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Abstract

This paper is concerned with the solution procedure of a Transportation Problem in which costs are tri-
angular intuitionistic fuzzy numbers (TIFN) and availabilities and demands are taken as exact numerical
values. According to the existing solution approach, TIFN are first ordered by using an accuracy function
defined on score functions for membership and non-membership functions of TIFN. Then this order-
ing is used to develop methods for finding an initial basic feasible solution and the optimal solution of
intuitionistic fuzzy Transportation Problems in terms of triangular intuitionistic fuzzy numbers. This so-
lution approach, in spite of its merits, requires a lot of fuzzy arithmetic operations, such as additions and
subtractions of TIFN, as well as a lot of comparisons on TIFN. In this paper an efficient computational
solution approach is proposed for solving intuitionistic fuzzy Transportation Problems based on classical
transportation algorithms to overcome the shortcomings of the aforementioned solution approach. In the
approach here presented, the comparison of triangular intuitionistic fuzzy costs is done once and all arith-
metic operations are done on real numbers. Finally, for the sake of illustration, two intuitionistic fuzzy
Transportation Problems are solved herein to demonstrate the usages and advantages of the proposed
solution approach.

Keywords: Intuitionistic fuzzy transportation problem; Triangular intuitionistic fuzzy number; Accuracy
function.

1. Introduction

A useful, effective and operative tool to handle im-
precise data is that of fuzzy sets as defined by
Zadeh 1. In such a case, the main drawback to be
pointed out is the fact that the accomplishment of
the property defining the postulated fuzzy set is to
be measured by means of an “exact” and unique real
number. Therefore using fuzzy sets is not suitable in

cases where there may be a hesitation or uncertainty
about the accomplishment degree of the element in
a set. To tackle this drawback, Atanassov 2 intro-
duced the concept of Intuitionistic Fuzzy Set (IFS)
that seems to suitably describe an imprecise con-
cept and incorporates the mentioned hesitation in the
membership degrees. In IFS, not only the degree of
acceptance is defined by a membership function, but
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also the degree of rejection is considered by a non-
membership function so that the sum of both degrees
should be smaller than one. Because of these facts,
it is expected that IFS can cope with the presence
of vagueness and hesitancy originating from impre-
cise knowledge or information. IFS Theory has been
applied in many important and essential areas, in-
cluding multi attribute decision-making models 3,4,
multi attribute group decision-making problems 5,6,
image restoration 7, medical diagnosis 8, game the-
ory 9,10 and pattern recognitions 11 among others.

As is well known, nowadays Transportation
Problems (TP) because of their recent relevant ap-
plications (optimization problems associated to dif-
ferent models of smart cities, multimodal transports,
etc.) are of upmost importance and in almost all the
cases imprecise data are omnipresent. Hence, Fuzzy
Sets Theory and IFS Theory could be used to cap-
ture linguistic uncertainty in optimization problems
(see Refs. 12–18), particularly in TP.

Basically, the central question in TP is to find the
least total transportation cost of a commodity in or-
der to satisfy demands at destinations using avail-
able supplies at origins. In classical TP it is as-
sumed that the transportation costs and values of
supplies and demands are exactly known. However,
in many situations the decision maker has no pre-
cise information about the coefficients defining the
TP. In these cases, the corresponding coefficients
or elements defining the problem can be specified
by means of fuzzy sets, and a Fuzzy Transportation
Problem (FTP) appears in a natural way.

From this point of view, numerous researchers
have devoted their efforts to using fuzzy numbers in
real life TP. Thus, for instance, Jimenez and Verde-
gay 19,20 studied Fuzzy Solid TP in which supplies,
demands and conveyance capacities are represented
by trapezoidal fuzzy numbers and presented a para-
metric approach for finding a fuzzy solution. Also,
an FTP in which supplies and demands are trape-
zoidal fuzzy numbers was formulated by Gani and
Razak 21 and a parametric approach for finding a
fuzzy solution with the aim of minimizing the sum
of the transportation costs in the two stages was
analysed by them. Dinagar and Palanivel 22 con-
sidered an FTP with trapezoidal fuzzy numbers and

proposed a fuzzy modified distribution method to
obtain the optimal solution in terms of fuzzy num-
bers. A new algorithm, namely the fuzzy zero
point method for finding the fuzzy optimal solution
for FTP, in which the transportation cost, supplies
and demands are represented by trapezoidal fuzzy
numbers was introduced by Pandian and Natara-
jan 23. A systematic procedure for solving all types
of FTP whether to maximize or to minimize the ob-
jective function was proposed by Basirzadeh 24, and
a new method to find the solution of a linear multi-
objective TP, by representing all the parameters as
interval-valued fuzzy numbers, was considered by
Gupta and Kumar 25. Shanmugasundari and Gane-
san 26 developed the fuzzy version of Vogel’s and
MODI methods for obtaining the fuzzy initial basic
feasible solution and the fuzzy optimal solution re-
spectively, and also Kaur and Kumar 27 proposed a
new method based on ranking functions for solving
FTP by assuming that the parameters of the TP are
represented by generalized trapezoidal fuzzy num-
bers. Moreover, Kaur and Kumar 28 approached a
special type of FTP where transportation costs are
represented by generalized trapezoidal fuzzy num-
bers. More recently, Ebrahimnjead 29 presented a
simplified approach to find the optimal solution of
the FTP studied by Kaur and Kumar 28. Sudhagar
and Ganesan 30 proposed an algorithm to find an op-
timal solution of a FTP with all parameters repre-
sented by fuzzy numbers. It was shown by Ebrahim-
njead 31 that the algorithm considered by Sudhagar
and Ganesan 30 does not always lead to a fuzzy opti-
mal solution. In addition, Ebrahimnejad 32 proposed
a two-step method for solving FTP where all of the
parameters are represented by non-negative triangu-
lar fuzzy numbers.

In spite of this, although fuzzy numbers are com-
monly used for modeling imprecise data when one
has to cope with real TP, this may not be suitable for
situations where one has to deal with uncertainty as
well as with hesitation. In such situations, Intuition-
istic Fuzzy Numbers are used to represent the impre-
cise parameters of the TP under consideration. The
resulting problem is therefore referred to as an Intu-
itionistic Fuzzy Transportation Programming Prob-
lem (IFTP). Despite the importance of the problem
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there are few studies in the current literature facing
the practical solving of IFTP.

Hussain and Kumar 33 focused on TP in which
supplies and demands are intuitionistic fuzzy num-
bers. Then, they analysed an intuitionistic fuzzy
zero point method to find the optimal solution in
terms of triangular intuitionistic fuzzy numbers. Na-
goorgani and Abbas 34 proposed another method
based on ranking functions for finding an optimal
solution of the same IFTP. Singh and Yadav 35 pre-
sented intuitionistic fuzzy methods to find the start-
ing basic feasible solution in terms of triangular in-
tuitionistic fuzzy numbers, and also proposed an in-
tuitionistic fuzzy modified distribution method to
find optimal solution of the same IFTP. Antony et
al. 36 considered solving TP with triangular intu-
itionistic fuzzy numbers using Vogel’s approxima-
tion method. Finally, a new method for solving
TP has been approached by Singh and Yadav 37 in
which transportation costs are triangular intuition-
istic fuzzy numbers (TIFNs) and availabilities and
demands are taken as exact numerical values. The
method, first ranks TIFNs using an accuracy func-
tion defined on score functions for membership and
non-membership functions of TIFNs. Then, one
uses this ordering to develop methods for finding an
initial basic feasible solution and an optimal solution
of IFTP in terms of triangular intuitionistic fuzzy
numbers. However the method proposed by Singh
and Yadav 37, in spite of its merits, requires a lot
of fuzzy arithmetic operations such as additions and
subtractions of TIFNs and a lot of comparisons on
TIFNs. For that reason in this paper one proposes an
efficient computational solution approach for solv-
ing the same problem based on classical transporta-
tion algorithms. In the proposed approach, compar-
ison of triangular intuitionistic fuzzy costs is done
once, and all arithmetic operations are done on real
numbers.

Consequently the rest of the paper is organized as
follows: In Section 2, some basic concepts of fuzzy
sets theory and intuitionistic fuzzy sets theory are re-
viewed. In Section 3, the TP with intuitionistic fuzzy
transportation costs is formulated and the aforemen-
tioned approach to find the optimal solution is sum-
marized. In Section 4, an efficient computational

solution approach based on classical transportation
algorithms is proposed for solving IFTP and to di-
minish the amount of computations of the existing
approach. Finally, in Section 5, the application of
the proposed method is illustrated by using two nu-
merical examples and the obtained results are dis-
cussed. Section 6, including the main conclusions as
well as some interesting future research lines, ends
the paper.

2. Preliminaries

This section briefly introduces some basic concepts
including fuzzy sets theory and intuitionistic fuzzy
sets which are applied throughout this paper (see
Refs. 2 and 37).

Definition 1: Let X denote the universe set. A
fuzzy set Ã in X is defined by a set of ordered pairs
Ã=

{(
x, µÃ(x)

)
; x ∈ X

}
where µÃ(x)∈ [0, 1] repre-

sents the membership degree of x in Ã, and is called
the membership function of Ã.

Definition 2: Let Xdenote the universe set. An intu-
itionistic fuzzy set (IFS) ÃI in X is defined by a set
of ordered triple ÃI =

{⟨
x, µÃI (x),υÃI (x)

⟩
; x ∈ X

}
where the functions µÃI (x) : X → [0, 1]andυÃI (x) :
X → [0, 1], respectively, represent the membership
degree and non-membership degree of x in Ã such
that for each element x∈X , 06 µÃI (x)+υÃI (x)6 1.

Definition 3: For each intuitionistic fuzzy set
ÃI =

{⟨
x, µÃI (x),υÃI (x)

⟩
; x ∈ X

}
in X , the value

hÃI (x) = 1−µÃI (x)−υÃI (x) is called degree of hes-
itancy of x to ÃI .

Definition 4: An intuitionistic fuzzy set ÃI ={⟨
x, µÃI (x),υÃI (x)

⟩
; x ∈ X

}
is called intuitionis-

tic fuzzy normal if there is any x◦ ∈ X such that
µÃI (x◦) = 1 (so υÃI (x◦) = 0).

Definition 5: An intuitionistic fuzzy set ÃI ={⟨
x, µÃI (x),υÃI (x)

⟩
; x ∈ X

}
is called intuitionis-

tic fuzzy convex if its membership function is fuzzy
convex and its non-membership function is concave,
i.e. ∀x1,x2 ∈ X , ∀λ ∈ [0, 1], µÃI (λx1+(1−λ )x2)>
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min
{

µÃI (x1),µÃI (x2)
}

and υÃI (λx1 + (1− λ )x2) 6
max

{
υÃI (x1),υÃI (x2)

}
.

Definition 6: An intuitionistic fuzzy set ÃI ={⟨
x, µÃI (x),υÃI (x)

⟩
; x ∈ R

}
of the real number R is

called an intuitionistic fuzzy number if

(i) ÃI is intuitionistic fuzzy normal and intuition-
istic fuzzy convex.

(ii) µÃI is upper semi continuous and υÃI is semi
lower continuous.

(iii) SuppÃI =
{

x ∈ R; υÃI (x)< 1
}

is bounded.

Definition 7: A triangular intuitionistic fuzzy num-
ber (TIFN) ÃI is a special IFN with the member-
ship function non-membership function defined as
follows:

µÃI (x) =


x−a1
a2−a1

, a1 < x 6 a2
a3−x
a3−a2

, a2 6 x < a3

0, Otherwise.
and

υÃI (x) =


a2−x
a2−a′1

, a′1 < x 6 a2
x−a2
a′3−a2

, a2 6 x < a′3
1, Otherwise.

where a′1 6 a1 < a2 < a3 6 a′3. This TIFN is denoted
by ÃI = (a1,a2,a3; a′1, a2,a′3).

Definition 8: Given two TIFNs ÃI =
(a1,a2,a3; a′1, a2,a′3) and B̃I =(b1,b2,b3; b′1, b2,b′3),
some arithmetic operations between ÃI and B̃I can
be defined as follows:

(i) ÃI ⊕ B̃I = (a1 + b1,a2 + b2,a3 + b3; a′1 +
b′1, a2 +b2,a′3 +b′3),

(ii) ÃI⊖B̃I = (a1 − b3,a2 − b2,a3 − b1; a′1 −
b′3, a2 −b2,a′3 −b′1),

(iii) kÃI(ka1,ka2,ka3; ka′1, ka2,ka′3), k > 0,

(iv) kÃI = (ka3,ka2,ka1; ka′3, ka2,ka′1), k < 0.

Definition 9: For TIFN ÃI = (a1,a2,a3; a′1, a2,a′3),
its accuracy function is defined as follows:

f (ÃI) =
(a1 +2a2 +a3)+(a′1 +2a2 +a′3)

8
(1)

Singh and Yadav 37 proved that the accuracy func-
tion f : IF(R)→ R, where IF(R) is a set of TIFNs
defined on a set of real numbers, is a linear func-
tion. They used this linear function for com-
paring two TIFNs ÃI = (a1,a2,a3; a′1, a2,a′3) and
B̃I = (b1,b2,b3; b′1, b2,b′3).

Definition 10: Assume two TIFNs ÃI =
(a1,a2,a3; a′1, a2,a′3) and B̃I =(b1,b2,b3; b′1, b2,b′3),
with f (ÃI) and f (B̃I) as their accuracy functions, re-
spectively. Then

(i) ÃI > B̃Iif f (ÃI)> f (B̃I),
(ii) ÃI 6 B̃Iif f (ÃI)6 f (B̃I),

(iii) ÃI = B̃Iif f (ÃI) = f (B̃I).

3. Intuitionistic Fuzzy Balanced
Transportation Problems

Singh and Yadav 37 applied an interesting method-
ology in solving a TP having uncertainty as well as
hesitation in prediction of the transportation costs.
One defines a TP having intuitionistic fuzzy trans-
portation costs but crisp availabilities and demands
as an intuitionistic Fuzzy Balanced Transportation
Problem of type-2 (IFBTP-2).

The IFBTP-2, in which a decision maker con-
siders the cost as TIFN to deal efficiently with the
uncertainty as well as hesitation arising in predic-
tion of transportation cost, but (s)he is sure about
the availability and demand of the product, can be
formulated as follows (see Ref. 37):

min Z̃I =
m

∑
i=1

n

∑
j=1

c̃I
i jxi j

s.t.
n

∑
j=1

xi j = ai, i = 1,2, ...,m,

m

∑
i=1

xi j = b j, j = 1,2, ...,n,

xi j > 0, i = 1,2, ...,m, j = 1,2, ...,n.

(2)

where ai is: the total availability of the product at
ith source; b j: the total demand of the product at
jth destination; c̃I

i j = (ci j
1 ,c

i j
2 ,c

i j
3 ;ci j′

1 ,ci j
2 ,c

i j′
3 ): the in-

tuitionistic cost for transporting one unit quantity

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1157



A. Ebrahimnejad and J.L. Verdegay / An efficient computational approach

of the product from the ith source to the jth des-
tination; xi j: the quantity transported from the ith

source to the jth destination or decision variables;
∑m

i=1 ∑n
j=1 c̃I

i jxi j: total intuitionistic fuzzy transporta-
tion cost.

Singh and Yadav 37 considered the linear or-
dering given in (1) to develop methods for obtain-
ing the initial basic feasible solution (IBFS) of the
IFBTP-2 given in (2). Then one generalizes an in-
tuitionistic fuzzy method to test the optimality of
the obtained IBFS using the same ordering. To
do so, they rewrote the IFBTP-2 given in (2) as
an Intuitionistic Fuzzy Linear Programming prob-
lem and proved some theorems concerning opti-
mality conditions and duality properties. Let ũI

i =

(ui
1,u

i
2,u

i
3;ui′

1,u
i
2,u

i′
3) and ṽI

j = (v j
1,v

j
2,v

j
3;v j′

1 ,v
j
2,v

j′
3 )

be the intuitionistic fuzzy dual variables associated
with ith row and jth column constraints, respectively,
then the intuitionistic fuzzy dual of the IFBTP-2
given in Eq. (2) is defined as follows (see Ref. 37):

max Z̃I
D =

m

∑
i=1

aiũI
i ⊕

n

∑
j=1

b jṽI
j

s.t. ũI
i ⊕ ṽI

j 6 c̃I
i j i = 1,2, ...,m, j = 1,2, ...,n.

(3)
Based on the linear function given in (1), Singh
and Yadav 37 introduced three methods, namely
intuitionistic fuzzy North West corner method
(IFNWCM), intuitionistic fuzzy least-cost method
(IFLCM) and intuitionistic fuzzy Vogel’s approxi-
mation method (IFVAM) to find the initial IBFS for
the IFBTP-2 given in Eq. (2). Then, they utilized
the intuitionistic fuzzy modified distribution method
(IFMODIM) to find the fuzzy optimal solution for
the IFBTP-2 (2) with the help of IBFS. They also
proved some theorems to provide optimality criteria
for the obtained IBFS.

The resulting theorem is summarized as follows
(see Ref. 37):

Theorem 1. Let IFBTP-2 (2) has a basic fea-
sible solution (BFS) with B as a basis matrix. If
d̃I

i j = ũI
i ⊕ ṽI

j 6 c̃I
i j for all non-basic variables, the

current BFS is optimal.
In the proposed approach by Singh and Yadav 37

all arithmetic operations are performed on the trian-

gular intuitionistic fuzzy numbers, i.e., ũI
i , ṽI

j and
c̃I

i j. In the following section, we show that it is
possible to find the same solution as the IFBTP-2
(2) without solving any intuitionistic fuzzy problems
and so all arithmetic operations are done on real
numbers instead of triangular intuitionistic fuzzy
numbers.

4. An efficient computational approach

In this section an efficient computational solution
approach is proposed for solving intuitionistic fuzzy
TP, based on classical transportation algorithms to
diminish the amount of computations of the Sing
and Yadav’s solution approach.

In the algorithm proposed by Singh and Ya-
dav 37, the linear accuracy function (1) has been
used to compare between triangular intuitionistic
fuzzy numbers. In such a case by using this lin-
ear ranking function it is possible to define a rank
for each triangular intuitionistic fuzzy number. In
fact, assuming that ÃI = (a1,a2,a3; a′1, a2,a′3) is a
triangular intuitionistic fuzzy number, then f (ÃI) =
(a1+2a2+a3)+(a′1+2a2+a′3)

8 . This equation enables us to
convert the IFBTP-2 (2) into a crisp TP. To do this,
we substitute the rank of each triangular intuitionis-
tic fuzzy number instead of the corresponding trian-
gular intuitionistic fuzzy number in the problem un-
der consideration. This leads to an equivalent crisp
TP that can be solved by traditional transportation
algorithms. In summary, once the ranking function
is chosen, the intuitionistic fuzzy TP under consid-
eration is converted into a crisp one, which is easily
solved by the existing transportation simplex meth-
ods. Therefore, it is possible to obtain the optimal
solution of the IFBTP-2 (2) problem, without the
need for a fuzzy approach. As a result, the com-
putational amount is decreased significantly in our
proposed approach.

Our main contribution in this study is the re-
duction of the amount of computations for solving
the IFBTP-2 (2) compared to the intuitionistic fuzzy
transportation algorithm proposed by Singh and Ya-
dav 37. In particular, in what follows it is shown in
detail that our method needs fewer elementary op-
erations such as additions, subtractions and compar-
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isons than the aforementioned method.
Two main steps of the intuitionistic fuzzy trans-

portation algorithm proposed by Singh and Yadav 37

for solving IFBTP-2 (2) are summarized as follows:
Step 1: Find an initial BFS using IFNWCM, IFLCM
or IFVAM.
Step 2: Find the optimal solution of IFBTP-2 using
the intuitionistic fuzzy modified distribution method
(IFMODIM).

First, the computation effort required for finding
an initial BFS using the proposed method and the
method of Singh and Yadav 37 are compared.

It should be noted that in the IFBTP-2 (2) only
the transportation cost is represented by triangular
intuitionistic fuzzy numbers. It can be seen that
in the IFNWCM proposed by Singh and Yadav 37,
the intuitionistic fuzzy costs have no role on find-
ing initial BFS. Thus this method needs the same
amount of computations compared to the standard
North West corner method for finding an initial BFS.
In addition, in the IFLCM proposed by them it is re-
quired to determine the smallest intuitionistic fuzzy
cost in the IFBTP table using the accuracy function
given in (1) for each iteration. Thus in this approach
no addition and subtraction operations are done on
intuitionistic fuzzy costs to obtain an initial BFS. In
this approach, the comparison between intuitionis-
tic fuzzy costs is only done once using the accuracy
function given in (1) to determine the smallest one.

However, to find an initial BFS according to IF-
VAM, it is required to

(1) Compute the intuitionistic penalty for each row
and each column of the IFBTP table of order
m×n,

(2) Select the highest intuitionistic penalty using the
accuracy function,

(3) Determine the cell with the smallest intuitionis-
tic cost in the selected row or column using the
accuracy function,

(4) Allocate as much as possible to the variable cor-
responding to the determined cell, adjust the
supply and demand and delete the satisfied row
or column,

(5) Repeat the process for the reduced table until the
table is reduced to1×1.

Remark 1: The penalty measure for each row (col-
umn) is determined by subtracting the smallest unit
intuitionistic fuzzy cost element in the row (column)
from the next smallest unit intuitionistic fuzzy cost
element in the same row (column).

Regarding Remark 1 and the process of IFVAM,
the main drawback of this method is that it requires a
lot of fuzzy subtractions of TIFNs and a lot of com-
parisons based on accuracy function on TIFNs to
compute the intuitionistic penalty measures of each
row and each column and to identify the row or col-
umn with the largest intuitionistic penalty.

In sum, our proposed method and the existing
method of Singh and Yadav 37 have a same compu-
tation effort if IFNWCM or IFLCM is used to obtain
the initial BFS of IFBTP-2 (2). However, in our ap-
proach all the triangular intuitionistic fuzzy costs are
changed to crisp numbers according to the accuracy
function. Thus, comparison of triangular intuitionis-
tic fuzzy costs is done once and all arithmetic oper-
ations are performed on real numbers. Due to these
facts, our method here needs less computation effort
in comparison to the method proposed by Singh and
Yadav 37 if IFVAM is used to obtain the initial BFS
of IFBTP-2 (2).

Now, the computation effort required for finding
the optimal solution of IFBTP-2 (2) using the pre-
sented method and the method proposed by Singh
and Yadav 37 is compared.

Let us suppose that an initial BFS obtained us-
ing IFNWCM, IFLCM or IFVAM with basis B is
at hand. The main steps of the intuitionistic fuzzy
modified distribution method (IFMODIM) proposed
by Singh and Yadav 37 to find the intuitionistic fuzzy
optimal solution for the IFBTP-2 (2) are summa-
rized as follows:
Step 1: For each cell (i, j), define intuitionistic
fuzzy dual variables ũI

i = (ui
1,u

i
2,u

i
3;ui′

1,u
i
2,u

i′
3) and

ṽI
j = (v j

1,v
j
2,v

j
3;v j′

1 ,v
j
2,v

j′
3 ) associated with ith row

and jth column, respectively.
Step 2: Solve the intuitionistic fuzzy system ũI

i ⊕
ṽI

j = c̃I
i j for each basic cell (i, j).

Step 3: Compute d̃i j = ũI
i ⊕ ṽI

j⊖c̃I
i j for each non-

basic cell (i, j). If f (d̃i j)6 0 for each non-basic cell
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(i, j), then stop, the current BFS is optimal. Other-
wise select an entering cell (a non-basic cell with the
most positive f (d̃I

i j)).
Step 4: Determine an existing cell, obtain the new
BFS using the standard transportation methods and
repeat Step 1.

Our main contribution here is the reduction of the
computational complexity of the method proposed
by Singh and Yadav 37. In particular, it is shown
that our proposed method needs a lower number of
elementary operations such as additions, multiplica-
tions, and comparisons as compared to the method
proposed by Singh and Yadav 37 for testing the opti-
mality conditions.

According to the method proposed by Singh and
Yadav 37, to carry out Step 2 of the IFMODIM it
is required to solve the intuitionistic fuzzy system
ũI

i + ṽI
j = c̃I

i j with m+n−1 intuitionistic fuzzy equa-
tions corresponding to basic cells. After solving this
intuitionistic fuzzy system, the intuitionistic fuzzy
value d̃I

i j for each non-basic cell is obtained based
on d̃i j = ũI

i ⊕ ṽI
j⊖c̃I

i j. Finally the entering cell is
determined according to the most positive rank of
d̃I

i j. These facts ensure that this step requires a lot
of intuitionistic fuzzy additions and subtractions on
TIFNs. While based on our proposed methods, the
optimality criteria are checked without solving any
intuitionistic fuzzy system, without any intuitionis-
tic fuzzy arithmetic operations and without any com-
parison of TIFNs. These results confirm that the pro-
posed method is simpler and computationally more
efficient than the method proposed by Singh and Ya-
dav 37.

As a final point, in the next theorem we mathe-
matically prove that the results of the method pro-
posed by Singh and Yadav 37 and the proposed
method for solving IFBTP-2 (2) are the same.

Theorem 2. The optimal solution of the IFBTP-2
(2) according to the existing method and the pro-
posed method is the same.

Proof. According to the proposed approach, us-
ing the linear accuracy function (1) we substitute
the rank of each triangular intuitionistic fuzzy trans-
portation cost instead of the corresponding triangu-
lar intuitionistic fuzzy transportation cost in IFBTP-

2 (2). This leads to the following crisp TP:

min f (Z̃I) =
m

∑
i=1

n

∑
j=1

f (c̃I
i j)xi j

s.t.
n

∑
j=1

xi j = ai, i = 1,2, ...,m,

m

∑
i=1

xi j = b j, j = 1,2, ...,n,

xi j > 0, i = 1,2, ...,m, j = 1,2, ...,n.

(4)

Let f (ũI
i ) and f (ṽI

j) be the dual variables associated
with ith row and jth column constraints, respectively.
In this case, the dual of the TP (4) is given as fol-
lows:

max f (Z̃I
D) =

m

∑
i=1

ai f (ũI
i )+

n

∑
j=1

b j f (ṽI
j)

s.t. f (ũI
i )+ f (ṽI

j)6 f (c̃I
i j),

i = 1,2, ...,m, j = 1,2, ...,n.

(5)

Therefore, if the basis B is the optimal basis of the
crisp TP (4), then we have f (ũI

i )⊕ f (ṽI
j) 6 f (c̃I

i j) as
the optimality conditions of TP (4).

It should be noted that in order to obtain the op-
timal solution according to the method proposed by
Singh and Yadav 37 and our proposed method, the
IFBTP-2 (2) and the crisp TP (4) are solved, respec-
tively. If we show that these problems have the same
optimal solution, we conclude that the results of our
proposed approach are matched with those obtained
based on the method proposed by Singh and Ya-
dav 37. Note that both problems have a same feasible
space. Thus, it is sufficient to show that both prob-
lems have the same optimality conditions. In fact, if
the basis B is the optimal basis of the IFBTP-2 (2),
then it will be the optimal basis of the equivalent
crisp TP (4).

To do this, suppose that x∗ = (x∗i j)1×mn is an op-
timal solution of the IFBTP-2 (2) with B as the op-
timal basis. Thus, according to Theorem 1 we have
ũI

i ⊕ ṽI
j 6 c̃I

i j for all non-basic variables. With re-
gard to Definition 10, these conditions are equiv-
alent to f (ũI

i ⊕ ṽI
j) 6 f (c̃I

i j). Since the accuracy
function is linear, we have f (ũI

i ⊕ ṽI
j) = f (ũI

i ) +

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1160



A. Ebrahimnejad and J.L. Verdegay / An efficient computational approach

Table 1. Summary of the intuitionistic FTP.

D1 D2 D3 D4 ai

S1 (2, 4, 5; 1, 4, 6) (2, 5, 7; 1, 5, 8) (4, 6, 8; 3, 6, 9) (4, 7, 8; 3, 7, 9) 11
S2 (4, 6, 8; 3, 6, 9) (3, 7, 12; 2, 7, 13) (10, 15, 20; 8, 15, 22) (11, 12, 13; 10, 12, 14) 11
S3 (3, 4, 6; 1, 4, 8) (8, 10, 13; 5, 10, 16) (2, 3, 5; 1, 3, 6) (6, 10, 14; 5, 10, 15) 11
S4 (2, 4, 6; 1, 4, 7) (3, 9, 10; 2, 9, 12) (3, 6, 10; 2, 6, 12) (3, 4, 5; 2, 4, 8) 12
b j 16 10 8 11 45

f (ṽI
j). This means that ũI

i ⊕ ṽI
j 6 c̃I

i j if and only
if f (ũI

i ) + f (ṽI
j) 6 f (c̃I

i j). Thus, we conclude that
x∗ = (x∗i j)1×mn is the optimal solution of the TP (4).
This completes the proof.

5. Numerical examples

In this section, in order to demonstrate the effec-
tiveness of the proposed method, two intuitionistic
fuzzy TP taken from Singh and Yadav 37 are consid-
ered.
Example 5.1: Table 1 gives the crisp availability
(ai) of the product available at four origins Si, i =
1,2,3,4 and the crisp demand (b j) at four destina-
tions D j, j = 1,2,3,4. The transportation costs from
origins to destinations are represented by intuition-
istic fuzzy triangular fuzzy numbers. The aim is to
find the least total intuitionistic fuzzy transportation
cost of the commodity in order to satisfy demands at
destinations using available availabilities at origins.

According to the accuracy function given in (1),
we substitute the rank order of each intuitionistic
fuzzy transportation cost (given in Table 1) with its
corresponding intuitionistic fuzzy number to obtain
the classical transportation problem. The results are
given in Table 2.

Table 2. Summary of the classical transportation problem.

D1 D2 D3 D4 ai

S1
30
8

38
8

48
8

52
8 11

S2
48
8

58
8

120
8

96
8 11

S3
34
8

82
8

26
8

80
8 11

S4
32
8

63
8

51
8

34
8 12

b j 16 10 8 11 45

In what follows, we derive the optimal solution
of the given intuitionistic fuzzy transportation prob-

lem based on the method proposed by Singh and Ya-
dav 37 according to Table 1 and our proposed method
according to Table 2.

The initial BFS of Table 1 can be found by any
one of the IFNWCM, IFLCM or IFVAM methods
proposed by Singh and Yadav 37. Also, the initial
BFS of Table 2 can be found by any one of the clas-
sical North West corner method (NWCM), least-cost
method (LCM) or Vogel’s approximation method
(VAM) that correspond to our proposed method.

5.1. Results based on IFNWCM and NWCM

Both the IFNWCM proposed by Singh and Yadav 37

and the classical NWCM give the initial BFS given
in Table 3.

Table 3. Initial BFS by IFNWCM.

D1 D2 D3 D4 ai

S1 11 - - - 11
S2 5 6 - - 11
S3 - 4 7 - 11
S4 - - 1 11 12
b j 16 10 8 11 45

5.1.1. Iteration 1(IFNWCM)

According to Step 1 and Step 2 of the IFMODIM
proposed by Singh and Yadav 37 the following intu-
itionistic fuzzy system should be solved to test the
optimality of the initial BFS given in Table 3:
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(u1
1,u

1
2,u

1
3;u1′

1 ,u
1
2,u

1′
3 )+(v1

1,v
1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 ) = c̃I

11
= (2, 4, 5; 1, 4, 6)
(u2

1,u
2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )+(v1

1,v
1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 ) = c̃I

21
= (4, 6, 8; 3, 6, 9)
(u2

1,u
2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )+(v2

1,v
2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 ) = c̃I

22
= (3, 7, 12; 2, 7, 13)
(u3

1,u
3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 )+(v2

1,v
2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 ) = c̃I

32
= (8, 10, 13; 5, 10, 16)
(u3

1,u
3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 )+(v3

1,v
3
2,v

3
3;v3′

1 ,v
3
2,v

3′
3 ) = c̃I

33
= (2, 3, 5; 1, 3, 6)
(u4

1,u
4
2,u

4
3;u4′

1 ,u
4
2,u

4′
3 )+(v3

1,v
3
2,v

3
3;v3′

1 ,v
3
2,v

3′
3 ) = c̃I

43
= (3, 6, 10; 2, 6, 12)
(u4

1,u
4
2,u

4
3;u4′

1 ,u
4
2,u

4′
3 )+(v4

1,v
4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 ) = c̃I

44
= (3, 4, 5; 2, 4, 8)

(6)

The intuitionistic fuzzy solution of this system is
given as follows (see Ref. 37):

ũI
1 = (u1

1,u
1
2,u

1
3;u1′

1 ,u
1
2,u

1′
3 )

= (−24,−8,7;−33,−8,15),
ṽI

1 = (v1
1,v

1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 )

= (−2,12,26;−9,12,34)
ũI

2 = (u2
1,u

2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )

= (−18,−6,6;−25,−6,12),
ṽI

2 = (v2
1,v

2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 )

= (6,13,21;1,13,27)
ũI

3 = (u3
1,u

3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 )

= (−8,−3,2;−11,−3,4),
ṽI

3 = (v3
1,v

3
2,v

3
3;v3′

1 ,v
3
2,v

3′
3 )

= (3,6,10;2,6,12),
ũI

4 = (u4
1,u

4
2,u

4
3;u4′

1 ,u
4
2,u

4′
3 )

= (0,0,0;0,0,0),
ṽI

4 = (v4
1,v

4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 )

= (3,4,5;2,4,8)

(7)

According to Step 3 of the IFMODIM proposed
by Singh and Yadav 37, it is required to compute
d̃I

i j = ũI
i ⊕ ṽI

j⊖c̃I
i j for each non-basic cell(i, j). Thus,

we have:

d̃I
12 = ũI

1 ⊕ ṽI
2⊖c̃I

12 = (−24,−8,7;−33,−8,15)⊕
(6,13,21;1,13,27)⊖(2, 5, 7; 1, 5, 8)
= (−25,0,26;−40,0,41),
d̃I

13 = ũI
1 ⊕ ṽI

3⊖c̃I
13 = (−24,−8,7;−33,−8,15)⊕

(3,6,10;2,6,12)⊖(4, 6, 8; 3, 6, 9)
= (−29,−8,13;−40,−8,24),
d̃I

14 = ũI
1 ⊕ ṽI

4⊖c̃I
14 = (−24,−8,7;−33,−8,15)⊕

(3,4,5;2,4,8)⊖(4, 7, 8; 3, 7, 9)
= (−29,−11,8;−40,−11,20),
d̃I

23 = ũI
2 ⊕ ṽI

3⊖c̃I
23 = (−18,−6,6;−25,−6,12)⊕

(3,6,10;2,6,12)⊖(10, 15, 20; 8, 15, 22)
= (−35,−15,6;−45,−15,16),
d̃I

24 = ũI
2 ⊕ ṽI

4⊖c̃I
24 = (−18,−6,6;−25,−6,12)⊕

(3,4,5;2,4,8)⊖(11, 12, 13; 10, 12, 14)
= (−28,−14,0;−37,−14,10),
d̃I

31 = ũI
3 ⊕ ṽI

1⊖c̃I
31 = (−8,−3,2;−11,−3,4)⊕

(−2,12,26;−9,12,34)⊖(3, 4, 6; 1, 4, 8)
= (−16,5,25;−28,5,37),
d̃I

34 = ũI
3 ⊕ ṽI

4⊖c̃I
34 = (−8,−3,2;−11,−3,4)⊕

(3,4,5;2,4,8)⊖(6, 10, 14; 5, 10, 15)
= (−19, −9, 1; −24, −9, 7),
d̃I

41 = ũI
4 ⊕ ṽI

1⊖c̃I
41 = (0,0,0;0,0,0)⊕

(−2,12,26;−9,12,34)⊖(2, 4, 6; 1, 4, 7)
= (−8,8,24;−16,8,33),
d̃I

42 = ũI
4 ⊕ ṽI

2⊖c̃I
42 = (0,0,0;0,0,0)⊕

(6,13,21;1,13,27)⊖(3, 9, 10; 2, 9, 12)
= (−4,4,18;−11,4,25).

(8)
Also,

f (d̃I
12) =

2
8 , f (d̃I

13) =−8, f (d̃I
14) =

−85
8 ,

f (d̃I
23) =

−118
8 , f (d̃I

24) =
−111

8 , f (d̃I
31) =

38
8 ,

f (d̃I
34) =

−71
8 , f (d̃I

41) =
65
8 , f (d̃I

42) =
44
8 ,

(9)

Since f (d̃I
i j) ̸6 0 for all non-basic cells (i, j), then

the current BFS is not optimal. Thus, a non-basic
cell with the most positive f (d̃I

i j), i.e., x41 is selected
as the entering variable. According to the classical
transportation algorithm, x43 is selected as the leav-
ing variable and the new BFS is found as given in
Table 4.
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Table 4. Improved solution-1.

D1 D2 D3 D4 ai

S1 11 - - - 11
S2 4 7 - - 11
S3 - 3 8 - 11
S4 1 - - 11 12
b j 16 10 8 11 45

5.1.2. Iteration 1(NWCM)

According to the classical modified distribution
method (MODIM) applied by our proposed ap-
proach the following crisp system should be solved
to test the optimality of the initial BFS given in Table
3:

u1 + v1 = c11 =
30
8 , u2 + v1 = c21 = 6,

u2 + v2 = c22 =
58
8 , u3 + v2 = c32 =

82
8 ,

u3 + v3 = c33 =
26
8 , u4 + v3 = c43 =

51
8 ,

u4 + v4 = c44 =
34
8

(10)

The solution of this crisp system is given as follows:

u1 =
−67

8 , u2 =
−49

8 ,u3 =
−25

8 ,u4 = 0
v1 =

97
8 ,v2 =

107
8 ,v3 =

51
8 ,v4 =

34
8

(11)

To test the optimality of the solution given in Table
4 it is required to compute di j = ui+v j−ci j for each
non-basic cell (i, j). Thus, we have:

d12 = u1 + v2 − c12 =
−67

8 + 107
8 − 38

8 = 2
8 ,

d13 = u1 + v3 − c13 =
−67

8 + 51
8 − 48

8 = 8,
d14 = u1 + v4 − c14 =

−67
8 + 34

8 − 52
8 = −85

8 ,

d23 = u2 + v3 − c23 =
−49

8 + 51
8 − 120

8 = −118
8 ,

d24 = u2 + v4 − c24 =
−49

8 + 34
8 − 96

8 = −111
8 ,

d31 = u3 + v1 − c31 =
−25

8 + 97
8 − 34

8 = 38
8 ,

d34 = u3 + v4 − c34 =
−25

8 + 34
8 − 80

8 = −71
8 ,

d41 = u4 + v1 − c41 = 0+ 97
8 − 32

8 = 65
8 ,

d42 = u4 + v2 − c42 = 0+ 107
8 − 63

8 = −44
8 .

(12)

Since di j ̸6 0 for all non-basic cells (i, j), then the
current BFS is not optimal. Thus, according to the
classical transportation algorithm in crisp environ-
ment, x41 and x43 are selected as the entering vari-
able and the leaving variable, respectively, and thus

the new BFS is found as given in Table 4 match-
ing with the result of the improved solution-1 of
the method proposed by Singh and Yadav 37. How-
ever, to find the improved solution-1 given in Table
4 it is necessary to solve the intuitionistic fuzzy sys-
tem (6). After solving this system, the intuitionis-
tic fuzzy value d̃I

i j = ũI
i ⊕ ṽI

j⊖c̃I
i j for each non-basic

cell is calculated according to (8). As we see, these
two steps require a large number of fuzzy additions
and subtractions on TIFNs. While based on our pro-
posed approach, these steps are done with solving
the crisp system (10) and with calculating the crisp
values given in (12) using the elementary operation
on real numbers. Moreover, to choose the entering
variable according to the method proposed by Singh
and Yadav 37 it is necessary to compare the intuition-
istic fuzzy value d̃I

i j for each non-basic cell as done
in (9). While according to our proposed method, the
entering variable is selected without any comparison
of TIFNs. Due to these facts, our proposed method
is preferred to the method proposed by Singh and
Yadav 37 from the computational attempt point of
view.

5.1.3. Iteration 2(IFNWCM)

According to Step 1 and Step 2 of the IFMODIM
proposed by Singh and Yadav 37 the following intui-
tionistic fuzzy system should be solved to test the op-
timality of the improved solution-1 given in Table 4:

(u1
1,u

1
2,u

1
3;u1′

1 ,u
1
2,u

1′
3 )+(v1

1,v
1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 ) = c̃I

11
= (2, 4, 5; 1, 4, 6),
(u2

1,u
2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )+(v1

1,v
1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 ) = c̃I

21
= (4, 6, 8; 3, 6, 9),
(u2

1,u
2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )+(v2

1,v
2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 ) = c̃I

22
= (3, 7, 12; 2, 7, 13),
(u3

1,u
3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 )+(v2

1,v
2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 ) = c̃I

32
= (8, 10, 13; 5, 10, 16),
(u3

1,u
3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 )+(v3

1,v
3
2,v

3
3;v3′

1 ,v
3
2,v

3′
3 ) = c̃I

33
= (2, 3, 5; 1, 3, 6),
(u4

1,u
4
2,u

4
3;u4′

1 ,u
4
2,u

4′
3 )+(v1

1,v
1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 ) = c̃I

41
= (2, 4, 6; 1, 4, 7),
(u4

1,u
4
2,u

4
3;u4′

1 ,u
4
2,u

4′
3 )+(v4

1,v
4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 ) = c̃I

44
= (3, 4, 5; 2, 4, 8).

(13)
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The intuitionistic fuzzy solution of intuitionistic
fuzzy system (13) is given as follows (see Ref. 37):

ũI
1 = (−6,−2,1;−8,−2,3), ṽI

1 = (4,6,8;3,6,9)
ũI

2 = (0,0,0;0,0,0), ṽI
2 = (3,7,12;2,7,13)

ũI
3 = (−4,−3,10;−8,3,14), ṽI

3 = (−8,0,9;−13,0,14)
ũI

4 = (−6,−2,2;−8,−2,4), ṽI
4 = (1,6,11;−2,6,16)

(14)
Now, according to Step 3 of the IFMODIM pro-
posed by Singh and Yadav 37, the intuitionistic fuzzy
value d̃I

i j = ũI
i ⊕ ṽI

j⊖c̃I
i j for each non-basic cell is cal-

culated as follows

d̃I
12 = ũI

1 ⊕ ṽI
2⊖c̃I

12 =
(−6,−2,1;−8,−2,3)⊕ (3,7,12;2,7,13)
⊖(2, 5, 7; 1, 5, 8) = (−10,0,11;−14,0,15),
d̃I

13 = ũI
1 ⊕ ṽI

3⊖c̃I
13

= (−6,−2,1;−8,−2,3)⊕ (−8,0,9;−13,0,14)
⊖(4, 6, 8; 3, 6, 9) = (−22,−8,6;−30,−8,14),
d̃I

14 = ũI
1 ⊕ ṽI

4⊖c̃I
14

= (−6,−2,1;−8,−2,3)⊕ (1,6,11;−2,6,16)
⊖(4, 7, 8; 3, 7, 9) = (−13,−3,8;−19,−3,16),
d̃I

23 = ũI
2 ⊕ ṽI

3⊖c̃I
23

= (0,0,0;0,0,0)⊕ (−8,0,9;−13,0,14)
⊖(10, 15, 20; 8, 15, 22)
= (−28,−15,−1;−35,−15,6),
d̃I

24 = ũI
2 ⊕ ṽI

4⊖c̃I
24

= (0,0,0;0,0,0)⊕ (1,6,11;−2,6,16)
⊖(11, 12, 13; 10, 12, 14)
= (−12,−6,0;−16,−6,6),
d̃I

31 = ũI
3 ⊕ ṽI

1⊖c̃I
31

= (−4,3,10;−8,3,14)⊕ (4,6,8;3,6,9)
⊖(3, 4, 6; 1, 4, 8) = (−6,5,15;−13,5,22),
d̃I

34 = ũI
3 ⊕ ṽI

4⊖c̃I
34

= (−4,3,10;−8,3,14)⊕ (1,6,11;−2,6,16)
⊖(6, 10, 14; 5, 10, 15)
= (−17,−1,15;−25,−1,25),
d̃I

42 = ũI
4 ⊕ ṽI

2⊖c̃I
42

= (−6,−2,2;−8,−2,4)⊕ (3,7,12;2,7,13)
⊖(3, 9, 10; 2, 9, 12) = (−13,−4,11;−18,−4,15),
d̃I

43 = ũI
4 ⊕ ṽI

3⊖c̃I
43

= (−6,−2,2;−8,−2,4)⊕ (−8,0,9;−13,0,14)
⊖(3, 6, 10; 2, 6, 12) = (−24,−8,8;−33,−8,16).

(15)
To test the optimality of the improved solution-1, the

rank order of the intuitionistic fuzzy value d̃I
i j given

in (13) should be obtained using the accuracy func-
tion as follows:

f (d̃I
12) =

2
8 , f (d̃I

13) =−8, f (d̃I
14) =

−20
8 ,

f (d̃I
23) =

−118
8 , f (d̃I

24) =
−46

8 , f (d̃I
31) =

38
8 ,

f (d̃I
34) =

−6
8 , f (d̃I

42) =
−21

8 , f (d̃I
43) =

−65
8 .

(16)

Since f (d̃I
i j) ̸6 0 for all non-basic cells (i, j), then

the improved solution-1 is not optimal. According
to the IFMODIM proposed by Singh and Yadav 37

the improved solution-2 given in Table 5 is obtained.
Table 5. Improved solution-2.

D1 D2 D3 D4 ai

S1 11 - - - 11
S2 1 10 - - 11
S3 3 - 8 - 11
S4 1 - - 11 12
b j 16 10 8 11 45

5.1.4. Iteration 2(NWCM)

Again it is demonstrated that the same improved so-
lution can be obtained by our proposed approach
and without solving any intuitionistic fuzzy system,
without doing an arithmetic operations on the intu-
itionistic triangular fuzzy numbers and without any
comparison of ITFNs.

According to the classical modified distribution
method (MODIM) applied by our proposed ap-
proach the following crisp system should be solved
to test the optimality of the improved solution-1
given in Table 4:

u1 + v1 = c11 =
30
8 ,u2 + v1 = c21 = 6,

u2 + v2 = c22 =
58
8 ,u3 + v2 = c32 =

82
8 ,

u3 + v3 = c33 =
26
8 ,u4 + v1 = c41 =

32
8 ,

u4 + v4 = c44 =
34
8 .

(17)

The solution of this crisp system is given as follows:

u1 =
−18

8 , u2 = 0,u3 = 3,u4 =−2
v1 = 6,v2 =

58
8 ,v3 =

2
8 ,v4 =

50
8

(18)

The crisp value of di j = ui + v j − ci j for each non-
basic cell (i, j) is calculated as follows:
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d12 = u1 + v2 − c12 =
−18

8 + 58
8 − 38

8 = 2
8 ,

d13 = u1 + v3 − c13 =
−18

8 + 2
8 −

48
8 = 8,

d14 = u1 + v4 − c14 =
−18

8 + 50
8 − 52

8 = −20
8 ,

d23 = u2 + v3 − c23 = 0+ 2
8 −

120
8 = −118

8 ,

d24 = u2 + v4 − c24 = 0+ 50
8 − 96

8 = −46
8 ,

d31 = u3 + v1 − c31 = 3+6 − 34
8 = 38

8 ,

d34 = u3 + v4 − c34 = 3+ 50
8 − 80

8 = −6
8 ,

d42 = u4 + v2 − c42 =−2+ 58
8 − 63

8 = −21
8 ,

d43 = u4 + v3 − c43 =−2+ 2
8 − 51

8 = −65
8 .

(19)
Since f (d̃I

i j) ̸6 0 for all non-basic cells (i, j), then
the improved solution-1 is not optimal. According
to the classical MODIM applied by our proposed
approach, the improved solution-2 given in Table 5
is obtained. Thus, the results of our proposed ap-
proach are matched with those obtained based on the
method proposed by Singh and Yadav 37. However,
regarding the process of finding the improved solu-
tions, the method proposed in this study is far sim-
pler and computationally much more efficient than
the corresponding one proposed by Singh and Ya-
dav 37.

It should be noted that in the next iteration,
both our proposed method and the method pro-
posed by Singh and Yadav 37 give the same op-
timal solution shown in Table 6 and the same
total intuitionistic fuzzy transportation cost Z̃I =
(126, 204, 282; 78, 204, 352).

Table 6. Optimal solution.

D1 D2 D3 D4 ai

S1 1 10 - - 11
S2 11 - - - 11
S3 3 - 8 - 11
S4 1 - - 11 12
b j 16 10 8 11 45

5.2. Results based on IFLCM and LCM

According to the IFLCM proposed by Singh and Ya-
dav 37 and the classical LCM applied by our pro-
posed approach the initial BFS given in Table 7 is
obtained.

Table 7. Initial BFS by IFLCM and LCM.

D1 D2 D3 D4 ai

S1 11 - - - 11
S2 - 10 - 1 11
S3 - - 8 3 11
S4 5 - - 7 12
b j 16 10 8 11 45

5.2.1. Iteration 1(IFLCM)

According to Step 1 and Step 2 of the IFMODIM
proposed by Singh and Yadav 37 the following intu-
itionistic fuzzy system is solved to test the optimal-
ity of the initial BFS given in Table 7:

(u1
1,u

1
2,u

1
3;u1′

1 ,u
1
2,u

1′
3 )+(v1

1,v
1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 )

= c̃I
11 = (2, 4, 5; 1, 4, 6),

(u2
1,u

2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )+(v2

1,v
2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 )

= c̃I
22 = (3, 7, 12; 2, 7, 13),

(u2
1,u

2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )+(v4

1,v
4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 )

= c̃I
24 = (11, 12, 13; 10, 12, 14),

(u3
1,u

3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 )+(v3

1,v
3
2,v

3
3;v3′

1 ,v
3
2,v

3′
3 )

= c̃I
33 = (2, 3, 5; 1, 3, 6),

(u3
1,u

3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 )+(v4

1,v
4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 )

= c̃I
34 = (6, 10, 14; 5, 10, 15),

(u4
1,u

4
2,u

4
3;u4′

1 ,u
4
2,u

4′
3 )+(v1

1,v
1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 )

= c̃I
41 = (2, 4, 6; 1, 4, 7),

(u4
1,u

4
2,u

4
3;u4′

1 ,u
4
2,u

4′
3 )+(v4

1,v
4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 )

= c̃I
44 = (3, 4, 5; 2, 4, 8).

(20)
The intuitionistic fuzzy solution of this system is
given as follows:

ũI
1 = (u1

1,u
1
2,u

1
3;u1′

1 ,u
1
2,u

1′
3 ) = (−1,4,8;−4,4,13),

ṽI
1 = (v1

1,v
1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 ) = (−3,0,3;−7,0,5),

ũI
2 = (u2

1,u
2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )

= (11, 12, 13; 10, 12, 14),
ṽI

2 = (v2
1,v

2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 )

= (−10,−5,1;−12,−5,3),
ũI

3 = (u3
1,u

3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 ) = (6, 10, 14; 5, 10, 15),

ṽI
3 = (v3

1,v
3
2,v

3
3;v3′

1 ,v
3
2,v

3′
3 )

= (−12,−7,−1;−14,−7,1),
ũI

4 = (u4
1,u

4
2,u

4
3;u4′

1 ,u
4
2,u

4′
3 ) = (3, 4, 5; 2, 4, 8),

ṽI
4 = (v4

1,v
4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 ) = (0,0,0;0,0,0).

(21)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1165



A. Ebrahimnejad and J.L. Verdegay / An efficient computational approach

According to Step 3 of the IFMODIM proposed by
Singh and Yadav 37, the intuitionistic fuzzy value
of d̃I

i j = ũI
i ⊕ ṽI

j⊖c̃I
i j for each non-basic cell (i, j) is

computed as follows:

d̃I
12 = ũI

1 ⊕ ṽI
2⊖c̃I

12 = (−1,4,8;−4,4,13)⊕
(−10,−5,1;−12,−5,3)⊖(2, 5, 7; 1, 5, 8)
= (−18,−6,7;−24,−6,15),
d̃I

13 = ũI
1 ⊕ ṽI

3⊖c̃I
13 = (−1,4,8;−4,4,13)⊕

(−12,−7,−1;−14,−7,1)⊖(4, 6, 8; 3, 6, 9)
= (−21,−9,3;−27,−9,11),
d̃I

14 = ũI
1 ⊕ ṽI

4⊖c̃I
14 = (−1,4,8;−4,4,13)⊕

(0,0,0;0,0,0)⊖(4, 7, 8; 3, 7, 9)
= (−9,−3,4;−13,−3,10),
d̃I

21 = ũI
2 ⊕ ṽI

1⊖c̃I
21 = (11, 12, 13; 10, 12, 14)⊕

(−3,0,3;−7,0,5)⊖(4, 6, 8; 3, 6, 9)
= (0,6,12;−6,6,16),
d̃I

23 = ũI
2 ⊕ ṽI

3⊖c̃I
23 = (11, 12, 13; 10, 12, 14)⊕

(−12,−7,−1;−14,−7,1)⊖(10, 15, 20; 8, 15, 22)
= (−21,−10,2;−26,−10,7),
d̃I

31 = ũI
3 ⊕ ṽI

1⊖c̃I
31 = (6, 10, 14; 5, 10, 15)⊕

(−3,0,3;−7,0,5)⊖(3, 4, 6; 1, 4, 8)
= (−3,6,14;−10,6,19),
d̃I

32 = ũI
3 ⊕ ṽI

2⊖c̃I
32 = (6, 10, 14; 5, 10, 15)⊕

(−10,−5,1;−12,−5,3)⊖(8, 10, 13; 5, 10, 16)
= (−17, −5, 7; −23, −5, 13),
d̃I

42 = ũI
4 ⊕ ṽI

2⊖c̃I
42 = (3, 4, 5; 2, 4, 8)⊕

(−10,−5,1;−12,−5,3)⊖(3, 9, 10; 2, 9, 12)
= (−17,−10,3;−22,−10,9),
d̃I

43 = ũI
4 ⊕ ṽI

3⊖c̃I
43 = (3, 4, 5; 2, 4, 8)⊕

(−12,−7,−1;−14,−7,1)⊖(3, 6, 10; 2, 6, 12)
= (−19,−9,1;−24,−9,7).

(22)
Now, the rank order of the intuitionistic fuzzy value
of d̃I

i j given in (22) should be computed to test the
optimality of the initial BFS shown in Table 7. So,
we have

f (d̃I
12) =

−44
8 , f (d̃I

13) =
−70

8 , f (d̃I
14) =

−20
8 ,

f (d̃I
21) =

46
8 , f (d̃I

24) =
−78

8 ,, f (d̃I
31) =

44
8 ,

f (d̃I
32) =

−40
8 , f (d̃I

42) =
−67

8 , f (d̃I
43) =

−71
8 .

(23)

Since f (d̃I
i j) ̸6 0 for all non-basic cells (i, j), then

the current BFS is not optimal. Thus, a non-basic

cell with the most positive f (d̃I
i j), i.e., x21 is selected

as the entering variable. According to the classical
transportation algorithm, x24 is selected as the leav-
ing variable and the new BFS is found as given in
Table 8.

Table 8. The improved BFS-1.

D1 D2 D3 D4 ai

S1 11 - - - 11
S2 1 10 - - 11
S3 - - 8 3 11
S4 4 - - 8 12
b j 16 10 8 11 45

5.2.2. Iteration 1(LCM)

According to the classical modified distribution
method (MODIM) applied by our proposed ap-
proach the following crisp system is solved to test
the optimality of the initial BFS given in Table 7:

u1 + v1 = c11 =
30
8 ,u2 + v2 = c22 =

58
8 ,

u2 + v4 = c24 =
96
8 ,u3 + v3 = c33 =

26
8 ,

u3 + v4 = c34 =
80
8 ,u4 + v1 = c41 =

32
8 ,

u4 + v4 = c44 =
34
8 .

(24)

The solution of this crisp system is given as follows:

u1 =
32
8 , u2 =

96
8 ,u3 =

80
8 ,u4 =

34
8 ,

v1 =
−2
8 ,v2 =

−38
8 ,v3 =

−54
8 ,v4 = 0.

(25)

To test the optimality of the solution given in Table
7 it is required to compute di j = ui+v j−ci j for each
non-basic cell(i, j). Thus, we have:

d12 = u1 + v2 − c12 =
32
8 + −38

8 − 38
8 = −44

8 ,

d13 = u1 + v3 − c13 =
32
8 + −54

8 − 48
8 = −70

8 ,

d14 = u1 + v4 − c14 =
32
8 +0 − 52

8 = −20
8 ,

d21 = u2 + v1 − c21 =
96
8 + −2

8 − 48
8 = 46

8 ,

d23 = u2 + v3 − c23 =
96
8 + −54

8 − 120
8 = −78

8 ,

d31 = u3 + v1 − c31 =
80
8 + −2

8 − 34
8 = 44

8 ,

d32 = u3 + v2 − c32 =
80
8 + −38

8 − 82
8 = −40

8 ,

d42 = u4 + v2 − c42 =
34
8 + −38

8 − 63
8 = −67

8 ,

d43 = u4 + v3 − c43 =
34
8 + −54

8 − 51
8 = −71

8 .
(26)
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Table 9. A real life intuitionistic FTP.
D1 D2 D3 D4 ai

S1 (210,250,270;200,250,280) (600,700,750;600,700,800) (950,1000,1050;900,1000,1100) (3500, 3700, 3900;3400, 3700,4100) 4500

S2 (650,750, 800;600,750,850) (350,400,450;340,400,480) (1000,1050,1100;950,1050,1150) (3600, 3900, 4600;3500, 3900,4600) 3500

S3 (2600,2800,3000; 2500,2800,3100) (2100,2200,2300;2100,2200,2350) (2900,3100,3300;2800,3100,3400) (5400, 5600, 5800;5300, 5600,6000) 2000

b j 3500 3000 2000 1500 10000

Since di j ̸6 0 for all non-basic cells (i, j), then
the current BFS is not optimal. Thus, according to
the classical transportation algorithm in crisp envi-
ronment, x21 and x24 are selected as the entering
variable and the leaving variable, respectively and
thus the new BFS is found as given in Table 8 match-
ing with the result of the improved solution-1 of
themethod proposed by Singh and Yadav 37. How-
ever, to find the improved solution-1 given in Table
8 it is necessary to solve the intuitionistic fuzzy sys-
tem (20), to calculate the intuitionistic fuzzy value
d̃I

i j = ũI
i ⊕ ṽI

j⊖c̃I
i j for each non-basic cell according

to (22) and to compare the intuitionistic fuzzy value
d̃I

i j for each non-basic cell as done in (23). It can be
seen that these steps require a large number of in-
tuitionistic fuzzy additions, intuitionistic fuzzy sub-
tractions and comparison on TIFNs. However, based
on our proposed approach, these steps are done with
solving crisp system (24) and using the elementary
operations and comparison on real numbers. These
results confirm that our proposed approach is more
effective than the method proposed by Singh and Ya-
dav 37 from the computational point of view.

It is worthwhile to note that on using IFMODIM
after three more iterations, the optimal solution
given in Table 5 is obtained. This means that to get
the optimal solution of the IFBTP given in Table 1
by the help of initial BFS obtained based on IFLCM
it is required to solve three more intuitionistic fuzzy
systems similar to (20), to calculate the intuitionis-
tic fuzzy value d̃I

i j = ũI
i ⊕ ṽI

j⊖c̃I
i j for each non-basic

cell similar to (22) three more times and to compare
the intuitionistic fuzzy value d̃I

i j for each non-basic
cell three more times. The same optimal solution is
found easily using our proposed approach and ac-
cording to classical transportation algorithms.

A similar discussion can be done by compar-
ing the results obtained from using IFMODIM pro-
posed by Singh and Yadav 37 on initial BFS found
by IFVAM and MODIM applied by our proposed

approach on initial BFS found by VAM.

In the next example a real life intuitionistic fuzzy
TP given in Ref. 37 is solved and the results obtained
are discussed and compared in details.

Example 5.2: The data shown in Table 9 are col-
lected from a trader of Chandigarh, India, which
supplies the commodity TMT (Thermo mechani-
cally treated) steel from three plants S1, S2 and S3
to four different companies D1, D2, D3 and D4. The
trader is certain about the availabilities and demands
of the materials, but (s)he is uncertain about the
transportation cost from different sources to differ-
ent destinations due to some uncontrollable factors
such as weather in Hilly areas. In this kind of sit-
uation, the usual way is to obtain the triangular in-
tuitionistic fuzzy numbers after a thorough discus-
sion based upon past experience or expert advice.
The aim is to determine the optimal transportation
of products so that the total intuitionistic fuzzy trans-
portation cost is minimized.

According to the accuracy function given in (1),
the rank order of each intuitionistic fuzzy transporta-
tion cost (given in Table 9) is substituted by the
corresponding intuitionistic fuzzy numbers to obtain
the classical TP. The results are given in Table 10.

Table 10. A real life crisp TP.

D1 D2 D3 D4 ai

S1 245 693.75 1000 3712.5 4500
S2 737.5 402.5 1050 3987.5 3500
S3 2800 2206.25 3100 5612.5 2000
b j 3500 3000 2000 1500 10000

Now, we obtain the initial BFS for the problems
given in Table 9 and Table 10 according to IFVAM
and VAM, respectively and explore the obtained re-
sults.
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Table 11. First assignment in IFVAM.

D1 D2 D3 D4 RIP̃i

S1 (210,250,270;200,250,280) (600,700,750;600,700,800) (950,1000,1050;900,1000,1100) (3500, 3700, 3900;3400, 3700,4100) (330,450,540;320,450,600)

S2 (650,750, 800;600,750,850) (350,400,450;340,400,480) (1000,1050,1100;950,1050,1150) (3600, 3900, 4600;3500, 3900,4600) (200,350,450;120,350,510)

CIP̃j (380,500,590;320,500,650) (150,300,400;120,300,460) (-50,50,150;-150,50,250) (-300,200,1100;-600,200,1200)

Table 12. Second assignment in IFVAM.

D2 D3 D4 RIP̃i

S1 (600,700,750;600,700,800) (950,1000,1050;900,1000,1100) (3500, 3700, 3900;3400, 3700,4100) (330,450,540;320,450,600)

S2 (350,400,450;340,400,480) (1000,1050,1100;950,1050,1150) (3600, 3900, 4600;3500, 3900,4600) (200,350,450;120,350,510)

CIP̃j (150,300,400;120,300,460) (-50,50,150;-150,50,250) (-300,200,1100;-600,200,1200)

5.3. Initial BFS based on IFVAM and VAM

According to Step (1) of the IFVAM proposed by
Singh and Yadav 37, it is required to compute the in-
tuitionistic penalty regarding to Remark 1 for each
row and each column of Table 9. The row intu-
itionistic penalty (RIP) and the column intuitionistic
penalty (CIP) of Table 9 are obtained as follows:

RIP̃I
1 = c̃I

12⊖c̃I
11 =(600,700,750;600,700,800)⊖

(210,250,270;200,250,280)
= (330,450,540;320,450,600)
RIP̃I

2 = c̃I
21⊖c̃I

22 =(650,750, 800;600,750,850)⊖
(350,400,450;340,400,480)
= (200,350,450;120,350,510)
RIP̃I

3 = c̃I
31⊖c̃I

32 = (2600,2800,3000;2500,2800,3100)⊖
(2100,2200,2300;2100,2200,2350)
= (300,600,900;150,600,1000),

CIP̃I
1 = c̃I

21⊖c̃I
11 = (650,750, 800;600,750,850)⊖

(210,250,270;200,250,280)
= (380,500,590;320,500,650),
CIP̃I

2 = c̃I
12⊖c̃I

22 = (600,700,750;600,700,800)⊖
(350,400,450;340,400,480)
= (150,300,400;120,300,460),
CIP̃I

3 = c̃I
23⊖c̃I

13 = (1000,1050,1100;950,1050,1150)⊖
(950,1000,1050;900,1000,1100)
= (−50,50,150;−150,50,250),
CIP̃I

4 = c̃I
24⊖c̃I

14 = (3600, 3900, 4600;3500, 3900,4600)⊖
(3500, 3700, 3900;3400, 3700,4100)
= (−300,200,1100;−600,200,1200).

Because row 3 has the highest intuitionistic penalty
based on the accuracy function, and the cell (3, 2)
has the smallest intuitionistic cost in this row, the
amount 2000 is assigned to x32 = 2000. Now, row
3 is satisfied and should be deleted. The reduced

table is given as Table 11. Now, in a similar way
the new intuitionistic penalties are recomputed as in
Table 11.

Now according to the accuracy function, column
1 in Table 11 has the highest intuitionistic penalty
and cell (1, 1) has the smallest intuitionistic cost in
this column. Thus, the amount 3500 is assigned to
x11 = 3500. In this case, column 1 is satisfied and
should be deleted. The reduced table and new com-
puted intuitionistic penalties are given as Table 12.

This process is continued and after four more it-
erations the initial BFS given in Table 13 is found.

Table 13. Initial BFS by IFVAM.

D1 D2 D3 D4 ai

S1 3500 − − 1000 4500
S2 − 1000 2000 500 3500
S3 − 2000 − − 2000
b j 3500 3000 2000 1500 10000

It should be noted that the same initial BFS
(given in Table 13) can be obtained for Table 10
by Vogel’s approximation method (VAM) corre-
sponding to our proposed method without doing any
arithmetic operations on the intuitionistic triangu-
lar fuzzy numbers and without any comparison of
ITFNs. This confirms that our proposed method
needs less computational effort for finding initial
BFS compared to the method proposed by Singh and
Yadav 37. In what follows, it is shown that the same
result can be concluded for finding the optimal solu-
tion.

5.4. Optimal solution based on IFMODIM

According to Step 1 and Step 2 of the IFMODIM
given in Ref. 37 the following intuitionistic fuzzy
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system is solved to test the optimality of the initial
BFS given in Table 13:

(u1
1,u

1
2,u

1
3;u1′

1 ,u
1
2,u

1′
3 )+(v1

1,v
1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 ) = c̃I

11
= (210,250,270;200,250,280),
(u1

1,u
1
2,u

1
3;u1′

1 ,u
1
2,u

1′
3 )+(v4

1,v
4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 ) = c̃I

14
= (3500, 3700, 3900;3400, 3700,4100),
(u2

1,u
2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )+(v2

1,v
2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 ) = c̃I

22
= (350,400,450;340,400,480),
(u2

1,u
2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )+(v3

1,v
3
2,v

3
3;v3′

1 ,v
3
2,v

3′
3 ) = c̃I

23
= (1000,1050,1100;950,1050,1150),
(u2

1,u
2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )+(v4

1,v
4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 ) = c̃I

24
= (3600, 3900, 4600;3500, 3900,4600),
(u3

1,u
3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 )+(v2

1,v
2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 ) = c̃I

32
= (2100,2200,2300;2100,2200,2350)

(27)
The intuitionistic fuzzy solution of this system is
given as follows:

ũI
1 = (u1

1,u
1
2,u

1
3;u1′

1 ,u
1
2,u

1′
3 ) =

(−1100,−200,300;−1200,−200,600),
ṽI

1 = (v1
1,v

1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 ) =

(−90,450,1370;−400,450,1480),
ũI

2 = (u2
1,u

2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 ) = (0,0,0;0,0,0),

ṽI
2 = (v2

1,v
2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 ) =

(350,400,450;340,400,480)
ũI

3 = (u3
1,u

3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 ) =

(1650,1800,1950;1620,1800,2010),
ṽI

3 = (v3
1,v

3
2,v

3
3;v3′

1 ,v
3
2,v

3′
3 ) =

(1000,1050,1100;950,1050,1150),
ṽI

4 = (v4
1,v

4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 ) =

(3600, 3900, 4600;3500, 3900,4600).
(28)

According to Step 3 of the IFMODIM given in
Ref. 37, the intuitionistic fuzzy value of d̃I

i j = ũI
i ⊕

ṽI
j⊖c̃I

i j for each non-basic cell (i, j) is computed as
follows:

d̃I
12 = (−1500,−500,150;−1660,−500,480),

d̃I
13 = (−1150,−150,450;−1350,−150,850),

d̃I
21 = (−890,−300,720;−1250,−300,880),

d̃I
31 = (−1440,−550,720;−1880,−550,990),

d̃I
33 = (−650,−250,150;−830,−250,360)

d̃I
34 = (−550,100,1150;−880,100,1310).

(29)

Now, the rank order of the intuitionistic fuzzy value
of d̃I

i j given in (29) should be computed to test the
optimality of the initial BFS shown in Table 13. So,
we have

f (d̃I
12) =−566.25, f (d̃I

13) =−225,
f (d̃I

21) =−217.5, f (d̃I
31) =−476.25,

f (d̃I
33) =−246.25, f (d̃I

34) = 178.75.
(30)

Since f (d̃I
34) = 178.75 ̸6 0, then the current BFS is

not optimal and x34 is selected as the entering vari-
able. According to Step 5 of IFMODIM proposed
by Singh and Yadav 37, x24 is selected as the leaving
variable and the new BFS is found as given in Table
14.

Table 14. Improved BFS-1 (optimal solution).

D1 D2 D3 D4 ai

S1 3500 − − 1000 4500
S2 − 1500 2000 − 3500
S3 − 1500 − 500 2000
b j 3500 3000 2000 1500 10000

According to Step 1 and Step 2 of the IFMODIM
given in Ref. 37, the following intuitionistic fuzzy
system is solved to test the optimality of the im-
proved solution-1 given in Table 14:

(u1
1,u

1
2,u

1
3;u1′

1 ,u
1
2,u

1′
3 )⊕ (v1

1,v
1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 ) = c̃I

11
= (210,250,270;200,250,280),

(u1
1,u

1
2,u

1
3;u1′

1 ,u
1
2,u

1′
3 )⊕ (v4

1,v
4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 ) = c̃I

14
= (3500, 3700, 3900;3400, 3700,4100),

(u2
1,u

2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )⊕ (v2

1,v
2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 ) = c̃I

22
= (350,400,450;340,400,480),

(u2
1,u

2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 )⊕ (v3

1,v
3
2,v

3
3;v3′

1 ,v
3
2,v

3′
3 ) = c̃I

23
= (1000,1050,1100;950,1050,1150),

(u3
1,u

3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 )⊕ (v2

1,v
2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 ) = c̃I

32
= (2100,2200,2300;2100,2200,2350),

(u3
1,u

3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 )⊕ (v4

1,v
4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 ) = c̃I

34
= (5400, 5600, 5800;5300, 5600,6000).

(31)

The intuitionistic fuzzy solution of this system is
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given as follows:

ũI
1 = (u1

1,u
1
2,u

1
3;u1′

1 ,u
1
2,u

1′
3 )

= (−650,−100,450;−980,−100,810),
ṽI

1 = (v1
1,v

1
2,v

1
3;v1′

1 ,v
1
2,v

1′
3 )

= (−240,350,920;−610,350,1260),
ũI

2 = (u2
1,u

2
2,u

2
3;u2′

1 ,u
2
2,u

2′
3 ) = (0,0,0;0,0,0),

ṽI
2 = (v2

1,v
2
2,v

2
3;v2′

1 ,v
2
2,v

2′
3 )

= (350,400,450;340,400,480)
ũI

3 = (u3
1,u

3
2,u

3
3;u3′

1 ,u
3
2,u

3′
3 )

= (1650,1800,1950;1620,1800,2010),
ṽI

3 = (v3
1,v

3
2,v

3
3;v3′

1 ,v
3
2,v

3′
3 )

= (1000,1050,1100;950,1050,1150),
ṽI

4 = (v4
1,v

4
2,v

4
3;v4′

1 ,v
4
2,v

4′
3 )

= (3450, 3800, 4150;3290, 3800,4380).
(32)

According to Step 3 of the IFMODIM proposed by
Singh and Yadav 37, the intuitionistic fuzzy value
of d̃I

i j = ũI
i ⊕ ṽI

j⊖c̃I
i j for each non-basic cell (i, j) is

computed as follows:

d̃I
12 = ũI

1 ⊕ ṽI
2⊖c̃I

12
= (−1050,−400,300;−1440,−400,690),
d̃I

13 = ũI
1 ⊕ ṽI

3⊖c̃I
13

= (−700,−50,600;−1130,−50,1060),
d̃I

21 = ũI
2 ⊕ ṽI

1⊖c̃I
21

= (−1040,−400,270;−1460,−400,660),
d̃I

24 = ũI
2 ⊕ ṽI

4⊖c̃I
24

= (−1150,−100,550;−1310,−100,880),
d̃I

31 = ũI
3 ⊕ ṽI

1⊖c̃I
31

= (−1590,−650,270;−2090,−650,770),
d̃I

33 = ũI
3 ⊕ ṽI

3⊖c̃I
33

= (−650,−250,150;−830,−250,360).

(33)

Now, the rank order of the intuitionistic fuzzy value
of d̃I

i j given in (33) is obtained to test the optimal-
ity of the improved solution-1 shown in Table 14 as
follows:

f (d̃I
12) =−387.5, f (d̃I

13) =−46.25,
f (d̃I

21) =−396.25, f (d̃I
24) =−178.75,

f (d̃I
31) =−655, f (d̃I

33) =−246.25.
(34)

Since f (d̃I
i j) 6 0 for all non-basic cells (i, j), the

improved solution-1, shown in Table 14 is optimal.

This means that the optimal solution is given by

x11 = 3500,x14 = 1000,x22 = 1500,
x23 = 2000,x32 = 1500,x34 = 500.

(35)

Putting the values of the optimal solution (35) in the
objective function of the intuitionistic fuzzy TP in
Table 9, the total intuitionistic fuzzy transportation
cost achieved is:

Z̃I
OPI =

3

∑
i=1

4

∑
j=1

c̃I
i jxi j =

(12610000,13375000,14070000;
12310000,13375000,14625000)

(36)
It is worthwhile to note that the optimal solution and
total intuitionistic fuzzy transportation cost of the
real life intuitionistic fuzzy TP (Table 9) obtained
by the method proposed by Singh and Yadav 37, are
as follows:

OptimalSolution of the method given in Ref. 37 :
x11 = 3500,x13 = 1000,
x22 = 2500,x23 = 1000,
x32 = 500, x34 = 1500.

(37)

Z̃I
OPI−existing method proposed by Singh and Yadav 37: =

(12710000, 13425000, 14070000;
12400000, 13425000, 14605000)

(38)
By comparing the intuitionistic fuzzy objective

value (36) with the intuitionistic fuzzy objective
value given in (38), we conclude that the solution
obtained by Singh and Yadav 37 is not the optimal
solution. If fact, we have

Z̃I
OPI = (12610000,13375000,14070000;

12310000,13375000,14625000)≺
Z̃I

OPI−method proposed by Singh and Yadav37 =

(12710000, 13425000, 14070000;
12400000, 13425000, 14605000)

5.5. Optimal solution based on MODIM

Here, it is shown that the same optimal solution can
be found for the real life intuitionistic fuzzy TP (Ta-
ble 9) according to our proposed approach and using
traditional MODIM on initial BFS given in Table 13.
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According to classical MODIM applied by our
proposed approach, the following crisp system is
solved to test the optimality of the initial BFS given
in Table 13:

u1 + v1 = c11 = 245, u1 + v4 = c24 = 3712.5,
u2 + v2 = c22 = 402.5,u2 + v3 = c23 = 1050,
u2 + v4 = c24 = 3987.5,u3 + v2 = c32 = 2206.25.

(39)
The solution of this crisp system is given as follows:

u1 =−275, u2 = 0,u3 = 1803.75,
v1 = 520,v2 = 402.5,v3 = 1050,v4 = 3987.5.

(40)
To test the optimality of the solution given in Table
13, it is required to compute di j = ui + v j − ci j for
each non-basic cell (i, j). Thus, we have:

d12 = u1 + v2 − c12 =−275+402.5−693.75
=−566.25,

d13 = u1 + v3 − c13 =−275+1050 −1000
=−225,

d21 = u2 + v1 − c21 = 0+520−737.5
=−217.5,

d31 = u3 + v1 − c31 = 1803.75+520−2800
=−476.25,

d33 = u3 + v3 − c33 = 1803.75+1050 −3100
=−246.25,

d34 = u3 + v4 − c34 = 1803.75+3987.5 −5612.5
= 178.75.

(41)
Since d34= 178.75 ̸6 0, then the current BFS is not
optimal. Thus, according to the classical transporta-
tion algorithm in crisp environment, x34 and x24 are
selected as the entering variable and the leaving vari-
able, respectively, and thus the new solution is found
as given in Table 14 matching with the result of
the improved solution-1 of the method proposed by
Singh and Yadav 37. Now, the following crisp sys-
tem is solved to test the optimality of the improved
solution-1 given in Table 14:

u1 + v1 = c11 = 245, u1 + v4 = c24 = 3712.5,
u2 + v2 = c22 = 402.5,u2 + v3 = c23 = 1050,
u3 + v2 = c32 = 2206.25,u3 + v4 = c34 = 5612.5.

(42)

The intuitionistic fuzzy solution of this system is
given as follows:

u1 =−96.25, u2 = 0,u3 = 1803.75,
v1 = 341.25,v2 = 402.5,v3 = 1050,v4 = 3808.75.

(43)

The value of di j = ui + v j − ci j for each non-basic
cell (i, j) is obtained as follows:

d12 = u1 + v2 − c12 =−387.5,
d13 = u1 + v3 − c13 =−46.25,
d21 = u2 + v1 − c21 =−396.25,
d24 = u2 + v4 − c24 =−178.75,
d31 = u3 + v1 − c31 =−655,
d33 = u3 + v3 − c33 =−246.25.

(44)

Thus, the improved-solution 1 (Table 14) is opti-
mal. This means that our proposed method and the
method proposed by Singh and Yadav 37 have the
same results. However, the method proposed by
Singh and Yadav 37 requires a large number of in-
tuitionistic fuzzy additions, intuitionistic fuzzy sub-
tractions and comparison on TIFNs. While based
on our proposed approach, all elementary operations
and comparison are done on real numbers. These re-
sults confirm that our proposed approach should be
preferred to the method proposed by Singh and Ya-
dav 37 in terms of the computational point of view.

6. Conclusions and future work

In this paper, a TP having uncertainty as well as hes-
itation in prediction of the transportation cost has
been investigated. In the TP considered in this study,
the values of transportation costs are represented by
triangular intuitionistic fuzzy numbers and the val-
ues of supply and demand of the products are rep-
resented by real numbers. Here, we proposed an ef-
ficient computational solution approach for solving
intuitionistic fuzzy TP based on classical transporta-
tion algorithms. In contrast to the method proposed
by Singh and Yadav 37 where all elementary opera-
tions and comparisons are done on triangular intu-
itionistic fuzzy numbers, in the proposed algorithm
in this paper all arithmetic calculations and compar-
isons are performed on crisp numbers. Therefore,
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the complexity of computation is reduced very much
compared to the method proposed by Singh and Ya-
dav 37. Here, we shall point out that the IFTP studied
in this paper is not in the form of a problem whose
demands and supplies are as triangular intuitionistic
fuzzy numbers too. Therefore, further research on
extending the proposed method to overcome these
shortcomings is an interesting stream of future re-
search. We shall report the significant results of
these ongoing projects in the near future by extend-
ing the proposed methods by Ebrahimnjead 38,39 uti-
lized for solving fully FTP and interval-valued FTP.
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