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Abstract

Recently, there have been many studies on solving different kinds of fuzzy equations. In this paper,
the solution of a trapezoidal fully fuzzy linear system (FFLS) is studied. Uzawa approach, which is
a popular iterative technique for saddle point problems, is considered for solving such FFLSs. In our
Uzawa approach, it is possible to compute the solution of a fuzzy system using various relaxation iterative
methods such as Richardson, Jacobi, Gauss-Seidel, SOR, SSOR as well as Krylov subspace methods such
as GMRES, QMR and BiCGSTAB. Krylov subspace iterative methods are known to converge for a larger
class of matrices than relaxation iterative methods and they exhibit higher convergence rates. Thus, they
are more widely used in practical problems. Numerical experiments are to illustrate the performance of
our suggested methods.
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1. Introduction

Linear system of equations Ax = b, where A and

b are respectively a crisp (i.e. exact) square ma-

trix and vector, mostly comes from the discretiza-

tion of some practical partial differential equations.

The solution of linear systems is required in various

areas such as Physics, Statistics, Engineering and

Social Science. Then, several researchers have fo-

cused on solving such systems by numerous devel-

oped iterative methods over the years. In the past,

researchers in numerical computing have developed

relaxation iterative methods such as Richardson, Ja-

cobi, Gauss-Seidel, SOR, SSOR. Some of these

methods are applicable to only to diagonally dom-

inant and others for symmetric positive definite ma-

trices. They are proved to converge in infinite num-

ber of iterations (steps) and their convergence rate is

rather slow for practical problems. Thus more at-

tractive iterative methods are the iterative method

based on conjugate gradient (CG). CG is applica-

ble for symmetric positive definite matrices and it is

proven to converge in a finite number of steps and in

general at higher convergence rates than the relax-

ation iterative methods. Various extensions of CG

that apply to non symmetric and non definite matri-

ces exist and are widely known as Krylov subspace

(iterative) methods. Well known Krylov subspace

methods are GMRES, Orthodir, (s-step) Orthomin

(which are extensions of conjugate gradient method)

and QMR, CGS, BiCGSTAB (which are extensions

of biconjugate gradient and biorthogonal Lanczos

methods). These methods and the theory for their

convergence is covered in Refs. 1–9 and references

therein.

One difficulty for numerous linear systems is that, in
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many practical problems, some parameters of such

systems may be vague or imprecise. Because of

the importance of these systems, fuzzy mathematics

is considered for computing the solution of linear

system of equations with vague parameters. Many

authors have studied different kinds of fuzzy linear

systems and have extended several solver methods

for the solutions of these problems because of the

large amount of applications of such systems in var-

ious areas.

Friedman et al. Ref. 10 studied a general form of

fuzzy linear system of equations (FLSE) with a crisp

coefficient matrix and an arbitrary right hand side

fuzzy vector. They used an embedding approach to

replace a n×n FLSE by a 2n×2n crisp linear system

and the solution of FLSE was extracted from the so-

lution of the new parametric system. Many authors

have had different investigations on the solution of

such fuzzy problems such as the extended meth-

ods based on Friedman et al.’s approach, as well as

several novel methods. To know more about these

methods refer to Refs. 11–16 and references therein.

Furthermore, there is a secondary kind of fuzzy lin-

ear systems of the form

Ãx̃ = b̃, (1)

where the components of both the coefficient matrix

Ã, i.e. ãi, j, 1 � i, j � n, and right hand side vector

b̃, i.e. b̃i, 1 � i � n, are fuzzy numbers, which this

system is usually called as fully fuzzy linear system

(FFLS). FFLSs have been studied by several authors

over the last years. Dehghan et al. focused their

studies on FFLSs with LR fuzzy numbers and they

proposed some iterative methods in Refs. 17–18 for

FFLSs with LR fuzzy numbers. Vroman et al. in

Ref. 19 suggested a new approach to compute the so-

lution of FFLSs by Cramer’s rule and Allahviranloo

et al. in Refs. 20–22 developed different approaches

for the solution of these systems.

In this paper, we propose practical implementations,

which solve the solution of a trapezoidal FFLSs

based on Uzawa approach. At first, Uzawa algo-

rithm was considered as a simple implementation

which needs minimal memory requirement for solv-

ing linear saddle point system(
A BT

B −C

)(
x
y

)
=

(
f
g

)
, (2)

where A ∈ Rn×n was a symmetric and positive def-

inite matrix, C ∈ Rm×m was a symmetric positive

semi-definite, B ∈ Rm×nhad full rank, x, f ∈ Rn and

y, g ∈ Rm. Later on, many investigations, such as

the works in Refs. 23–26, have developed different

Uzawa approaches for solving different kinds of lin-

ear or nonlinear saddle point problems because this

sort of problem frequently arises from the discretiza-

tion of Stokes equations and elasticity problems or

from the linearization of Navier-Stokes equations.

Generally, the implementation of Uzawa algorithm

is as follows.

Suppose (x0; y0) is an initial guess for the exact pair

solution (x; y) of (2). Uzawa algorithms mainly con-

struct a sequence of approximations xk and yk for x
and y based on the following instruction:

Algorithm 1: General Uzawa implementation
For k = 0 until convergence do

1. Solve linear system Axk+1 = f−BT yk,

2. yk+1 = yk + τ (g−Bxk −Cyk).
End

In this algorithm, the extrapolation scalar τ is a real

number which is named as Uzawa parameter.

This papers aim is to compute the solution of a trape-

zoidal FFLS by the above Uzawa instruction based

on several different appropriate iterative methods.

The rest of this paper is organized as follows. In Sec-

tion 2, some basic definitions and remarks on fuzzy

numbers and FFLSs are reviewed. Uzawa algorithm

is discussed more in Section 3. Next, some iterative

methods for computing the solution of FFLSs based

on Uzawa algorithm are proposed in Section 3. Our

proposed algorithms are illustrated by solving some

numerical examples in Sections 4 and 5.

2. Preliminaries

In this section, some basic definitions and notes on

fuzzy numbers and FFLSs are reviewed Refs. 11, 12,

14, 17, 18 and 20.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

972



H. Zareamoghaddam et al. / Uzawa Algorithms for Fully Fuzzy Linear Systems

Definition 1: A fuzzy number is a fuzzy set ũ : R →
[0 , 1] which satisfies

1. ũ is upper semi continuous,

2. ũ = 0 outside some interval [c , d],

3. There are real numbers a, b: c � a � b � d so

that

(a) ũ(x)is a monotonic increasing function

on [c , a].

(b) ũ(x)is a monotonic decreasing function

on [b , d].

(c) ũ(x) = 1, a � x � b.

For simplicity the above fuzzy number ũ, which is

called trapezoidal fuzzy number, is represented by

ũ = (a, b, α,β ) where 0 � α = a− c and 0 � β =
d −b. The set of all such fuzzy numbers is denoted

by E.

Definition 2: The parametric form of an arbitrary

fuzzy number ũ is also represented by an ordered

pair of functions (u(r) ,u(r)), 0� r � 1, see Ref. 27,

that satisfies :

1. u is a bounded monotonically increasing left

continuous function.

2. u is a bounded monotonically decreasing left

continuous function.

3. u(r)� u(r) , 0 � r � 1.

A crisp number c is simply represented by u(r) =
u(r) = c, 0 � r � 1.

Definition 3: The membership function of trape-

zoidal fuzzy number ũ = (a, b, α,β ) is

ũ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x−a+α

α , a−α � x � a,
1, a � x � b,

b+β−x
β , b � x � b+β ,
0 , otherwise.

(3)

and its parametric form is

u(r) = α r+a−α and u(r) = b+β −β r. (4)

Furthermore, if a = b, then ũ = (a, α, β ) is called a

triangular fuzzy number.

Remark: For an arbitrary trapezoidal fuzzy number

ũ = (a, b, α,β ), 0 � ũ if 0 � a−α .

Definition 4: For two arbitrary fuzzy numbers ũ =
(m, n, α, β )and ṽ = (p,q, γ, λ ) (or in parametric

form ũ(r) = (u(r) ,u(r))and ṽ(r) = (v(r) ,v(r)))
and a crisp number c, the following algebraic op-

erations are defined

1. ũ+ ṽ = (m+ p, n+q, α + γ, β +λ ) ,

2. −ũ = (−n,−m, β , α),

3. ũ− ṽ = (m−q, n− p, α +λ , β + γ)

4. The multiplication of two trapezoidal fuzzy

numbers are defined by

ũ ⊗ ṽ = (min{mp, nq}, max{mp, nq},
|mγ|+ |pα|, |nλ |+ |qβ |)

where |x| means the absolute value of x.

5. cũ =

{
(cm, cn, cα, cβ ) , c � 0,

(cm, cn,−cβ ,−cα) , c < 0.

In parametric form, we have

i. ũ(r)± ṽ(r) = (u (r)± v(r) ,u(r)± v(r)) ,

ii. c ũ =

{
(cu(r) ,cu(r)) , c � 0

(cu(r) , cu(r)) , c < 0
,

iii. ũ⊗ ṽ = (uv(r) ,uv(r)) , where

uv(r)=min{u(r)v(r), u(r)v(r), u(r)v(r), u(r)v(r)}
and

uv(r)=max{u(r)v(r), u(r)v(r), u(r)v(r), u(r)v(r)}
iv. ũ = ṽ iff u(r) = v(r), u(r) = v(r), 0 �

r � 1.
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Definition 5: The matrix Ã = (ãi, j) is called a fuzzy

matrix, if each element of Ã be a fuzzy number. Sim-

ilarly, a fuzzy vector is defined.

We can represent the trapezoidal fuzzy matrix Ã =
(ãi, j), i.e ãi, j = (ai, j,bi, j,αi, j,βi, j); 1 � i, j � n, by

Ã = (A, B, M, N) where A = (ai, j), B = (bi, j), M =
(αi, j) and N = (βi, j).

Definition 6: The following linear system of equa-

tions

ã1,1 ⊗ x̃1 + · · · + ã1,n ⊗ x̃n = b̃1,

ã2,1 ⊗ x̃1 + · · · + ã2,n ⊗ x̃n = b̃2,
...

ãn,1 ⊗ x̃1 + · · · + ãn,n ⊗ x̃n = b̃n.

(5)

where Ã = (ãi, j) is a n × n fuzzy matrix and b̃i ∈
E, (1 � i � n) is called a fully fuzzy linear system.

The system of equations (5) in matrix form is Ã⊗
x̃ = b̃ with the fuzzy vectors x̃ = (x̃1, x̃2, . . . , x̃n)

T ∈
En and b̃ =

(
b̃1, b̃2, . . . , b̃n

)T
∈ En .

In this paper, we look for the possible solution of

a fully fuzzy linear system of equations Ã⊗ x̃ = b̃
where Ã = (A, B, M, N) and b̃ = (b, g, h, k). So,

we have

Ã ⊗ x̃ = b̃ ⇒ (A, B, M, N) ⊗ (x, y, w, z)
= (b, g, h, k) (6)

From multiplication of two fuzzy numbers (follow-

ing definition 4), the equation (6) is divided into the

following four separate crisp linear systems of equa-

tions,

Ax = b, (7)

By = g, (8)

Aw+Mx = h, (9)

Bz+Ny = k. (10)

Let the crisp matrices A and Bare nonsingular, the

generalized inverse techniques might be useful for

some singular matrices, then

x = A−1b, w = A−1 (h−Mx)

y = B−1g, z = B−1 (k−Ny) . (11)

3. Uzawa algorithm

One of the simple and efficient algorithms for com-

puting the solution of crisp saddle point problem (2)

is the Uzawa implementation (algorithm 1) which

finds some approximations xk and yk(k > 0) for the

following system of equations

Ax+BT y = f, (12)

Bx−Cy = g, (13)

computed by the following iterative relations

Axk+1 = f−BT yk, (14)

yk+1 = yk + τ (g−Bxk −Cyk) . (15)

where τ is a positive descent parameter.

Based on equation (14), the approximation xk+1

(k � 0) is determined by solving linear system of

equations with different right column f−BT yk for

any iteration by some suitable methods. Next, yk+1

(k � 0) is computed from equation (15) by an appro-

priate amount of τ . This scalar has directly a signifi-

cant effect on the convergence speed of Uzawa algo-

rithm because the algorithm may converge slowly or

perhaps may not converge for inappropriate values

of τ .

Let us assume that A is a nonsingular matrix. By

applying block Gaussian elimination to (2) Ref. 24,

the following equation is obtained

(
A BT

0 BA−1BT +C

)(
x
y

)
=

(
f

BA−1f−g

)
(16)

From (16) it is easily concluded that the unknown

vector x can be removed from the second block

equation and y may be computed by solving the lin-

ear system

(
BA−1BT +C

)
y = BA−1f−g, (17)
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instead of computing y from (15). By applying

Uzawa approach on this equation, the approxima-

tion yk(k > 0) can be obtained from

yk+1 = yk + τ(BA−1f−g− (BA−1BT +C
)

yk),
(18)

which is a Richardson iterative method for the solu-

tion of (17).

Theorem 1. Let suppose that G = I −
τ
(
BA−1BT +C

)
. The relation (18) is converges for

any arbitrary vector y0, if the spectral radius of G is
less than unity, i.e. ρ (G)< 1.

Proof. Let y is the exact solution of (17), then we

have

y = y+ τ
((

BA−1f−g
)− (BA−1BT +C

)
y
)
. (19)

Suppose yk is the approximate solution of (18) for

0 � k. Subtracting (19) from (18) yields

yk+1 −y = G(yk −y) = · · ·
= Gk+1 (y0 −y) , (20)

From ρ (G)< 1, it is quickly concluded that Gk+1 →
0. Then yk+1 → y for any y0.

Theorem 2. Suppose λm and λM are the small-
est and largest eigenvalues of BA−1BT +C, respec-
tively. Then the spectral radius of G is ρ (G) =
max{|1− τλm| , |1− τλM|}.
For the proof refer to Ref. 1.

The spectral radius of matrix G, which is very im-

portant for convergence of (18), is named as ”con-

vergence factor”. The following theorem gives us

some more practical information about Uzawa algo-

rithm and optimum Uzawa parameter.

Theorem 3. (Ref. 23) Let us suppose that G =
I − τ

(
BA−1BT +C

)
and (x ;y) is the block solution

of (2) and also (xk ;yk) are the approximations of
(x ;y) computed by the Uzawa algorithm, then the
following results are obtained

i. The sequences x−xk and y−yk satisfy(
(x−xk)

T A(x−xk)
)1/2

� λM ‖y−yk ‖ ,
‖y−yk‖� ρ (G) ‖x−xk‖ .

ii. For τ < 2
λM

, the Uzawa algorithm is convergent
and

ρ (G) = max{|1− τλm| , |1− τλM|} .

iii. For τ = 2
λM

, the convergence factor (spectral re-
duce) is

ρ (G) = 1− λm

λM
.

iv. The optimal parameter is τopt =
2

λm+λM
and the

corresponding convergence factor is

ρopt (G) =
λM −λm

λM +λm
.

The Uzawa algorithm needs some practical iterative

method, which works by repeatedly improving an

approximate solution until it is accurate enough.

4. Uzawa Iterative methods for FFLSs

Now, the trapezoidal FFLS Ã⊗ x̃ = b̃ is considered

to be solved by the Uzawa approach based on some

popular iterative methods like Richardson, Jacobi,

Gauss-Seidel, SOR, SSOR, USSOR, as well as iter-

ative methods of Krylov subspace type such as con-

jugate gradient for symmetric crisp linear systems

and its variants for nonsymmetric crisp system of

equations and several other popular iterative meth-

ods like GMRES Ref. 1. In past, Wang and Wu

in Ref. 28 used Uzawa-SOR for solving fuzzy lin-

ear system of equations. Here, we proposed several

Uzawa approaches for solving fully fuzzy linear sys-

tem of equations.

As it has been discussed in section 2, the FFLS (1) is

divided into four separate crisp systems of equations

(7) to (10). Using the Uzawa algorithm, the crisp

linear systems (7) and (9) are solved together and

similarly the equations (8) and (10) are considered

as a separate crisp problem. In a better statement,

this FFLS is replaced by the following two problems

Pr 1: Ax = b and Aw+M x = h.

Pr 2: By = g and Bz+N y = k.
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Suppose x0 and w0 are initial values for the solutions

x and w of Pr 1 and y0 and z0 are the initial Guesses

for Pr 2. The Uzawa algorithm for the solution of

FFLS (1) is as follows:

Algorithm 2: Uzawa algorithm for FFLSs
For k = 0 until convergence do

1. Compute xk+1 from Axk+1 = b,

2. Compute wk+1 by

wk+1 = wk + τ (h−Awk −Mxk),
3. Compute yk+1 from Byk+1 = g,

4. Compute zk+1 by

zk+1 = zk + τ ′ (k−Bzk −N yk).
End

For the better convergence speed, some appropriate

parameters τ and τ ′ have to be considered for algo-

rithm 2. In section 3, we have discussed the conver-

gence factor and optimum parameter of Uzawa al-

gorithm. So, if A, B are symmetric positive definite

matrices, it is concluded that

τopt =
2

λm +λM
and τ ′

opt =
2

λ ′
m +λ ′

M
(21)

and steps 2 and 4 of algorithm 2 are convergent to

the exact solutions w and z for any initial vectors w0

and z0, where λm and λM are respectively the small-

est and the largest eigenvalues of A and λ ′
m and λ ′

M
are similarly the smallest and the largest eigenvalues

of B.

The following are some of the possible iterative

methods for the solution of such FFLSs.

4.1. Uzawa-Richardson (UR) method

The structure of this iterative algorithm is as follows.

At first, the Richardson iterative method needs to

compute the solutions of two crisp linear systems

(7) and (8), separately. From these primary linear

systems we have

x = (I −ηA)x+ηb, (22)

y = (I −η ′B)y+η ′g, (23)

where η and η ′ are the scalars which called as the

extrapolation Richardson parameters.

Using the preceding equations and steps 2 and 4 of

algorithm 2, sequentially, the approximate solution

of a FFLS is computed. Then the algorithm of UR

for the acceleration scalars η , η ′, τ and τ ′ is as fol-

lows.

Algorithm 3: UR algorithm for FFLSs
For k = 0 until convergence do

1. xk+1 = (I −ηA)xk +ηb,

2. wk+1 = wk + τ (h−Awk −Mxk),

3. yk+1 = (I −η ′B)yk +η ′g,

4. zk+1 = zk + τ ′ (k−Bzk −Nyk).

End

If the square matrices A and B are symmetric and

positive definite, the optimal extrapolation parame-

ters η and η ′ are

ηopt =
2

λm +λM
and η ′

opt =
2

λ ′
m +λ ′

M
, (24)

and the corresponding spectral radiuses are respec-

tively as

ρ (I −ηoptA) =
λM −λm

λM +λm
and

ρ
(
I −η ′

optB
)
=

λ ′
M −λ ′

m

λ ′
M +λ ′

m
, (25)

To apply some iterative methods like Jacobi, Gauss-

Seidel (GS), SOR, SSOR, etc, the following de-

compositions for the coefficient matrices of A, B are

needed

A = D+L+U (26)

B = D′+L′+U ′, (27)

in which D and D′ are the diagonals of A, B, L and L′
are the strict lower parts and U and U ′ are the strict

upper sections of A and B, respectively.
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4.2. Uzawa-Gauss-Seidel (UGS) method

Gauss-Seidel algorithm uses the decompositions

(26) and (27) to transform the linear equations (7)

and (8) into iterative methods of the forms

xk+1 = Hxk + f , (28)

yk+1 = H ′ yk + f ′. (29)

To achieve this, Gauss-Seidel computes the compo-

nents of approximations xk+1 and yk+1 by the fol-

lowing iterations

x(i)k+1 =
1

ai,i

(
bi −

i−1

∑
j=1

ai, jx
( j)
k+1 −

n

∑
j=i+1

ai, jx
( j)
k

)
,

y(i)k+1 =
1

bi,i

(
gi −

i−1

∑
j=1

bi, jy
( j)
k+1 −

n

∑
j=i+1

bi, jy
( j)
k

)
,

i = 1, . . . , n,

where A = (ai, j), B = (bi, j), b = (bi) and g = (gi),
or in matrix form by

xk+1 =−(D+L)−1U xk +(D+L)−1 b, (30)

yk+1 =−(D′+L′)−1U ′ yk +
(
D′+L′)−1 g (31)

Proposition 1: These two last iterative relations are

convergent for any arbitrary initial vectors if the

spectral radius of (D+L)−1U and (D′+L′)−1U ′
are less than unity (theorem 1).

Now, the UGS algorithm is similar to algorithm 3

except for the steps 1 and 3 in which UGS instead

computes the approximate solutions xk+1 and yk+1

by (30) and (31).

4.3. Uzawa–SOR (USOR) method

SOR is an iterative algorithm which is a modi-

fied version of Gauss-Seidel. SOR is derived from

Gauss-Seidel method by applying an extrapolation

parameter ω , which named as ”convergence rate”,

to accelerate the convergence speed of algorithm as

much as possible. In USOR, we also have to replace

the equations (7) and (8) by two iterative methods of

the forms (28) and (29).

Due to the SOR condition, the components of xk+1

and yk+1 are computed from the following iterations

x(i)k+1 =
ω
ai,i

(
bi −

i−1

∑
j=1

ai, jx
( j)
k+1 −

n

∑
j=i+1

ai, jx
( j)
k

)
+(1−ω)x( j)

k ,

y(i)k+1 =
ω ′

bi,i

(
gi −

i−1

∑
j=1

bi, jy
( j)
k+1 −

n

∑
j=i+1

bi, jy
( j)
k

)
+
(
1−ω ′)y( j)

k

i = 1, . . . , n,

where ω and ω ′are the convergence rates. In matrix

form, we have

xk+1 = (D+ωL)−1 ((1−ω)D−ωU) xk

+ω (D+ωL)−1 b, (32)

yk+1 =
(
D′+ω ′L′ )−1 ((

1−ω ′)D′ −ω ′U ′) yk

+ω ′ (D′+ω ′L′ )−1 g. (33)

Proposition 2: The iterative formulas (32) and

(33) are convergent for arbitrary initial vec-

tors x0 and y0, if ρ (H) < 1 and ρ (H ′ ) < 1,

where H = (D+ωL)−1 ((1−ω)D−ωU) and H ′ =
(D′+ω ′L′ )−1 ((1−ω ′)D′ −ω ′U ′) (the proof fol-

lows from theorem 1).

Therefore, USOR algorithm differs from UR only in

the style of computing the solutions of crisp linear

systems (7) and (8). USOR computes these solu-

tions by the above iterative formulas (32) and (33).

There are some more similar implementations for

Uzawa algorithm based on other iterative meth-

ods such as Jacobi, SSOR (Symmetric Successive

Over Relaxation), USSOR (UnSymmetric succes-

sive Over Relaxation), etc (see Refs. 1–3), which

may yield similar or better performances. For

Uzawa-Jacobi algorithm, xk+1 and yk+1 are com-

puted by

xk+1 =−D−1 (L+U) xk +D−1b, (34)

yk+1 =−D′−1
(
L′+U ′) yk +D′−1g. (35)

SSOR and USSOR are two modified versions of

SOR algorithm which have no advantage over SOR
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as iterative methods except they are mainly more

practical used in preconditionings for Krylov sub-

space iterative methods. If these two methods want

to be considered for solving FFLSs by Uzawa ap-

proach, their instructions are as follows. For Uzawa-

SSOR and Uzawa-USSOR, if A = Q−P and B =
Q′ −P′ the iterative solutions are obtained from

xk+1 = Q−1Pxk +Q−1b, (36)

yk+1 = Q′−1Pyk +Q′−1g, (37)

where in Uzawa-SSOR

Q =
1

ω (2−ω)
(D+ωL)D−1 (D+ωU) and

(38)

Q′ =
1

ω ′ (2−ω ′)
(
D′+ω ′L′)D′−1

(
D′+ω ′U ′)

(39)

while in Uzawa-USSOR

Q =
1

ω1 +ω2 −ω1ω2
(D+ω1L)D−1 (D+ω2U) ,

(40)

and

Q′ =
1

ω ′
1 +ω ′

2 −ω ′
1ω ′

2

(
D′+ω ′

1L′)D′−1

× (D′+ω ′
2U ′) . (41)

In all these cases, the equations (7) and (8) are re-

placed by equations of the forms (28) and (29).

Next, wk+1 and zk+1 of the two rest equations (9)

and (10) are computed by algorithm 2.

The discussed above iterative methods, which are

older algorithms, are named stationary iterative

methods with simpler theory and implementations.

Nonstationary methods (e.g. Krylov) are more re-

cently developed methods, with harder analysis and

implementations, can be highly more effective for

crisp linear systems. The following is a discussion

about Uzawa algorithm based on some nonstation-

ary iterative methods for solving trapezoidal FFLSs.

4.4. Uzawa algorithms for large sparse FFLSs

Previous iterative methods are more suitable for

FFLSs with small matrix dimensions because the

convergence speed of these methods is usually slow

and they may converge to the solution after too

many iterations or may not even converge. Fur-

thermore, the required arithmetic computations of

those methods will increase dramatically by raising

the dimension of the original problems. As a rem-

edy, a class of popular iterative methods which is

called ”Krylov subspace methods” is considered be-

cause many Krylov subspace approaches are pop-

ular for dealing with large sparse crisp linear sys-

tem of equations. Among these methods, there

are some techniques only for solving symmetric

linear systems such as Conjugate Gradient (CG),

MINRES, etc. as well as several popular itera-

tive algorithms such as FOM, GMRES and several

variants of CG algorithms like BiCG, CGS, QMR,

BiCGSTAB and many unmentioned algorithms for

the solution of unsymmetric linear system of equa-

tions (see Refs. 1–3). CG, which generates orthog-

onal residual sequences, is an effective method for

a linear system of equations with symmetric posi-

tive definite coefficient matrix such that this method

storages a limited number of vectors. BiCG gen-

erates two CG-like sequences of vectors simulta-

neously, one for original linear system with coef-

ficient matrix A and one for an alternative system

with coefficient matrix AT . QMR is an updated ver-

sion of BiCG which mostly avoid the possible break-

down that can occur in BiCG. BiCGSTAB is a vari-

ant of BiCG which uses different updates for AT -

sequences. BiCGSTAB has a smoother convergence

than BiCG. GMRES is an effective method that re-

quires heavy storage requirement. To avoid this

drawback, restarted versions of GMRES are consid-

ered for crisp linear systems. Generally, most of the

practical iterative methods are based on a projection

process. For example, FOM and GMRES depend

on an orthogonal projection while BiCG variants are

based on biorthogonalization techniques.

Generally, each iterative algorithm has some advan-

tages and disadvantages. It is normally difficult to

find an iterative method which could quickly solve

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

978



H. Zareamoghaddam et al. / Uzawa Algorithms for Fully Fuzzy Linear Systems

all kinds of crisp linear systems with low memory

requirement, especially if the linear systems are ill-

posed or singular. Numerous iterative techniques

have been developed by several authors, for the so-

lution of such problems, over the years. Also, many

researchers have investigated the existing methods

to improve their convergence speed. Readers whom

are interested in knowing more about these iterative

techniques for crisp linear systems are referred to

Refs. 1 and 4.

Now, for solving large sparse FFLSs by Uzawa ap-

proach similar to the previous discussed methods, at

first, two extracted crisp linear equations (7) and (8)

have to be solved by a Krylov method. Next, the two

reminded iterative solutions wk+1 and zk+1 are com-

puted by the above mentioned Uzawa approaches of

Algorithm 2.

Generally, many iterative methods have been devel-

oped and it is impossible to discuss about them all in

this section. However, our Uzawa algorithm is flexi-

ble to employ any effective iterative method for solv-

ing two required crisp linear system of equations.

5. Numerical Experiments

The following numerical experiments are for read-

ers to gain a better understanding of the algorithms

discussed in previous section.

Example 1: The following 3×3 FFLS

Ã⊗ x̃ = b̃ (42)

is considered to be solved by some discussed Uzawa

based algorithms where the system of equations is

as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4.5, 5, 1, 1)x̃1 +(0.5, 1, 0.5, 0.5)x̃2

+(1, 3, 1, 0.5)x̃3 = (14, 33, 11.75, 22.5),

(1, 1, 0.5, 1) x̃1 +(5, 8, 2, 3) x̃2

+(2, 4, 1, 0.5) x̃3 = (28, 67, 25.5, 49.5),

(2, 3, 2, 2) x̃1 + (3, 4, 1, 1.5) x̃2

+ (6, 8, 3, 3) x̃3 = (34, 65, 33, 62.5).

From (6), it is quickly concluded that

A =

⎛⎝4.5 0.5 1

1 5 2

2 3 6

⎞⎠ , B =

⎛⎝5 1 3

1 8 4

3 4 8

⎞⎠
M =

⎛⎝ 1 0.5 1

0.5 2 1

2 1 3

⎞⎠ , N =

⎛⎝1 0.5 0.5
1 3 0.5
2 1.5 3

⎞⎠
and the right hand side vectors are

b =

⎛⎝14

28

34

⎞⎠ , g =

⎛⎝33

67

65

⎞⎠ ,

h =

⎛⎝11.75

25.5
33

⎞⎠ , k =

⎛⎝22.5
49.5
62.5

⎞⎠ ,

One important factor for convergence of Uzawa al-

gorithms for FFLSs is the selection of appropriate

Uzawa parameters. Here, we illustrate the effect of

choosing different Uzawa parameters on the con-

vergence of (42) by selecting two different set of

such parameters for the algorithms of UR, UGS and

USOR as follows. The initial Guess for the unknown

parameters is x0 = y0 = w0 = z0 = (0, 0, 0)T .

a) At first, we select τ = 0.1 and τ ′ = 0.1. Af-

ter 15 iterations Uzawa-Richardson (UR) computed

the following approximations where η = 0.1 and

η ′ = 0.1.

x15 =

⎛⎝1.9968

3.9936

3.0083

⎞⎠ , y15 =

⎛⎝2.9896

5.9945

4.0100

⎞⎠ ,

w15 =

⎛⎝0.5014

2.0082

1.4904

⎞⎠ , z15 =

⎛⎝0.5239

1.5161

3.4756

⎞⎠
and UR gave us the following results for η = 0.2 and

η ′ = 0.1
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x15 =

⎛⎝2.0100

4.0200

3.0308

⎞⎠ , y15 =

⎛⎝2.9896

5.9945

4.0100

⎞⎠ ,

w15 =

⎛⎝0.4952

1.9917

1.4911

⎞⎠ , z15 =

⎛⎝0.5239

1.5161

3.4756

⎞⎠
The numerical approximations of UGS for the above

Uzawa parameters are

x15 =

⎛⎝2.0833

4.1667

2.5417

⎞⎠ , y15 =

⎛⎝3.0000

6.0000

4.0000

⎞⎠ ,

w15 =

⎛⎝0.5269

1.9283

1.7025

⎞⎠ , z15 =

⎛⎝0.5033

1.5017

3.4968

⎞⎠
The 15th approximations of FFLS (42) computed by

USOR algorithm with SOR parameters ω = 1.3 and

ω ′ = 0.3 were

x15 =

⎛⎝2.0833

4.1667

2.5417

⎞⎠ , y15 =

⎛⎝3.0000

6.0000

4.0000

⎞⎠ ,

w15 =

⎛⎝0.5268

1.9282

1.7026

⎞⎠ , z15 =

⎛⎝0.5049

1.5026

3.4953

⎞⎠
b) The second set of Uzawa parameters for comput-

ing the solution of (42) is as τ = 0.2, τ ′ = 0.01.

To compare the effect of such parameters on con-

vergence of discussed methods, previous Uzawa ap-

proaches are again considered for (42) where τ =
0.2, τ ′ = 0.01. Similarly, the numerical results of

such methods in 15th iteration are written.

UR algorithm gave us the following approximations

where η = 0.1 and η ′ = 0.1

x15 =

⎛⎝1.9968

3.9936

3.0083

⎞⎠ , y15 =

⎛⎝2.9896

5.9945

4.0100

⎞⎠ ,

w15 =

⎛⎝0.5062

2.0152

1.5134

⎞⎠ , z15 =

⎛⎝0.8922

1.6903

2.5118

⎞⎠ ,

and for η = 0.2 and η ′ = 0.1, UR approximations

were

x15 =

⎛⎝2.0100

4.0200

3.0308

⎞⎠ , y15 =

⎛⎝2.9896

5.9945

4.0100

⎞⎠ ,

w15 =

⎛⎝0.3763

1.7567

1.1220

⎞⎠ , z15 =

⎛⎝0.8922

1.6903

2.5118

⎞⎠ .

UGS computes the following approximations

x15 =

⎛⎝2.0833

4.1667

2.5417

⎞⎠ , y15 =

⎛⎝3.0000

6.0000

4.0000

⎞⎠ ,

w15 =

⎛⎝0.5327

1.9403

1.7117

⎞⎠ , z15 =

⎛⎝0.8609

1.6211

2.5624

⎞⎠ .

The 15th approximations of algorithm 2 computed

by USOR with extrapolation parameters ω = 1.3
and ω ′ = 1.3 were

x15 =

⎛⎝2.0833

4.1667

2.5417

⎞⎠ , y15 =

⎛⎝3.0000

6.0000

4.0000

⎞⎠ ,

w15 =

⎛⎝0.5331

1.9411

1.7130

⎞⎠ , z15 =

⎛⎝0.8617

1.6138

2.5603

⎞⎠ .

and for ω = 1.3 and ω ′ = 0.3 the estimated solutions

were

x15 =

⎛⎝2.0833

4.1667

2.5417

⎞⎠ , y15 =

⎛⎝3.0407

5.9892

3.9847

⎞⎠ ,

w15 =

⎛⎝0.5331

1.9411

1.7130

⎞⎠ , z15 =

⎛⎝0.8560

1.7289

2.5899

⎞⎠ .

It is easy to compare the approximated solutions of

different Uzawa algorithms and to observe the effect
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of various required parameters with each other. The

exact fuzzy solution of FFLS of example 1 is

x̃ =

⎛⎝x̃1

x̃2

x̃3

⎞⎠= (x, y, w, z)

=

⎛⎝(2, 3, 0.5, 0.5)
(4, 6, 2.0, 1.5)
(3, 4, 1.5, 3.5)

⎞⎠

The following example is a 6×6 FFLS to be solved

by Krylov subspace methods.

Example 2: Consider the problem Ã⊗ x̃ = b̃ where

the trapezoidal fuzzy matrix Ã = (A, B, M, N) is as

follows

A =

⎛⎜⎜⎜⎜⎜⎜⎝

5 2 1 3 2 1

1 4.8 1 2 3 1

2 2 6 0.5 1 3

2 1 3 5 2 1

1 1 2 1 10 0.5
2 1 3 1 3 6

⎞⎟⎟⎟⎟⎟⎟⎠ ,

B =

⎛⎜⎜⎜⎜⎜⎜⎝

7 2 2 4 3 2

1.5 5 3 3 3 1

2 3 10 1 2 3.5
3 3 4 12 5 2

2 1 3 2 11 1

3 2 3 4 4 9

⎞⎟⎟⎟⎟⎟⎟⎠

M =

⎛⎜⎜⎜⎜⎜⎜⎝

2 1 0.5 0.1 0.2 1

1 4 1 0.5 0.3 1

0.1 0.3 2 1 0.5 0.1
0.5 0.2 1 3 1 0.2
1 1 0.1 0.1 4 1

1 0.5 0.3 0.2 1 2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

N =

⎛⎜⎜⎜⎜⎜⎜⎝

2 1 1 0.1 0.5 1

1 4 1 0.2 0.2 0.5
0.2 0.3 3 1 0.5 0.2
0.3 0.3 1 3 1 0.3
0.5 1 0.2 0.1 4 1

1 0.5 0.1 0.2 1 3

⎞⎟⎟⎟⎟⎟⎟⎠

and right hand side fuzzy vector is

b̃ =

⎛⎜⎜⎜⎜⎜⎜⎝

(33, 69, 25, 44)
(36.4, 61, 35.2, 46.5)
(28, 72, 25.8, 48.6)
(37, 120, 36.7, 64.7)
(41.5, 85, 36, 62.1)
(39, 97, 34.6, 61.8)

⎞⎟⎟⎟⎟⎟⎟⎠ .

This example is solved by the Uzawa algorithm

based on some Krylov subspace methods. For all

Uzawa algorithms the parameters τ = 0.02 and τ ′ =
0.01 are considered and the initial vector for all vec-

tors are zero vector of order 6(i.e. x0 = y0 = w0 =
z0 = (0 , . . . , 0)T ).

At first, restarted version of GMRES is considered

for two crisp linear systems. In this example, GM-

RES(3) computed the unknown vectors x and y from

the related crisp linear systems and the two rest crisp

vectors are estimated by Uzawa approaches with

the above parameters. The numerical results of this

Uzawa algorithm after 6 iterations were

x6 =

⎛⎜⎜⎜⎜⎜⎜⎝

1.0000

3.0000

1.0000

4.0000

3.0000

3.0000

⎞⎟⎟⎟⎟⎟⎟⎠ , y6 =

⎛⎜⎜⎜⎜⎜⎜⎝

2.0000

3.0000

3.0000

5.0000

5.0000

4.0000

⎞⎟⎟⎟⎟⎟⎟⎠ ,

w6 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.8786

0.9391

0.9896

1.2506

0.9284

1.4013

⎞⎟⎟⎟⎟⎟⎟⎠ , z6 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.9117

0.9524

1.0386

1.2433

1.2396

1.4235

⎞⎟⎟⎟⎟⎟⎟⎠ .

The Uzawa algorithm based on QMR computed the

approximations in 6 iterations as
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x6 =

⎛⎜⎜⎜⎜⎜⎜⎝

1.0000

3.0000

1.0000

4.0000

3.0000

3.0000

⎞⎟⎟⎟⎟⎟⎟⎠ , y6 =

⎛⎜⎜⎜⎜⎜⎜⎝

2.0000

3.0000

3.0000

5.0000

5.0000

4.0000

⎞⎟⎟⎟⎟⎟⎟⎠ ,

w6 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.8349

0.9473

1.0230

1.3778

0.6032

1.4566

⎞⎟⎟⎟⎟⎟⎟⎠ , z6 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.8944

0.9537

1.0384

1.2379

1.2666

1.4163

⎞⎟⎟⎟⎟⎟⎟⎠ .

To solve this example by the Uzawa algorithm based

on BICGSTAB, the following results have been ob-

tained

x6 =

⎛⎜⎜⎜⎜⎜⎜⎝

1.0000

3.0000

1.0000

4.0000

3.0000

3.0000

⎞⎟⎟⎟⎟⎟⎟⎠ , y6 =

⎛⎜⎜⎜⎜⎜⎜⎝

2.0000

3.0000

3.0000

5.0000

5.0000

4.0000

⎞⎟⎟⎟⎟⎟⎟⎠ ,

w6 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.8886

0.9586

1.0126

1.3182

0.6717

1.4601

⎞⎟⎟⎟⎟⎟⎟⎠ , z6 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.9081

0.9529

1.0401

1.2416

1.2402

1.4212

⎞⎟⎟⎟⎟⎟⎟⎠ .

The exact solution of this FFLS is

x̃ =

⎛⎜⎜⎜⎜⎜⎜⎝

(1, 2, 0.5, 1)
(3, 3, 1, 2)
(1, 3, 1, 1)
(4, 5, 2, 1)
(3, 5, 1, 2)
(3, 4, 2, 2)

⎞⎟⎟⎟⎟⎟⎟⎠ .

6. Conclusion

In this work, the solution of a trapezoidal fully fuzzy

linear system of equations has been studied. Before,

Uzawa algorithm has been widely used for solving

system of saddle point problems because of its effi-

ciency and minimal storage requirement. We found

out that the mentioned fully fuzzy linear system

of equations can be solved by different Uzawa ap-

proaches based on relaxation iterative methods such

as Richardson, Jacobi, Gauss-Seidel, SOR, SSOR

and by krylov subspace methods such as GMRES

and BiCGSTAB. We note that the rate of conver-

gence of Krylov subspace methods is higher than

that of the relaxation methods and that they apply

to a larger class of matrices. Also, Krylov methods

are preferred because they have low computational

costs. Numerical experiments of previous sections

confirm the usefulness of our suggested methods for

fully fuzzy linear systems.
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