balanced. Thus 
our combined technique assures the robust performance. Furthermore, a combination of Random Forts (RF) with 
Information Gain (IG) FS yields the highest Receiver Operating Characteristic (ROC) curve (0.993) value, which is 
found to be the best combination when SCM are used, whereas the combination of RF with Correlation-based 
Feature Selection (CFS) guarantees the highest ROC (0.909) value, which is found to be the best choice when 
OOM are used. Therefore, as shown in this study, software metrics used to predict the fault proneness of the 
software modules must be carefully examined and suitable FST for software metrics must be cautiously selected. 
Moreover, DB must be applied in order to obtain robust performance. In addition to that, dealing with the 
challenges mentioned above, the proposed framework ensures the remarkable classification performance and lays 
the pathway to quality assurance of software. 
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1. Introduction 

Software faults are the root causes for software failures 
when get executed. These affect the reliability and 
quality of the software system. Thus many studies has 
made fault prediction with a common goal of reliability 
and quality assurance to ensure that developed software 
meets and complies with defined or standardized quality 
specifications. A targeted software quality inspection 
can detect faulty modules and reduce the number of 
faults occurring during operations. Nevertheless, 
software may have thousands of modules and it’s very 
tiresome and time consuming to allocate human as well 

as financial resources to go through all modules 
exhaustively. Thus, statistical and Machine Learning 
(ML) techniques have been employed in most studies so 
as to predict the fault-prone modules of the software [1] 
– [8], [10, 13], [15] – [19], [23, 24], [27, 28, 33, 34]. 
Therefore, effective prediction of fault-prone software 
modules can enable to direct test effort and reduce costs, 
help to manage resources more efficiently, and be useful 
for software developer. This in turn can lead to a 
substantial improvement in software quality. 
Identification of fault-prone software modules is 
commonly achieved through binary prediction models 
that classify a module into either defective or not-
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defective category. These prediction models utilize 
different software metrics [4], which have been 
associated with defects, as independent variables. In this 
study, we develop a new framework which incorporates 
eight widely used classifiers: Naïve Bayes (NB), Neural 
Network (NN), Support Vector Machine (SVM), 
Random Forest (RF), K-Nearest Neighbor (KNN), 
Decision Table (DTa), Decision Tree (DTr) and 
Random Tree (RTr) for building Software Fault 
Prediction (SFP) models. 

Fundamentals to employ ML for effective and 
improved SFP are consideration of different software 
metrics [4] – [7], [11] – [14], [29, 30], Feature Selection 
(FS) [1, 8, 9], [15] – [17], [25], [28, 34] and Data 
Balancing (DB) [9, 18], [35] – [38]. For SFP, many 
software metrics have been proposed but we favor to 
separate the studies according to the most frequently 
used metrics: Chidamber and Kemerer’s (CK) Object 
Oriented Metrics (OOM) and McCabe and Halstead 
Static Code Metrics (SCM) [11]. FS is carried out by 
removing less important and redundant data, so that 
only beneficial features are left for training the 
classification models and the performance of learning 
algorithm could be improved. The benefits of FS for 
learning can include a reduction in the amount of data, 
improve the predictive performance, learn knowledge 
that is more compact and easily understood, and reduce 
the execution time [15]. Therefore, this study 
investigates three Feature Selection Techniques (FST) 
to build SFP models with datasets that suffer from a 
large number of irrelevant features (software metrics), 
each of which has been proven good in different SFP 
models [13], [15] – [17], namely Correlation Based 
Feature (CFS), Principal Components Analysis (PCA) 
and Information Gain (IG). Employing different FST 
would help us to attain the objective of identifying 
which FST are suitable in various contexts (software 
metrics). 

On the other hand, the nature of software defect 
datasets consists of Fault-Prone (FP) and Not-Fault-
Prone (NFP) modules. It has been seen that these 
datasets are highly skewed toward the NFP modules and 
the number of FP modules are relatively very small. The 
skewed data problem, also known as class imbalance, 
brings a unique challenge when building the 
classification model. However, practitioners and 
researchers often build fault prediction models without 
regard to the imbalance problem. Therefore, the class 

imbalance problem must be addressed when building 
fault predictors. Thus, another fundamental aspect of 
SFP is the imbalance nature of defect datasets, which 
the ML community has addressed in two ways. One is 
to assign distinct costs to training examples. The other is 
to re-sample the original dataset, either by oversampling 
the minority class and/or under-sampling the majority 
class [18, 35, 36]. As shown in different studies [35] – 
[38], balancing data using Synthetic Minority 
Oversampling Techniques (SMOTE) gives better 
classification performance. Therefore, this study 
explores the algorithm of SMOTE for building SFP 
models with datasets that suffer from class imbalance. 

Unlike most other studies, to assure the 
improvement of classification performance, our 
proposed framework examines both OOM and SCM 
with efficient combination of FS and DB techniques. 
With our framework, we will get a balanced dataset for 
training the classification models, which in turn improve 
the performance and help to identify best classifiers and 
FST for each software metrics.  

Therefore, the objective of this study is to 
independently examine software metrics and see their 
performance as well as investigate multiple FST to 
identify which FST could be suitable for which metrics 
with the application of DB technique to guarantee the 
improvement of classification performance. 
Accordingly, the primary contribution of this study is 
the empirical analysis of multiple software metrics and 
FST in combination with DB. Interestingly, the 
proposed framework has exhibited the robustness of 
combined techniques, which constitutes a major 
contribution credited to this study. The secondary 
contribution is recognizing FST suitability in various 
contexts to reduce features as well as improve the 
performance in SFP.  

The remainder of this study is organized as follows: 
Section 2 provides an overview of related works. 
Section 3 discusses hypothesis and details of the 
proposed framework. Section 4 presents the 
experimental design. Section 5 reports our results and 
discussion, comparison of eight modeling techniques, 
three FST and DB technique with ROC evaluation 
measure for both OOM and SCM. Section 6 discusses 
what we consider the most important threats to validity. 
Section 7 concludes and outlines directions for future 
research. 
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2. Related Work 

In this section, we focus on the studies that have 
attempted to address classification problems to build 
fault-proneness prediction models. 

Fault prediction modeling is an important area of 
research and the subject of many previous studies. 
These studies typically produce fault prediction models 
which allow software engineers to focus development 
activities on FP code, thereby improving software 
quality and making better use of resources [22]. Many 
researchers have been employing ML and statistical 
techniques for SFP [26, 32, 33, 34]. Shivaji et al. [1] 
employed NB and SVM to investigate multiple FST for 
bug prediction on 11 software projects. NB provided 
21% improvement in buggy F-measure and SVM 
provided 9% improvement in buggy F-measure. Gondra 
[2] assessed the possible benefits of neural networks 
versus SVMs to perform classification. He found the 
accuracy was 87.4% when using SVM compared to 
72.61% when using neural networks using a threshold 
of 0.5, suggesting that SVM is a promising technique 
for classification within the domain of fault-proneness 
prediction with the data he used from NASA’s metrics 
data program repository. Elish and Elish [3] evaluated 
the capability of SVM in predicting defect-prone 
software modules and compared its prediction 
performance against eight statistical and ML models, 
using four NASA datasets. The results indicated that the 
prediction performance of SVM is generally better than, 
or at least, is competitive against the compared models. 
On the other hand, Arisholm et al. [4] evaluated eight 
selected modeling techniques on different 
measurements. The findings are that the measures and 
techniques which are put forward as the “best” are 
highly dependent on the evaluation criteria applied. 
Note that all these studies don’t consider different 
variety of software metrics, mostly build models on 
static code metrics and don’t apply FST as well as DB 
which is the most crucial part for performance 
improvement, except that Shivaji et al. and Arisholm et 
al. used only FST and considered different software 
metrics, respectively [1, 4]. 

In the same work, Arisholm et al. [4] evaluted the 
impact of using different metric sets such as source code 
structural measures and change/fault history (process 
measures). They compared several alternative ways of 
assessing the performance (accuracy, precision, recall, 

ROC and cost-effectiveness) of the models to 
systematically evaluate how to build and evaluate fault-
proneness models in large Java legacy system 
development project. Furthermore, they compared eight 
modeling techniques and observed large differences 
between the individual metric sets in terms of cost-
effectiveness. Kim et al. [5] used deltas from 61 
traditional complexity metrics (including Lines of Code 
(LOC), lines of comments, cyclomatic complexity, and 
max nesting) and a selection of process metrics, and 
applied them on twelve open source projects. Kanmani 
et al. [6] introduced two neural network based SFP 
models using Object-Oriented metrics. The results were 
compared with two statistical models using five quality 
attributes and found that neural networks do better. 
Among the two neural networks, Probabilistic Neural 
Networks outperform in predicting the fault proneness 
of the Object-Oriented modules developed. Gyimothy et 
al. [7] calculated the Object-Oriented metrics given by 
Chidamber and Kemerer to illustrate how fault-
proneness detection of the source code of the open 
source software can be carried out, using regression and 
ML methods to validate the usefulness of these metrics 
for fault-proneness prediction. It is also important to 
note that both of these studies don’t consider employing 
FST as well as DB for performance improvement in 
SFP. 

In addition to that, it has been realized that the 
performance of classifiers can be increased by keeping 
the quality of software datasets, which can be done by 
applying either suitable FST on respected software 
metrics and/or applying and building model on the 
dataset which has recommended percentage of faulty 
and non-faulty instances. Some researchers have 
employed those techniques separately. For instance, as 
discussed earlier, Shivaji et al. [1] investigated multiple 
FST using NB and SVM classifiers. Wang et al. [8] 
presented a comprehensive empirical study evaluating 
17 ensembles of feature ranking methods including six 
commonly-used feature ranking techniques and 11 
threshold-based feature ranking techniques. This study 
utilized 16 real-world software measurement datasets 
including a very large telecom software system, the 
Eclipse project, and NASA software project. 
Experimental results indicated that ensembles of very 
few rankers are very effective and even better than 
ensembles of many or all rankers. In both studies, they 
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don’t consider employing different software metrics 
distinctly as well as DB for performance improvement.  

Though some studies attempt to employ both FS and 
DB, few researchers have tried to combine them. Liu et 
al. [9] combined FS with DB using sampling 
techniques. But the purpose of the sampling was to 
reduce the total number of instances instead of handling 
class imbalance. To the best of our knowledge, no 
research attempt has been made combining the three 
(metrics, FS and DB/over sampling) concepts together 
explicitly for SFP.  

Having this gap in mind, which has not been 
addressed by many studies, we design a new framework 
that treats the following three concepts step by step: 
Firstly, we consider different software metrics 
individually and build classification models. Secondly, 
we apply multiple FST for each software metric to 
identify which FS best suits for which metrics. Finally, 
we apply DB technique on the best features selected and 
build the classification model. Details of our new 
framework for improved SFP are presented in the 
following sections. 

3. A Framework for Improving Software Fault 
Prediction 

3.1. Hypothesis 

H1. A Combined learning of FS with DB on both OOM 
and SCM, particularly applied with SMOTE can 
guarantee the improvement of classification 
performance for SFP. 

H2. Suitable FST may vary in various software metrics 
(OOM and SCM) to reduce features as well as improve 
the performance in SFP.  

3.2. The Proposed framework for software fault 
prediction 

A framework for improving SFP is shown in Fig. 3.1 to 
Fig 3.3. We follow three strategies to train and build the 
classification models. 

First, we start with treating multiple software 
metrics individually, though the natures of metrics are 
different. And we build classification models using 
eight selected, most frequently used ML algorithms 
(NB, NN, SVM, RF, KNN, DTa, DTr, and RTr) carried 
out by running a 10-fold cross-validation for SCM and 
OOM. Then the results are captured using ROC 
Performance Evaluation (PE) criteria. As shown in Fig 

3.1, this strategy serves as a comparable reference in the 
subsequent performance experiments.  

Second, we perform FS using three attribute 
evaluation methods (CFS, PCA and IG) and three 
search methods (BestFirst (BF), GreedyStepwise (GS) 
and Ranker (R), with 0.02 threshold to discard 
attributes) to identify useful features for learning. The 

 
Fig 3.2 A framework for improving SFP (strategy two) 

 
Fig 3.1 A framework for improving SFP (strategy one) 
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input of the framework for this step is also SCM and 
OOM. Then we build the classification models on the 
selected features. As shown in Fig 3.2, this strategy 
serves as to compare with previous performance 
experiment and realize the effect of applying different 
FST on performance in different software metrics. Also 
we use these results as comparable reference in the 
subsequent performance experiment.  

Third, we implement DB using SMOTE to manage 
data disproportion. To get reasonably balanced data for 
classification, we make the target ration for NFP and FP 
module as recommended to be 65% and 35%, 
respectively by Khoshgoftaar et al. [10]. The DB is 
done on the selected features only. As shown in Fig 3.3, 
this strategy serves as to prove the performance 
improvement by comparing with the previous 
performance experiment and finally to realize the best 
classifiers with respect to recommended FST for both 
SCM and OOM. 

3.2.1. SCM and OOM 

As discussed earlier, many software metrics have been 
proposed for SFP. But according to Radjenovic et al. 
[11], mostly used metrics are Object-Oriented metrics 
(49%) and traditional source code metrics (27%). 
Chidamber and Kemerer’s (CK) object-oriented metrics 
and McCabe and Halstead traditional or static code 
metrics were most frequently used once. Therefore, we 
favor to separate the studies according to these metrics. 
Static Code Metrics (SCM): McCabe and Halstead 
feature attempts to objectively characterize code 
features that are associated with software quality. Their 
measures are “module” based where a “module” is the 

smallest unit of functionality. McCabe [12] argued that 
codes with complicated pathways are more error-prone. 
His metrics therefore reflect the pathways within a code 
module. His metrics are a collection of four software 
metrics such as Cyclomatic Complexity (CC), Essential 
Complexity (EC), Design Complexity (DC) and LOC. 
Whereas, Halstead argued that code which is hard to 
read is more likely to be fault-prone [13]. Halstead 
metrics estimates the complexity by counting the 
number of concepts in a module, for instance, the 
number of unique operators/operands. His metrics falls 
into three groups, such as the Base Measures (BM), the 
Derived Measures (DM), and LOC Measures (LOCM). 
The value of using static code metrics to build SFP 
models has been empirically illustrated by Menzies et 
al. [13], who stated that static code metrics are useful, 
easy to use, and widely used.  
Object Oriented Metrics (OOM): According to 
Chidamber and Kemerer [14], object-oriented software 
metrics used at a class-level can be grouped under three 
stages of Object Oriented (OO) design processes. The 
first stage is Identification of Classes (IoC) which 
includes Weighted Methods for Class (WMC), Depth of 
Inheritance Tree (DIT) and Number of Children (NOC); 
The second stage is Semantics of Classes (SoC) which 
includes Weighted Methods for Class (WMC), 
Response for Class (RFC) and Lack of Cohesion of 
Methods (LCOM); The last stage is Relationships 
Between Classes (RBC) which includes Response for 
Class (RFC) and Coupling Between Objects (CBO). 

 
Fig 3.3 A framework for improving SFP (strategy three). 

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662
___________________________________________________________________________________________________________

651



3.2.2. Feature selection techniques 

To improve the quality of software datasets and build 
classification models for SFP, selecting useful features 
has been found to be beneficial. FST could identify and 
extract most useful features of the dataset for learning, 
and these features are very valuable for analysis and 
future prediction. In most cases, the classification 
accuracy using the reduced feature set equaled to or 
bettered than that of using the complete feature set [1, 8, 
15, 25, 31]. Nevertheless, as stated by Hall [15] in some 
cases, FS degraded ML performance in cases where 
some features are eliminated which are highly 
predictive of very small areas of the instance space or 
some features which are not predictive are selected. 
This shows that all FST don’t have equal performance 
and their performance can be varied in various software 
metrics. Thus for this study we employ three different 
kinds of FST, each of which has been proven good in 
SFP [13], [15] – [17], namely Correlation Based Feature 
(CFS), Principal Components Analysis (PCA) and 
Information Gain (IG). Employing different FST would 
help us to attain the objective of identifying which FST 
are suitable for which software metrics.  
Correlation-Based Feature Selection (CFS): According 
to Hall [15], CFS quickly identifies and screens 
irrelevant, redundant, and noisy features, and identifies 
relevant features as long as their relevance does not 
strongly depend on other features. A feature is said to be 
redundant if one or more of the other features are highly 
correlated with it. In his work, Hall [15] has discussed 
the definition formalized by Kohavi and John, which is 
shown as follows. 
Definition 1: A feature iV  is said to be relevant iff there 

exists some iv  and c  for which ( ) 0i ip V v= >  such 

that 

 ( ) ( ) | .i ip C c V v p C c= = ≠ =            (1) 

In this study, we use CFS in conjunction with a 
BestFirst and GreedyStepwise search method, but both 
of them yield the same type and number of features 
from each dataset in both metrics employed.  
Principal Components Analysis (PCA): The PCA 
approach was developed to reduce the dimensionality of 
the input features for both supervised and unsupervised 
classification purposes by Malhi et al. [16]. As they 
pointed out that the PCA technique transforms n  

vectors ( )1, 2 ,  , ,i nx x x x… …  from a d -dimensional 
space to n  vectors ( )' ' ' '

1 2, , , ,i nx x x x… …  in a new, 
d ′ -dimensional space as  

    '
,  

1

, 
id

i k i k
k

x a e d d
=

′= ≤∑             (2) 

where ke  are the eigenvectors corresponding to the d ′  
largest eigenvalues for the scatter matrix S and ,k ia  are 
the projections of the original vectors ix  on the 
eigenvectors ke . These projections are called the 
principal components of the original data set. In this 
study, we use PCA in conjunction with a ranker search 
method. 
Information Gain (IG): IG feature selection technique 
evaluates attributes by measuring their information gain 
with respect to the class. It measures the expected 
reduction in entropy caused by partitioning the class 
according to a given attribute. The entropy characterizes 
the impurity of an arbitrary collection of class. In this 
study, we use IG in conjunction with a ranker search 
method. According to Witten et al. [17], the IG 
associated with an attribute and a dataset is calculated 
using a straightforward implementation of Equation (3). 
First, the entropy of the dataset is computed. Then the 
difference between the former entropy and the weighted 
sum of the latter ones gives the information gain. 

InfoGain = H(parent) – [weighted] average H(child), 
where H is the information entropy. 

   ( ) ( )1 2 2
1

, , , log
n

n i i
i

entropy p p p p p
=

… = −∑      (3) 

3.2.3. Data balancing 

The performance of ML algorithms is typically 
evaluated using predictive accuracy. However, this is 
not appropriate when data is not proportional. A dataset 
is imbalanced if the classification categories are not 
approximately equally represented. Often software 
defect datasets are composed of none faulty instances 
with only a small percentage of faulty instances. 
According to Nitesh et al. [18], ML community has 
addressed the issue of class imbalance in two ways. One 
is to assign distinct costs to training instances. The other 
is to re-sample the original dataset, either by 
oversampling the minority class and/or under-sampling 
the majority class. For this study, we employ the special 
form of over-sampling the minority class, which has 
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proposed in [18].  They confirmed that previous 
research has discussed over-sampling with replacement 
and has noted that it doesn’t significantly improve 
minority class recognition. Hence, they came up with 
their proposed over-sampling approach, in which the 
minority class is over-sampled by creating “synthetic” 
examples rather than by over-sampling with 
replacement. In conclusion to get reasonably balanced 
data for classification, we make the target ration for 
NFP and FP module as recommended to be 65% and 
35%, respectively by [10]. 

3.2.4.  Performance evaluation 

The performance of ML algorithms is typically 
evaluated using predictive accuracy. However, this is 
not appropriate when the data is imbalanced. For 
instance, a typical software defect dataset might contain 
95% NFP instances and 5% FP instances. A simple 
default strategy of guessing the majority class would 
give a predictive accuracy of 95%. However, SFP 
requires fairly high rate of correct detection in the 
minority class and allows for a small error rate in the 
majority class in order to achieve this. Simple predictive 
accuracy is clearly not appropriate in such situations. 
Therefore, we adopt the Receiver Operating 
Characteristic (ROC) curve, which is a standard 
technique for summarizing classifier performance over a 
range of tradeoffs between true positive and false 
positive error rates, which has been employed by 
different studies [1, 4, 8, 13, 18]. 

Table 4.1 A description of datasets 

4.  Experimental Design 

 As recommended by Kohavi [19], in this study, 
performance evaluation is carried out by running a 10-
fold cross-validation. Each dataset is randomly 
partitioned into 10 mutually exclusive subsets (the 

folds) of approximately equal size. For 10 times, 9 folds 
are picked to train the models and the remaining fold is 
used to test them, each time leaving out a different fold. 
The performance of each classifier is evaluated against 
each software metrics. Experimental results are 
generated and analyzed by using WEKA version 3.6 
[20] and MATLAB R2014a. Classification performance 
is measured using the ROC measure. As discussed 
earlier, ROC curves are popular metrics to evaluate 
classification algorithms against imbalanced datasets. 

The proposed SFP framework is implemented step 
by step following three strategies, staring from building 
models normally using the widely used eight classifiers 
(NB, NN, SVM, RF, KNN, DTr, DTa, and RTr), which 
has been employed by many studies [1] - [8], [13], [15] 
– [19], [23, 24]. Moreover, three FS (CFS, PCA and IG) 
and DB techniques, in our case SMOTE are used to 
attain the study objective. Finally, the classification 
performance based on the proposed framework is 
evaluated using four publicly available software defect 
datasets. 

 Datasets: Four datasets which are publicly 
accessible from PROMISE repository of NASA 
software projects [21] are selected. These datasets have 
been widely used by many studies [22]. Table 4.1 
summarizes some main characteristics of the datasets 
used in this study. The datasets are different in software 
metrics used, number of metrics, number of rows, and 
percentage of defects. Two datasets (mc1 and jm1) 
consist of commonly used Static Code Metrics (SCM). 
Camle1.6 and prop-4 datasets are based on OOM and 
consist of commonly used CK object-oriented software 
metrics. A comprehensive list of the metrics included in 
SCM and OOM of software defect datasets is listed in 
Table 4.2. In addition to SCM and OOM, to show the 
effect of our proposed framework while tackling the 
challenges of SFP mentioned in this study and ensure 
robust classification performance, we also used other 
group of software metrics (AEEEM ML and LC 
datasets) which combine six different groups of 
software metrics. This dataset was gathered by 
D'Ambros et al. [41] and have been used in different 
studies [39, 40]. It contains 61 metrics: 17 object 
oriented metrics, 5 previous-defect metrics, 5 entropy 
metrics measuring code change, and 17 churn-of-source 
code metrics. Details of this metrics are discussed in 
[41]. Note that data imbalance is consistently observed 
in all datasets.  

Dataset Metrics  level size #Features #Instances  NFP/FP 
Instances 

prop-4 
OOM 

class 670k 23 8718 7878/840    
89.44%/10.56% 

camel-
1.6 class 119k 24 965 777/188    

80.5%/19.5% 

mc1 
SCM 

module 998k 39 9466 9398/68    
99.28%/0.72% 

jm1 module 841k 22 10885 8779/2106    
80.65%/19.35% 

ML Combined class 374k 61 1862 1617/245 
86.84%/13.16% 

LC Combined class 146k 61 691 627/64 
90.74%/9.26% 

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662
___________________________________________________________________________________________________________

653



Before the experiments, during the data cleaning, we 
remove non-numeric attributes like name, which has 
only one value that is the name of the dataset. It’s found 
to be unnecessary and increase the prediction time. In 
addition to that, some modules that contain one or more 
faults are labeled as FP.  

5. Analysis and Discussions 

In this section, we present the experimental analysis and 
discussions based on the objective of the study. 
Performance comparison in terms of ROC among 
widely used three feature selection (CFS, PCA and IG), 
one DB (SMOTE) and eight supervised ML techniques 
(NB, NN, SVM, RF, KNN, DT, DTr and RTr) 
investigating both OOM and SCM datasets have 
presented in the following figures and tables. The 
results are based on the performance of classifiers 
before FST (Normal), after FS and combining FST with 
DB. 

5.1. Classification performance evaluation 

According to Fig 5.1 (a), (b), and (c) referring to Table 
5.1 using three FST, except NB using CFS and IG, all 
other classifiers after DB exhibit better performance 
than performance before FS and using FST for mc1 
SCM dataset. Specifically RF, KNN, DTa, DTr and RTr 
demonstrate the highest ROC values in all three FST 
when applied with DB technique, particularly RF (close 
to 1.0 ROC value)  outperforms other classifiers, 
followed by DT, DTr and RTr using CFS; KNN, NN, 
DTr and DTa using PCA; and also DTa, DTr, RTr, and 
KNN using IG after DB.  

Although FS with DB contributes for the highest 
classification performance, the performance 
inconsistency has been observed when employing FS 
without DB. For instance, CFS approach seems to pick 
many poor features, which affects negatively the 
classification performance except DTr and SVM (which 
generates the same ROC value in all FST), as evidenced 
by Fig. 5.1(a). In the case of PCA for the same dataset 
mc1, slight differences have been exhibited, where RF 
and NB attains high values when compared with their 
values before using FS, as evidenced by Fig. 5.1(b). 
When it comes to IG, all classifiers achieve higher ROC 
value using FS when compared with ROC values before 

 
Fig 5.1 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for mc1 SCM 

Table 4.2 Metrics used in the study, 

Code Metrics Code Metrics Code Metrics Code Metrics 
Att1 McCabe's line count of code Att17 unique operators Att33 HALSTEAD_CONTENT Att49 Response for a Class 
Att2 McCabe "cyclomatic complexity" Att18 unique operands Att34 HALSTEAD_ERROR_EST Att50 Lack of Cohesion in Methods 
Att3 McCabe "essential complexity" Att19 total operators Att35 HALSTEAD_LEVEL Att51 Afferent Couplings 
Att4 McCabe "design complexity" Att20 total operands Att36 MAINTENANCE_SEVERITY Att52 Efferent Couplings 
Att5 Halstead total operators + operands Att21 the flow graph Att37 MODIFIED_CONDITION_COUNT Att53 Number of Public Methods 
Att6 Halstead "volume" Att22 CALL_PAIRS  Att38 MULTIPLE_CONDITION_COUNT Att54 Normalized version of LCOM 
Att7 Halstead "program length" Att23 CONDITION_COUNT  Att39 NODE_COUNT Att55 Lines Of Code 
Att8 Halstead "difficulty" Att24 CYCLOMATIC_DENSITY  Att40 NORMALIZED_CYLOMATIC_COMPLEXITY Att56 Data Access Metric 
Att9 Halstead "intelligence" Att25 DECISION_COUNT  Att41 PERCENT_COMMENTS Att57 Measure Of Aggregation 
Att10 Halstead "effort" Att26 DESIGN_DENSITY  Att42 LOC_TOTAL Att58 Measure of Functional Abstraction 
Att11 Halstead  Att27 EDGE_COUNT  Att43 Name Att59 Cohesion Among Methods 
Att12 Halstead's time estimator Att28 ESSENTIAL_DENSITY  Att44 version Att60 Inheritance Coupling 
Att13 Halstead's line count Att29 LOC_EXECUTABLE  Att45 Weighted Methods per Class Att61 Coupling Between Methods 
Att14 Halstead's count of lines of comments Att30 PARAMETER_COUNT  Att46 Depth of Inheritance Tree Att62 Average Method Complexity 
Att15 Halstead's count of blank lines Att31 GLOBAL_DATA_COMPLEXITY Att47 Number of Children Att63 Maximum values of methods in the same class 

Att16 lOCodeAndComment Att32 GLOBAL_DATA_DENSITY Att48 Coupling between Object classes Att64 Mean values of methods in the same class 

*codes are assigned to metrics for the purpose of ease 
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FS except for NB, as shown in Fig. 5.1(c). The 
performance inconsistency of classifiers can be 
considered to prove that not all FST are suitable for all 
metrics and classifiers. This also has been seen in 
different studies [15], as discussed earlier in Section 3, 
FS degrades ML performance in cases where some 
features are eliminated which are highly predictive of 
very small areas of the instance space or some features 
which are not predictive are selected. It is also 
confirmed that the performance can increase with fewer 
features due to noise reduction but can also decrease 
with fewer features due to important features missing. 
This is what has observed in this particular experiment. 
Generally, it shows that using IG selected features has 
been shown to be able to improve the ROC value of the 
classifiers. So that IG becomes better FST for mc1 SCM 
because except KNN, the rest seven classifiers reveal 
better performance. One thing should be noted here that 

under all circumstances (using all three FST), the 
combination of FST and DB yields improved 
performance results. 

Yet again interesting development in classification 
performance has achieved after combined 
implementation of FST and DB in jm1 SCM dataset, 
except that to some extent NB in all selected FST shows 
less performance Fig 5.2 (a), (b), (c1), and (c2) referring 
Table 5.2 reveal different facts before FS (Normal), 
after FS and also applying FS with DB techniques. 
Furthermore, since IG FST is found to be a good choice 
for FS in this metric, we apply IG FS with 20 metrics 
(20f) and 7 metrics (7f) to realize the effect of reducing 
features on the classification performance. As discussed 
under Section 3, we have used threshold to select useful 
features as well as to discard less useful features from 
the datasets. In this case 20 metrics (20f) and 7 metrics 
(7f) were selected from jm1 SCM dataset based on the 

         

             
Fig 5.2 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for jm1 SCM dataset 

Table 5.1 Classification results of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST, and 
combined FS and DB for mc1 SCM dataset. 

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOTE IG IG&SMOTE 
Naïve Bayes (NB) 0.909 0.881 0.891 0.921 0.915 0.833 0.865 
Neural Network (NN) 0.800 0.748 0.941 0.705 0.982 0.877 0.896 
Support Vector Machine 

 
0.500 0.500 0.774 0.500 0.785 0.500 0.800 

Random Forest (RF) 0.925 0.848 0.987 0.933 0.998 0.925 0.999 
K-Nearest Neighbor (KNN) 0.778 0.734 0.954 0.756 0.986 0.778 0.970 
Decision Table (DTa) 0.864 0.826 0.982 0.856 0.973 0.900 0.990 
Decision Tree (DTr) 0.791 0.795 0.978 0.623 0.979 0.801 0.980 
Random Tree (RTr) 0.806 0.764 0.974 0.776 0.965 0.820 0.974 
 

International Journal of Computational Intelligence Systems, Vol. 10 (2017) 647–662
___________________________________________________________________________________________________________

655



Table 5.3 Classification result of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST, and 
combined FS and DB for camel-1.6 OOM dataset. 

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOT
 

IG IG&SMOTE 
Naïve Bayes (NB) 0.675 0.665 0.690 0.629 0.653 0.597 0.606 
Neural Network (NN) 0.688 0.661 0.738 0.690 0.756 0.636 0.623 
Support Vector Machine (SVM) 0.504 0.502 0.508 0.500 0.517 0.500 0.502 
Random Forest (RF) 0.739 0.729 0.856 0.716 0.843 0.680 0.825 
K-Nearest Neighbor (KNN) 0.593 0.576 0.716 0.557 0.734 0.539 0.718 
Decision Table (DTa) 0.641 0.649 0.724 0.607 0.639 0.671 0.702 
Decision Tree (DTr) 0.616 0.599 0.736 0.571 0.636 0.543 0.680 
Random Tree (RTr) 0.587 0.597 0.678 0.573 0.662 0.554 0.682 
 

Table 5.2 Classification result of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST, 
and combined FS and DB for jm1 SCM dataset 

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOTE IG(7f) 
 

IG&SMOTE(7f) IG(20f) IG&SMOTE(20f) 
Naïve Bayes (NB) 0.679 0.665 0.661 0.635 0.638 0.632 0.64 0.676 0.68 
Neural Network (NN) 0.69 0.68 0.691 0.696 0.698 0.691 0.694 0.688 0.691 
Support Vector Machine 

 
0.502 0.5 0.53 0.501 0.514 0.50 0.519 0.502 0.533 

Random Forest (RF) 0.755 0.745 0.862 0.741 0.844 0.73 0.84 0.753 0.866 
K-Nearest Neighbor (KNN) 0.612 0.608 0.735 0.614 0.759 0.613 0.702 0.611 0.694 
Decision Table (DTa) 0.703 0.701 0.775 0.701 0.708 0.709 0.741 0.703 0.799 
Decision Tree (DTr) 0.653 0.664 0.776 0.661 0.712 0.671 0.748 0.669 0.768 
Random Tree (RTr) 0.593 0.592 0.721 0.589 0.68 0.597 0.692 0.593 0.693 

 

threshold value of 0.02 and 0.05, respectively. RF 
outperforms other classifiers, followed by DTr, DTa, 
KNN and RTr using CFS; KNN, DTr and DTa using 
PCA and also DTr, DTa, and KNN using IG after DB. 

The highest classification performance has exhibited 
using FS with DB, as shown in Fig. 5.2(a) to (c2) and 
Table 5.2 but classification performances varied when 
applying FS without DB. This once again proves that 
DB is an important part to build classifiers for SFP. As 
we can see from Table 5.2, except DTr, CFS approach 
seems to pick many poor features, which affects 
negatively the classification performance. In the case of 
PCA for the same static code metrics (jm1), minor ROC 
value differences have exhibited, where NN, KNN and 
DTr attains high values when compared with their 
values before using FS, as shown in Fig. 5.2(b). As 
discussed earlier IG FST applied with 20f and 7f. With 
7f all classifiers achieve higher ROC values using FS 
when compared with ROC values before FS except for 
RF and NB, as shown in Fig. 5.2(c1). But for 20f except 

RF, NB and KNN, the rest classifiers exhibit either 
equal (SVM, DTa and RTr) or higher (NN and DTr) 
performance. The finding here confirms that, not only 
performance inconsistency among classifiers but also 
the performance improvements observed when applying 
IG FS with less number of features (7f) (NN 0.691, 
KNN 0.613, DTa 0.709, DTr 0.671, and RTr 0.597) can 
also be considered as a proof that if we employ suitable 
FST for software mercies and classifiers, then the better 
result can be attained with small features which in turn 
reduces training and prediction time and memory 
requirement for classification [1, 9, 15]. Therefore, 
considering appropriate FST for software metrics is 
another important part to build SFP model. 

Referring to Fig 5.3 (a), (b), and (c) and Table 5.3 
using three FST, except NN using IG FST, all other 
classifiers after DB exhibit better performance than 
those before FS and using FS techniques for camel-1.6 
OOM dataset. Considering the general performance of 
classifiers, RF, NN, DTr, DTa, and KNN demonstrate 

 
Fig 5.3 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for camel-1.6 OOM dataset 
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Table 5.4 Classification result of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST, and 
combined FS and DB for prop-4 OOM dataset. 

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOTE IG IG&SMOTE 
Naïve Bayes (NB) 0.708 0.711 0.711 0.70 0.705 0.709 0.703 
Neural Network (NN) 0.772 0.746 0.786 0.755 0.823 0.691 0.724 
Support Vector Machine (SVM) 0.500 0.500 0.549 0.50 0.569 0.500 0.548 
Random Forest (RF) 0.840 0.833 0.961 0.837 0.952 0.747 0.923 
K-Nearest Neighbor (KNN) 0.697 0.671 0.831 0.677 0.865 0.573 0.749 
Decision Table (DTa) 0.784 0.790 0.909 0.727 0.814 0.752 0.880 
Decision Tree (DTr) 0.731 0.743 0.885 0.734 0.831 0.667 0.869 
Random Tree (RTr) 0.666 0.662 0.837 0.660 0.806 0.594 0.821 

 

highest ROC values after DB. Specifically RF 
outperforms other classifiers, followed by NN, DTr, 
DTa and KNN using CFS; NN and KNN using PCA; 
and also KNN and DTa using IG after DB. Alike SCM, 
here we also observe the performance discrepancy due 
to the suitability of FST in OOM datasets (camel-1.6). 
This reconfirms that regardless of the software metrics 
if FST are not suitable enough, the prediction 
performance can be compromised. To mitigate that as 
well as to get good prediction performance, data must 
be balanced, which is proved to be useful and give 
much better prediction performance irrespective of all 
three FST employed, as supported by the results in Fig 
5.3 (a), (b), and (c), and Table 5.3. Another interesting 
finding observed in this OOM is using CFS selected 
features have shown to be able to improve the ROC 
value of the classifiers. So that CFS is found to be more 
suitable than other FST because CFS with four 
classifiers (NB, RF, DTa and DTr) outperforms other 
FST followed by PAC with three classifiers (NN, SVA 
and KNN) and IG with one classifier (RTr). 

The second OOM datasets called prop-4 
performances are presented in Fig 5.4 (a), (b), and (c) 
and Table 5.4 using three FST. Except NB using PCA 
and IG, and NN using IG FST, all other classifiers 
exhibit better classification performance after DB. 
Again in this OOM, CFS is found to be more suitable 
than other FST because CFS outperforms other FST 
with five classifiers (NB, RF, DTa, DTr and RTr) 
followed by PAC with three classifiers (NN, SVA and 

KNN).  However, all classifiers show great performance 
improvements in prop-4 OOM, RF outperforms other 
classifiers, and its ROC value is close to 1.0. It’s very 
surprising that some FST when implementing alone 
have performed poorly in the case of OOM than SCM. 
This inconsistency in classification performance may 
require further investigation on the nature of OO 
software metrics particularly camel-1.6 and prop-4 
datasets, and its underlying features. 

From the above, we tried to show the classification 
performance evaluation with respect to two groups of 
datasets (SCM and OOM). Because of lack of datasets, 
we couldn’t be able to perform a comparison between 
these two groups of metrics from the same project. 
However, we used AEEEM ML and LC datasets to 
show that our proposed framework tackling the 
challenges of SFP mentioned in this study and ensure 
robust classification performance. The experimental 
analysis and discussions based on these datasets and 
focusing on the objective of the study are presented as 
follows:  

Referring to Fig 5.5 (a), (b), and (c) and Table 5.5 
using three FST, except NB using PCA, all other 
classifiers after DB exhibit better performance than 
those before FS and using FS techniques for ML 
combined software metrics dataset. Considering the 
general performance of classifiers, RF, KNN, NN, DTa, 
and DTr demonstrate the highest ROC values after DB. 
Specifically RF outperforms other classifiers, followed 
by DTa, NN, KNN and DTr and RTr using CFS; KNN, 

   
Fig 5.4 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for prop-4 OOM dataset 
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Table 5.5 Classification result of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST, and 
combined FS and DB for ML combined metrics dataset 

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOTE IG IG&SMOTE 
Naïve Bayes (NB) 0.689 0.727 0.734 0.678 0.685 0.723 0.725 
Neural Network (NN) 0.735 0.740 0.819 0.705 0.832 0.707 0.792 
Support Vector Machine (SVM) 0.508 0.500 0.594 0.500 0.588 0.504 0.635 
Random Forest (RF) 0.827 0.819 0.937 0.809 0.931 0.824 0.938 
K-Nearest Neighbor (KNN) 0.623 0.639 0.813 0.624 0.859 0.607 0.810 
Decision Table (DTa) 0.752 0.747 0.820 0.673 0.757 0.765 0.823 
Decision Tree (DTr) 0.660 0.694 0.807 0.639 0.751 0.661 0.814 
Random Tree (RTr) 0.627 0.649 0.792 0.602 0.732 0.623 0.781 
 

NN, DTa, and DTr using PCA; and also DTa, DTr, 
KNN, NN and RTr using IG after DB. Alike SCM and 
OOM, here we also observed the performance 
discrepancy due to the suitability of FST in combined 
metrics (ML). This reasserts that regardless of the 
metrics selected and/or combined if FST are not suitable 
enough, the prediction performance can be 
compromised. Moreover, the power of DB has also 
observed again with the combined metrics. Better 
prediction performance has achieved, as demonstrated 
by the results in Fig 5.5 (a), (b), and (c), and Table 5.5. 
Another interesting finding observed in this combined 
metrics is using IG selected features have shown to be 
able to improve the ROC value of the classifiers. So that 
IG is found to be more suitable than other FST in the 
case of combined metrics as well, because IG with four 
classifiers (RF, SVM, DTa and DTr) outperforms other 
FST followed by both PAC with two classifiers (NN 
and KNN) and CFS with two classifier (NB and RTr). 

Regarding LC combined software metrics, results 
are presented in Fig 5.6 (a), (b), and (c) and Table 5.6 
using three FST. Except NB using CFS, PCA and IG all 
other classifiers after DB exhibit better performance 
than those before FS and using FS techniques. 
Considering the general performance of classifiers, RF, 
DTa, KNN, NN, DTr and RTr demonstrate the highest 
ROC values after DB. Specifically RF outperforms 
other classifiers, followed by DTa, KNN DTr, RTr, NN 
and NB using CFS; KNN, NN, RTr, DTr and DTa using 

PCA; and also DTa, KNN, NN, DTr and RTr using IG 
after DB. In this case, the performance inconsistency 
due to the suitability issue of FST in combined metrics 
(LC) has also been observed. This could be mitigated by 
employing suitable FST for combined metrics. This 
once again reaffirms that the prediction performance 
can be compromised if FST are not suitable enough 
regardless of the software metrics are selected and/or 
combined. In addition to that, contribution of DB for the 
performance of classifiers has also observed with the 
combined software metrics. Better prediction 
performance has achieved, as demonstrated by the 
results in Fig 5.6 (a), (b), and (c), and Table 5.6. 
Another interesting finding observed in this combined 
metrics is that it seems using both IG and CFS, selected 
features have shown to be able to improve the ROC 
value of the classifiers. IG with three classifiers (RF, 
SVM and DTa) as well as CFS with three classifiers 
(NB, DTr and RTr) perform better than PCA FST, 
which show good performance with two classifiers (NN 
and KNN). However, considering the average 
performance of eight classifiers, IG (0.835) outperforms 
other FST followed by CFS (0.824) and PCA (0.805). 
Therefore, it is found that IG FST is more suitable than 
CFS and PCA FST in the case of LC combined metrics. 

Finally, the performance results, observed 
consistently from Fig 5.1–Fig 5.4, including Fig 5.5 and 
Fig. 5.6 for both datasets, confirm the assertion given by 
the first hypothesis of this study. As claimed, combining 

 

Fig 5.5 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for ML dataset 
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Table 5.6 Classification result of different classifiers using ROC measure, before FS (Normal), after CFS, PCA and IG FST, and 
combined FS and DB for LC combined metrics dataset 

Algorithms Normal CFS CFS&SMOTE PCA PCA&SMOTE IG IG&SMOTE 
Naïve Bayes (NB) 0.761 0.810 0.791 0.766 0.713 0.760 0.752 
Neural Network (NN) 0.661 0.713 0.796 0.657 0.871 0.632 0.856 
Support Vector Machine (SVM) 0.592 0.561 0.682 0.516 0.656 0.569 0.695 
Random Forest (RF) 0.800 0.781 0.954 0.774 0.955 0.793 0.960 
K-Nearest Neighbor (KNN) 0.597 0.637 0.851 0.541 0.894 0.583 0.873 
Decision Table (DTa) 0.746 0.739 0.864 0.716 0.776 0.741 0.921 
Decision Tree (DTr) 0.639 0.654 0.843 0.640 0.784 0.653 0.816 
Random Tree (RTr) 0.591 0.642 0.809 0.601 0.791 0.601 0.807 

 

FS with DB assures the classification performance 
improvement in terms of ROC value. Interestingly 
enough, this is true with all employed FST, even 
including with some irrelevant elements seems selected 
in the feature set except inconsistent performance 
shown by certain classifiers (NB and NN) in some 
cases. This in turn shows the robustness nature of 
combined techniques.  Therefore, we accept the first 
Hypothesis. 

5.2. Comparison: SCM and OOM 

As it has been seen above, a combination of FS and DB 
gives best classification performance using all eight 
employed ML techniques in all three employed FST 
applied on four datasets used in this study except minor 
performance inconsistency. Therefore, the following 
comparison between object oriented and static code 
metrics are based on the ROC value generated from 
balanced data. 

5.2.1. FS and ML techniques performed best 

Fig 5.7 (a) (SCM) and (b) (OOM) presents the average 
result of ROC value generated by each classifiers with 
respect to FST for four datasets employed using both 
SCM and OOM. The results reveal that high performing 
classifiers are RF, DTa, DTr and RTr if using CFS; the 
high performing classifiers are RF, KNN, DTr and DTa 
if using PCA; and the high performing classifiers are 

RF, DTa DTr and RTr if using IG. This shows that RF, 
DTa, DTr, KNN and RTr are high performing classifiers 
in a decreasing order for SCM, as evidenced by Fig 
5.7(a) (SCM). 

On the other hand, as shown by Fig 5.7(b) (OOM), 
the results reveal that the high performing classifiers are 
RF, DTa, DTr and KNN if using CFS; the high 
performing classifiers are RF, KNN, NN and RTr if 
using PCA; and the high performing classifiers are RF if 
using IG, DTa DTr and RTr. This shows that the high 
performing classifiers are RF, DTa, DTr, KNN, RTr and 
NN in a decreasing order for OOM. Thus based on the 
amazing performance of RF in all datasets (including 
the combined metrics datasets) irrespective of metrics, 
we can conclude that RF is the best classifiers. 

One interesting finding here is a combination of RF 
with IG FS yields the highest ROC (0.993) value and is 
found to be the best combination for SFP when SCM 
are used, with regard to the combined metrics RF with 
IG yields better performance results as well (see Fig. 5.5 
and 5.6), whereas the combination of RF with CFS 
generates the highest ROC (0.909) value and is found to 
be the best choice for SFP when OOM are used.  

In conclusion, the performance results, summarized 
in Fig 5.7 (a) (SCM) and (b) (OOM), confirm the 
assertion given by the second hypothesis of this study. 
As expected, the suitable FST vary for both software 
metrics. The IG and CFS techniques in our case are 
suitable for SCM and OOM, respectively. It has not 

 
Fig 5.6 Comparison of prediction performance before FS (Normal), after FS, and combined FS and DB for LC dataset 
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only contributed significantly in improving the 
classification performance but also reducing execution 
time and the number of features (software metrics) 
required to achieve such performance. Therefore, we 
accept the second Hypothesis. 

5.2.2. Static Code and Object Oriented Metrics 
contributed for classification performance 

As discussed earlier, IG feature selection is found to be 
better choice for SCM because IG is able to pick better 
features as indicated by the ROC values shown in 
Tables 5.1 – 5.2. However, this performance of IG does 
not compete with that of achievement by the CFS 
method for OOM as shown in Tables 5.3 – 5.4. So CFS 
turns out to be good choice for OOM. On the other 
hand, a careful inspection of the feature list produced 
indicates that the Att1, Att13, Att29, Att18, Att12, 
Att10, Att5, Att20, Att19, Att42, Att6, and Att2 (refer to 
Table 4.2) by the IG technique and the Att46, Att47, 
Att48, Att51, Att49, Att50, Att52, and Att53 (refer to 
Table 4.2) by the CFS technique are the most 
meaningful features that help to boost the classification 
performance.  

6. Threat to Validity 

There are a number of threats that may have an impact 
on the results of this study. The prediction models 
proposed in this study were built by using default 
parameters. That is, we have not investigated how the 
models are affected by varying the parameters. In 
addition to that, many software metrics are defined in 
literature. Thus other metrics might be better indicator 
to defects. However, we used metrics which were 
widely used in different studies [11] and that were 
available from the selected datasets. The study 
conclusions presented are based on the selected 

software metrics. These datasets may not be 
characteristic of all industrial domains. These datasets 
may not also be good representatives in terms of the 
numbers and sizes of classes. However, this practice is 
common among the fault prediction research area. 

7. Conclusion and Future Works 

This study has empirically evaluated the capability of 
eight widely used classifiers (NB, NN, SVM, RF, KNN, 
DTr, DTa, and RTr) in predicting defect-prone software 
modules and compared its prediction performance 
normally, after FS and combined FST with DB 
technique in the context of four NASA datasets of 
which two of them are based on SCM and the rest two 
datasets are based on OOM. Moreover, the study has 
verified the proposed framework on other groups of 
software metrics using AEEEM Datasets. We also 
employed three carefully selected FST, namely CFS, 
PCA and IG, with DB techniques, in our case SMOTE. 
The experimental results demonstrated both robust and 
little inconsistent results while employing FST on both 
software metrics based on ROC measurement criteria. 
This confirms that regardless of the software metrics if 
not suitable FST are used, the prediction performance 
can be compromised. To mitigate that as well as to get 
good prediction performance, data must be balanced. 
Our combined technique assures the classification 
performance improvement in terms of ROC value. This 
in turn shows the robustness nature of combining 
techniques. On the tested datasets, the suitable FST 
were found to be varied for both software metrics. The 
IG and CFS techniques outperformed the rest. So that 
they are found to be suitable for SCM and OOM, 
respectively. In our case, a combination of RF with IG, 
FS yields the highest ROC (0.993) value when SCM 
and combined metrics are used whereas the combination 

  
Fig 5.7 Average Performance of FS and ML techniques of SCM and OOM 
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of RF with CFS generates the highest ROC (0.909) 
value when OOM are used. It has not only contributed 
significantly in improving the classification 
performance but also reducing the number of features 
(software metrics) required to achieve such 
performance. Therefore, this study shows that software 
metrics used to predict the fault proneness of the 
software must be carefully examined and the FST which 
is suitable for metrics must be cautiously selected. 
Moreover, DB must be applied in order to get robust 
results. Thus, dealing with the challenges of SFP 
mentioned in this study, our proposed framework 
ensures remarkable classification performance and lays 
the pathway to software quality assurance. 

For the future work, we plan to apply more datasets 
which consist of process and delta software metrics 
including SCM and OOM generated from single 
projects; investigate why several classifiers shows 
inconsistency in some FST and metrics as well; explore 
more FST and realize how the proposed framework 
improves the performance of classifiers. We also 
planned to incorporate and explore the benefit of using 
combined over-sampling and under-sampling DB 
techniques with our new framework. In addition to that, 
we found that, the problem of cross-project fault 
prediction and the bugs with more specific features [42] 
are very interesting and if this problem area can be 
broadly addressed, it will have invaluable contribution 
in the area of SFP, which we plan to work on it in the 
future. 
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