
Received 5 November 2015

Accepted 27 May 2016

An Efficient Artificial Fish Swarm Model with Estimation of Distribution for Flexible Job
Shop Scheduling

Hongwei Ge
College of Computer Science and Technology, Dalian University of Technology,

Dalian, 116023, China
Department of Computer Science and Engineering, Washington University in Saint Louis,

Saint Louis, Missouri, 63130, USA
E-mail: hwge@dlut.edu.cn

Liang Sun*

College of Computer Science and Technology, Dalian University of Technology,
Dalian, 116023, China

E-mail: liangsun@dlut.edu.cn

Xin Chen
College of Computer Science and Technology, Dalian University of Technology,

Dalian, 116023, China
E-mail: xinchendut@dlut.edu.cn

Yanchun Liang
College of Computer Science and Technology, Jilin University,

Changchun, 130012, China
E-mail: ycliang@jlu.edu.cn

Abstract

The flexible job shop scheduling problem (FJSP) is one of the most important problems in the field of production
scheduling, which is the abstract of some practical production processes. It is a complex combinatorial optimization
problem due to the consideration of both machine assignment and operation sequence. In this paper, an efficient
artificial fish swarm model with estimation of distribution (AFSA-ED) is proposed for the FJSP with the objective
of minimizing the makespan. Firstly, a pre-principle and a post-principle arranging mechanism that operate by
adjusting machine assignment and operation sequence with different orders are designed to enhance the diversity of
population. Following this, the population is divided into two sub-populations and then two arranging mechanisms
are applied. In AFSA-ED, a preying behavior based on estimation of distribution is proposed to improve the
performance of algorithm. Moreover, an attracting behavior is proposed to improve the global exploration ability
and a public factor based critical path search strategy is proposed to enhance the local exploitation ability.
Simulated experiments are carried on BRdata, BCdata and HUdata benchmark sets. The computational results
validate the performance of the proposed algorithm in solving the FJSP, as compared with some other state of the
art algorithms.

Keywords: Flexible job shop scheduling, artificial fish swarm model, estimation of distribution, Friedman test and
Holm procedure.

*Corresponding author: College of Computer Science and Technology, Dalian University of Technology, Dalian, China. Tel: 86-41186980422, Email:
liangsun@dlut.edu.cn.

International Journal of Computational Intelligence Systems, Vol. 9, No. 5 (2016) 917-931

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

917

H. W. Ge et al./ An Efficient Artificial Fish

1. Introduction

The Flexible Job-shop Scheduling Problem (FJSP) is an
extension of classical JSP for flexible production
situation, which allows an operation to be processed by
any machine from a given set. Generally, the FJSP can
be divided into two sub-problems, i.e., the machine
assignment problem that arranges each operation to a
machine from a given set of alternative machines, and
the operation sequence problem that determines the
processing sequence of all operations to obtain a
feasible schedule. It has been proved that FJSP is a
strongly NP-hard problem1.

Many research efforts have focused on the
development of efficient methods for FJSP. The first
study was performed by Bruker and Schlie2 for two jobs
FJSP, in which a polynomial graphical algorithm was
developed. Then the researchers have concentrated on
exact optimization techniques such as branch and
bound3,4, dynamic programming5, and disjunctive graph
representation6,7. However, since the FJSP is a strongly
nondeterministic polynomial-time hard problem, only
moderate-size instances of the problems can be solved
within a reasonable time by exact techniques. On the
one hand, the approximate and heuristic methods make
a tradeoff between solution quality and computational
cost. These methods include dispatching priority rules8,
shifting bottleneck approach9, and Lagrangian
relaxation10. More recently, with the emergence of new
techniques from the field of artificial intelligence, much
attention has been devoted to meta-heuristics. The tabu
search (TS) has been widely used, such as Brandimart11,
Mastrolilli and Gambardella12, Bozejko et al. 13 and Li et
al. 14, while the genetic algorithm (GA) has also been
examined to be an efficient method such as in Chen et
al.15, Kacem et al.16, Pezzella et al. 17 and Gao et al.18

Besides, some other meta-heuristics have been
employed for this problem such as simulated annealing
(SA)19-21, particle swarm optimization (PSO)22-24, ant
colony optimization (ACO)25, artificial neural network
(ANN)26, and artificial immune system (AIS) 27.

Among the above algorithms, the meta-heuristics
have acquired great achievements and become a popular
tool for solving NP hard combinational optimization
problems28. The artificial fish swarm algorithm (AFSA)
proposed by Li 29 is a population-based meta-heuristic.
It is insensitive to initial values, and possesses good

performance such as fast convergence, high fault
tolerance and robustness30. Thus it has gained an
increasing study and wide applications such as multi-
objective optimization31, job shop schedule problem32

and clustering problem33. Motivated by these
perspectives, we propose an efficient artificial fish
framework with estimation of distribution (AFSA-ED)
for FJSP. Meanwhile, some oriented heuristic strategies
are proposed and embedded in the framework to
enhance the overall performance, which include the
integrated initialization process, the pre-principle and
post-principle arranging mechanisms, the attracting
behavior, and the public factor based critical path search
strategy. The proposed algorithm balances the global
exploration ability and the local exploitation ability.

2. Flexible Job-shop Scheduling and Basic
Artificial Fish Swarm Algorithm

2.1. Flexible Job-shop Scheduling Problem

The FJSP can be described as follows. There are jobs
= { , , , } to be processed on machines =

{ 1, , }. Each job has operations { , , , , ,

, } to be processed according to a given sequence.
Each operation , can be processed on any machine
among a subset , . The FJSP is to solve the
assignment of machines and the sequence of operations
to minimize a certain scheduling objective, e.g., the
makespan of all the jobs ().

Moreover, the following conditions should be
satisfied while processing. Each machine processes one
operation at a given time. Each operation is assigned to
only one machine. Once the process starts, it cannot be
interrupt. All jobs and machines are available at the
beginning. The order of the operations for each job is
predefined and cannot be modified.

Table 1 A sample instance of FJSP
Job Operation

1,1O 3 5 - 6
6 - 4 5
- 5 2 3
1 1 5 3
2 3 - 2

For explaining explicitly, an example of FJSP is
shown in Table 1. There are 2 jobs and 4 machines,
where the rows correspond to the operations and the

1M 2M 3M 4M

1J
1,2O

2J

2,1O
2,2O
2,3O

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

918

H. W. Ge et al./ An Efficient Artificial Fish

columns correspond to the machines. Each element
denotes the processing time of this operation on the
corresponding machine, and the “-” means that an
operation cannot be processed on the corresponding
machine.

2.2. Standard Artificial Fish Swarm Algorithm

The artificial fish swarm algorithm (AFSA) is a
population-based optimization algorithm, which is
inspired from fish swarm behaviors. In an AFSA
system, each artificial fish (AF) adjusts its behavior
according to its current state and its environmental state,
making use of the best position encountered by itself
and its neighbors. The optimization of artificial fish
swarm algorithm is conducted by four behaviors, i.e.,
preying, swarming, following, and moving.

Suppose = (, , ,) is the current position
of artificial fish ; = () is the fitness function at
position . is the visible distance of ;

_ is the try times of preying behavior;
is the maximum moving step of ; is the crowd
factor; is the number of s within its visual. For

, one target position in its visual can be described
by Eq.(1), () is a function that generate random
numbers in the interval [0,1]. Then the updates its
state by using Eq.(2) when the updating condition is
satisfied.

= + () (1)

/ = + () (2)

The four behaviors of AF are described as follows:
(1) Preying: The chooses a position randomly
within its visible region using Eq.(1). If < , it
moves one step to according to Eq.(2). Otherwise, it
chooses another position and determines whether it
satisfies the requirement < . If the requirement is
still not satisfied after _ times, executes
the moving behavior.
(2) Swarming: Suppose is the center position in the
visible region, if the center has more food and low
crowd degree as indicated by < , then
moves a step towards according to Eq.(2).
Otherwise, executes default preying behavior.
(3) Following: Suppose is the best found position in
the visible region, if the position has high food
consistence and low crowd degree as indicated by

< , then moves a step towards

according to Eq.(2). Otherwise, executes default
preying behavior.
(4) Moving: choose a random position in its visual
region and moves a step towards this direction. It is a
default behavior of preying.

In AFSA, swarming and following are simulated in
each generation. The AFs will choose the behavior to
find the position with better fitness value, and the
default behavior is preying. The flow chart of AFSA is
shown in Fig. 1.

Initialize parameters of AFSA

Calculate the food consistence of each AF and record
the best AF on bulletin board

Update the position of AF and renew the bulletin

Meet maximum iterations?

Output the final solution

NO

YES

Evaluate the behaviors of AF: Swarming, Following
behavior

Select a better behavior to execute, otherwise execute
Preying

Fig.1 The framework of basic AFSA

3. Artificial Fish Swarm Algorithm with
Estimation of Distribution (AFSA-ED)

The main components of the proposed AFSA-ED
include the following strategies. Firstly, the pre-
principle and the post-principle arranging mechanisms
are applied to adjust the machine assignment and the
operation sequence. Secondly, the preying behavior
based on estimation of distribution is imitated by an
object-oriented probability model. Thirdly, the
attracting behavior is applied to improve the global
search ability of algorithm. And finally, the local search
based on critical path is applied to balance exploration
and exploitation.

3.1. Pre-principle and post-principle Mechanisms

The FJSP optimizes the objective function by adjusting
the machine assignment and the operation sequence.
The order of solving the two sub-problems may affect
the optimal results. Thus, we propose a pre-principle
arranging mechanism and a post-principle arranging

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

919

H. W. Ge et al./ An Efficient Artificial Fish

mechanism to adjust machine assignment and operation
sequence. The objective is to enhance the diversity of
population and make the algorithm searching the
feasible solutions more comprehensively. The proposed
mechanisms work as follows:
(1) Pre-principle arranging mechanism (PrA): The
machine assignment part is firstly adjusted for balancing
the workload of each machine, and then the operation
sequence part is adjusted for minimizing the total
makespan.
(2) Post-principle arranging mechanism (PoA): The
operation sequence part is firstly adjusted for balancing
the completion time of each job, and then the machine
assignment part is adjusted for minimizing the total
workload of machines.

While implementing the AFSA, the population is
divided into two sub-populations. The two sub-
populations respectively adopts the PrA and PoA
mechanisms. After the independent evolution for each
sub-populations, they are recombined to an entire
population for further evolution.

3.2. The preying behavior based on estimation of
distribution

In an AFSA system, preying behavior usually tends to
be blindfold since the selection of destination locations
is achieved by a random process. To overcome this
shortcoming, we propose to estimate the distribution of
the individuals, and then use the distribution model to
guide preying behavior. The estimation of distribution
algorithm (EDA) can reduce the randomness of
behavior and make the search move toward and
converge to the promising regions in the solution space.

The EDA works as follows: (1) Select a set of
promising individuals from the population according to
the fitness value; (2) Estimate the probability
distribution of the selected individuals according to a
probabilistic model. The probability distribution is
constructed by two matrixes, i.e., the machine
probabilistic matrix and the operation probabilistic
matrix; (3) Generate new individuals according to the
estimated probability.

Let denote the number of promising individuals
selected from the current population, and be the
machine probabilistic matrix at the th generation. Each
entry of means the probability of operation ,

being processed on machine and it is determined by
the following formula:

= (3)

Where is the number of individuals that select
to process operation , .

Let denote the operation probabilistic matrix at
the th generation. Each entry of means the
probability of job being arranged in position in the
operation sequence and it is calculated by the following
formula:

= (4)

Where is the number of individuals arranging in
position .

While implementing the preying behavior, a new
individual is generated by sampling the two
probabilistic matrixes. The machine assignment vector
is generated through sampling the probabilistic
matrix . For each operation , , machine is
selected with a probability of . Similarly, the
operation sequence vector is generated by sampling the
probabilistic matrix . Job is selected with a
probability of to replace the j-th position of
operation sequence vector.

3.3. Attracting behavior

In AFSA, each AF determines its next position
according to current state and its environmental state
within its visible region, which may limit the
exploration ability and interaction with the other AFs
outside its visible region. We propose an attracting
behavior to enhance exploration ability.

The bulletin board that records the state of the current
optimal individual is setup. For each AF, it reads the
position information of the optimal individual from the
bulletin board, and then it moves one step toward this
direction.

Suppose is the current position of , is the
fitness value. is the position of the global optimal
individual and its fitness value is . If > ,
then , moves towards for a step according to
Eq. (2). Otherwise, if = , which means that it is
the optimal individual, then it executes default preying
behavior.

3.4. Critical Path Local Search based on Public
Factor

In this subsection, a local search procedure is presented
to enhance the exploitation around the best solution
obtained by the AFSA. The local search is based on the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

920

H. W. Ge et al./ An Efficient Artificial Fish

critical path, so it is applied to the schedule represented
by the disjunctive graph rather than by the AF. Hence,
when a solution is to be improved by the local search, it
should be firstly decoded to a schedule represented by
the disjunctive graph.

3.4.1. The disjunctive graph

A feasible solution of FJSP can be represented by the
disjunctive graph = (,), where is a set of
nodes which includes all the operations and two dummy
nodes: starting and terminating; is a set of conjunctive
arcs which represents precedence constraints in the
same job; is a set of disjunctive arcs which
correspond to the precedence of operations processed on
the same machine. The weight of each node is the
processing time of corresponding operation. In a
disjunctive graph, the longest path form the starting
node to terminating node is called critical path, whose
length determines the makespan of the schedule. Any
operation on the critical path is called critical operation.

Take the problem shown in Table 1 for instance, a
possible schedule represented by the disjunctive graph
is showed in Fig.2. and are respectively dummy
starting and terminating nodes. The operations , and

, are performed on successively, , and , are
performed on successively, and , is processed in

.
3 4

2 1 2

1,1O

3,2O2,2O1,2O

2,1O

GEGS

Fig.2 Illustration of framework of disjunctive graph

3.4.2. Neighborhood structure based on public
factor

The disjunctive graph usually has more than one critical
paths. Only changing the length of all the critical paths,
the makespan can be changed. For obtaining a better
schedule from the current one, lots of operations may be
tried to move. The process is time consuming. So the
public factor based critical path search in the
neighborhoods is proposed. The public factor is used to
identify the influence degree of the critical for all the
critical paths. The public factor of an operation , can
be defined by the formula:

, = , (5)
Where is the total number of critical paths, and ,

is the number of the critical paths including the
operation , . , is in the interval [0,1]. , =

0 means this operation does not include any critical
path, in other words, it is not a critical operation;

, = 1 means this operation is included in all critical
paths. For each critical operation, the higher value of
public factor one operation possess, the greater impact
for disjunctive graph it has while moving it. In the
neighborhood structure, the critical operation with the
highest public factor will be moved preferentially.

While moving an operation, the precedence constrains
should be satisfied. For an operation , processed on

, we define (,) as the earliest start time and
, = , + , , as the earliest completion

time. Similarly, denote the latest start time without
delaying the makespan as (,) and the latest
completion time as , = , + , , . Let

, = , be the precedent of operation , and
, = , be the successor of operation , . Denote

, as the operation performed on right before ,

and , as the operation performed on right after
, . In the disjunctive graph , the process of moving an

operation , is to delete it from its current machine
sequence by moving all its disjunctive arcs and then
insert it at another available machine by adding
disjunctive arcs. Let (= 1,2, ,) be the critical
operation to be moved, where is the total number of
critical operations in . Let be the disjunctive graph
obtained by deleting the critical operation from .
For no increasing the makespan after inserting operation

, we take () as the makespan of when we
calculate the latest start time (,) for each
operation in . If is inserted before , on
machine in , it could be started as early as

, and should be completed as late as
(,) without delaying the required makespan
(). In addition, needs to comply with the

operation precedence constraints. So, the available idle
time for inserting to machine need to satisfy the
following condition:

max , , + ,

< min { , , } (6)

This moving process is repeated until a better schedule
strategy is found or all critical operations have been tried
to move. The procedure of local search is shown in
Algorithm 1.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

921

H. W. Ge et al./ An Efficient Artificial Fish

Algorithm 1. The procedure of critical path local search
1. Convert the feasible schedule to the disjunctive graph
2. Get all the critical operations in the
3. Calculate the of all the critical operations and sort them in
 descending order to form a set { , , }
4. for = 1 to do
 Delete from to get
 Calculate all the idle time intervals in
 if existing an available time interval for
 then
 Insert the operation to get
 Return the disjunctive graph
 end if

end for
5. Return the final disjunctive graph.

Figure 3 gives an illustration of the local search for
the example in Table 1. In Fig.3 (a), the only critical
path is , , , , , and the
makespan is 17. The critical operation set is =

{ , , , , , , , }, and all the public factors for the
critical operations are 1. So we can try to move the
critical operations , , , , , , and , successively.
In this process, the algorithm preferentially selects the
machine with the least processing time is and then
judges the feasibility according to Eq. (6). Fig.3 (b)
show the disjunctive graph obtained by moving the
critical operation , to machine . In this case, the
makespan is reduced to 12. Fig.3 (c) show the
disjunctive graph obtained by moving the critical
operation , to machine . IN this case, the
makespan is 11. Following this, the critical operation

, is not satisfied the moving condition according to
Eq. (6). Finally, the algorithm obtains the disjunctive
graph Fig.3 (d) by moving the critical operation , to
machine . In this case, the makespan is reduced to 9.

Move 1,1O
GS GE

5 6

5 5 2

1,1O 2,1O

1,2O 2,2O 3,2O

1M 2M 3M 4M

G

GS GE

3 6

5 5 2

1,1O 2,1O

1,2O 2,2O 3,2O

1G

(a) makespan=17

Move 3,2O

Move 1,2O

GS GE

3 6

2 5 2

1,1O 2,1O

1,2O 2,2O 3,2O

2G

GS GE

3 6

2 5 2

1,1O 2,1O

1,2O 2,2O 3,2O

3G

(b) makespan=12

(c) makespan=11 (d) makespan=9

Fig.3 Illustration of the local search

4. The Implementation of AFSA-ED for FJSP

In this section, we will give the implementation of the
AFSA-ED for FJSP. Firstly, the representation of the

AF, decoding method and the population initialization
are introduced. Then, the framework of the algorithm is
presented.

4.1. Representation and movement

In AFSA-ED, each AF represents a feasible solution of
the problem. Each AF is expressed by two vectors:
machine assignment vector and operation sequence
vector, which correspond to the two sub-problems of the
FJSP. The machine assignment vector is represented by
a vector of integer values and is the total number of
operations. Each element of vector denotes the machine
selection of each operation and the value is the index of
the array of alternative machine set. The operation
sequence vector is an un-partitioned permutation with

repetitions of job (= 1,2, ,). The length of
operation sequence vector equals to . The index of
job occurs times in the vector, and the k-th
occurrence of a job number refers to the k-th operation
in the technological sequence of this job.

For the problem in Table 1, a representation of a
feasible solution is shown in Fig.4. The machine
assignment vector is . If the operation , is
processed on { , , }, then the corresponding
element '2' means that operation , will be assigned to
the second machine . If the operation sequence is
given as , then scanning the vector from left
to right, the processing order of operations can be
obtained: , , , , , .

1 2 1 12 2 3 2 2 2

machine assignment operation sequence
Job1 Job2

1,2O 1,1O 2,2O 3,2O 2,1O

machine set

processing order

2M 1M

2M3M

4M 4M

Fig.4 Illustration of the representation of a solution

To address the discrete FJSP, the movement of an AF
in the solution space is completed by learning the partial
structure from the target AF. Fig.5 gives an illustrative
example of the movement process. Assume the i-th AF
is (1,2,2,2,3;2,1,2,2,1) in the current generation, and its
target AF is (2,2,1,3,2;1,2,2,1,2), then an indicator
vector with the same length is produced by randomly
filled with the elements of the set {0, 1}. The number of
the element “1” is [] in the first part of the indicator
vector, whereas the second part of the indicator vector
has only one position filled by “1”. The elements in the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

922

H. W. Ge et al./ An Efficient Artificial Fish

first part of the indicator vector decide the sources of the
corresponding elements in new produced AF, namely
from the parent or the target. The elements “1” in the
second part of the indicator vector represents the
starting position of the operation sequence segment
from the target AF, and its length is also taken as

[] , and the remainder is from the parent AF.
Finally, machine selections and operation orders are
adjusted randomly according to the corresponding
update formula, and = [()] as in the
formula (2).

2 1 2 2 11 2 2 2 3Parent AFi (k)

2 2 1 3 2 1 2 2 1 2Target AFt (k)

{Length=INT[N/2]

Indicator vector 1 1 0 0 0 1 0 0 01

1()randStepIF , one new possible AF from AFt (k+1):

New AFt (k+1) 1 22 1 3 3 2 12 1

New AF't (k+1) 1 22 1 3 2 1 22 1

Fig.5 Illustration of the movement of an AF

4.2. Decoding of AF

For calculating the value of the makespan, each
individual in the artificial fish swarm is decoded to the
corresponding schedule sequence. The decoding is
achieved by the process that assigns operations to the
machines at their earliest possible starting time
according to technological order of the jobs. It is worth
noticing that the scheduling acquired in this way is
semi-active. Then the active decoding is applied, which
checks the possible blank time interval before
appending an operation at the last position, and fills the
first blank interval before the last operation to convert
the semi-active schedule to an active one so that the
makespan can be shorten34.

4.3. Initialization

In this subsection, an integrated initialization algorithm
is proposed for machine assignment initialization and

operation sequence initialization. To generate the initial
machine assignments, the following rules are applied:
(1) Global approach of localization (GAL) 17.
(2) Local approach of localization (LAL).
(3) Random rule.

The LAL makes a random permutation for the
positions of machines. Following this, for each
operation, it selects the machine with minimum
processing time in the alternative machine set, and
updates the machine workload by adding this processing
to the processing time of the remaining unarranged
operations within the same job. Take the problem
showed in Table 1 as an example, Table 2 shows a
possible machine assignment obtained by using the
LAL. The last four columns indicate the final
assignments obtained by LAL. In the table, the items in
bold type are the updated workload of machines, and the
“-” means that the operation cannot be processed on
the corresponding machine.

The random rule executes by randomly selecting a
machine from the alternative machine set for each
operation. The GAL emphasizes the global workload
among all the machines. The advantage of the LAL is
that it obtains different initial assignments in different
runs of the algorithm and emphasizes the workload
among the set of machines within the same job. In
addition, the random rule can increase the diversity of
initial population. In our algorithm, the above three
rules are used in a hybrid way. More specially, the
initial machine assignments of 30% solutions in the
population are generated by the GAL, 50% solutions by
the LAL, and 20% solutions by random rule.

In our algorithm, the initial operation sequences are
generated by the following three dispatching rules:
(1) Most time remaining (MTR). The job with the most
remaining processing time will be arranged first.
(2) Most number of operations remaining rule (MOR).
The job with the most remaining unprocessed
operations has a high priority to be arranged.
(3) Random rule. Randomly generate the sequence of
the operations. In particular, the above three rules are
used in a hybrid way, then 20% of initial operation
sequences are generated by random rule, 40% by the
MTR, and 40% by the MOR.

Table 2 Initial assignments by LAL
…

- 5 6 3 - 5 6 3 - 5 6 3 … - 5 6 3
4 - 5 6 4 - 5 9 4 - 5 9 … 4 - 5 9
2 5 3 - 2 5 3 - 2 5 3 - … 2 5 3 -
5 1 3 1 5 1 3 1 5 1 3 1 7 1 3 1
- 3 2 2 - 3 2 2 - 3 2 2 - 4 2 2

3M 2M 4M 1M 3M 2M 4M 1M 3M 2M 4M 1M 3M 2M 4M 1M

1,1O

1,2O

2,1O

2,2O

2,3O

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

923

H. W. Ge et al./ An Efficient Artificial Fish

4.4. The framework of AFSA-ED

The framework of AFSA-ED for solving FJSP is shown
in Fig.6. At the beginning of each generation, the entire
population is randomly divided into two equal size sub-
populations with one sub-population using machine
based mechanism, and the other sub-population using
operation based mechanism. Each AF evaluates by
executing swarming, following, attracting behaviors. If
the algorithm obtains a better solution using the three
behaviors, it selects a better behavior to execute,
otherwise, it executes the default improved preying
behavior. When all individuals complete the searching
process, the two sub-populations are combined into an
entire population. Then the optimal individual of the
population executes the critical path based on local
search for further exploitation. If a new better individual
is obtained, then the bulletin board is updated
accordingly. The algorithm stops when the maximum
iteration time is reached.

P1:Use the pre-principle assignment mechanism.
Evaluate the behaviors: swarming, following, attracting

and preying behavior

P2:Use the post-principle assignment mechanism.
Evaluate the behaviors: swarming, following, attracting

and preying behavior

Combine P1 and P2 into an entire population

Critical path Local search on the best solution obtained

Update the bulletin board

Meet maximum iterations?

Output the final solution

NO

YES

Divide the population into two sub-populations P1 and P2

Calculate the food consistence of each AF and record
the best AF on bulletin board

Initialize the parameters and the population

Fig.6 The framework of the AFSA-ED for the FJSP

5. Experimental Results

5.1. Instances and parameters

To evaluate the performance of the AFSA-ED, we
consider three sets of well-known benchmarks with 160
instances:

(1) BRdata: The data set includes 10 instances from
Brandimarte11. The number of jobs ranges from 10 to
20, the number of machines ranges from 4 to 15, and the
flexibility of each operation ranges from 1.43 to 4.10.
(2) BCdata: The data set includes 21 instances from
Barnes and Chambers35, which were acquired from the
classical JSP mt10 and the la24, la40 instances. The
number of jobs ranges from 10 to 15, the number of
machines ranges from 11 to 18, and the flexibility of
each operation ranges from 1.07 to 1.30.
(3) HUdata: The data set includes 129 instances from
Hurink et al. 36, which were obtained from 3 classical
JSP instances (mt06, mt10, mt20) by Fisher and
Thompson and 40 classical JSP instances (la01–la40) by
Lawrence. HUdata is divided into three subsets: Edata,
Rdata, and Vdata. The number of jobs ranges from 6 to
30, the number of machines ranges from 5 to 15, and the
flexibility of each operation ranges from 1.15 to 7.5.

The AFSA-ED is coded and implemented in matlab
language on an Intel Core i5 2.53 GHz personal
computer with 1GB of RAM. The algorithm runs 30
independent times for each instance from BRdata and
BCdata, and runs 10 independent times for each
instance from HUdata on account of the large number of
instances in this data set. The computational results are
compared with several performing algorithms from the
existing literatures.

Each instance can be characterized by the following
parameters: number of jobs (), number of machines
(), number of operations () and the flexibility of
problem (). The parameters in the AFSA-ED
include population size (), the maximum iteration
times, the try number, the step of AF (), the visual
of AF (), and the crowd factor (). In our
experiment, the iteration times and the try number are
taken as 40. The settings of the other parameters for
each data set are listed in Table 3.

Table 3 Parameter settings of the AFSA-ED
Data set
BRdata 20 5 40 10
BCdata 40 10 100 20
HUdata 60 20 200 30

5.2. Computational results

The computational results for each data set are shown in
this subsection. In the following tables, (LB,UB)
denotes the lower and upper bounds 37. The LB of
BRdata and BCdata instances are taken from Mastrolilli
12, while the LB of HUdata instances are computed by
Jurisch.38 denotes the best makespan. AV denotes the
average makespan. SD denotes standard deviation of the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

924

H. W. Ge et al./ An Efficient Artificial Fish

makespan. is the average running time of the
algorithm in terms of seconds. To illustrate the quality
of the results obtained by the AFSA and the compared
algorithms, the mean relative error (MRE) is also

introduced. The relative error () is calculated as
follows: = () × 100% , where is
the makespan obtained by the corresponding algorithm.

Table 4 Results of ten BRdata instances

0 5 10 15 20
135

140

145

150

155

160

165

170

175

m
ak
es
pa
n

iterations

AFSA
AFSA-ED

0 5 10 15 20

200

210

220

230

240

250

m
ak
es
pa
n

iterations

AFSA
AFSA-ED

Fig.7 Convergence curves of MK07 Fig.8 Convergence curves of MK10

5.2.1. Influence of proposed EDA process

To investigate the influence of proposed EDA process
for preying behavior, the experiments on the BRdata are
conducted by implementing the AFSA-ED and the
AFSA without EDA, respectively. The parameters in
the AFSA are taken as the same in AFSA-ED, and the
two algorithms runs 30 independent times for each
instance. The results are given in Table 4. Compared
with AFSA, AFSA-ED outperforms AFSA in all 10
instances for the average makespan and the best
makespan, and the SD values obtained by AFSA-ED are
relative smaller than AFSA for most of the instances.
However, the overall computation time of the AFSA-
ED is slightly longer than AFSA because of the EDA
process. Fig.7 and Fig.8 show the convergence curves in
solving MK7 and MK10 by AFSA-ED and AFSA
respectively. The experiment results show the validity
of the proposed EDA process for preying behavior.

5.2.2. Results of BRdata problems

The AFSA-ED is first tested on ten instances of BRdata.
Meanwhile, we make a comparison with ABC algorithm
by Wang et al.39 and HHS algorithm by Yuan et al.40.
These results are also given in Table 4. It can be seen

that AFSA-ED, ABC and HHS obtain the same best
result for instances Mk01-Mk05, and Mk07-Mk09. For
Mk06 and Mk10, AFSA-ED obtains the values of 57
and 201, respectively. On the other hand, the ABC
obtains the best values of 60 and 208, respectively, and
HHS obtains the best values of 58 and 205, respectively.
Compared with ABC, AFSA-ED outperforms ABC in
all 10 instances for the average makespan, and the SD
values of AFSA-ED are relative smaller than ABC. In
comparison with HHS, AFSA-ED outperforms HHS in
7 out 10 instances for the average makespan. It is worth
noting that AFSA-ED can obtain average value of
201.93 and SD value of 1.06 for instance Mk10,
respectively. On the other hand, the HHS can obtain
average value of 211.13 and SD value of 2.37,
respectively.

In addition, Table 5 gives a detailed comparison in
terms of the MRE of the best value and the MRE of
average value. We compare AFSA-ED with the PVNS
of Yazdani et al.41, the CDDS of Ben Hmida et al.37, the
BEDA of Wang et al.42, the ABC and the HHS.
represents the best known solution ever reported in the
literature for each instance. It can be seen that AFSA-
ED finds 9 best known solutions for 10 instances. The
AFSA-ED obtains the MRE of the best value which is
equal to 14.85%, while PVNS, CDDS, ABC, BDEA,

Instance ×m T0 Flex. (LB,UB) ABC HHS AFSA AFSA-ED
AV SD AV SD AV SD AV SD

Mk01 10×6 55 2.09 (36,42) 40 40.00 0.00 40 40.00 0.00 40 41.25 0.65 1.39 40 40.00 0.00 2.59
Mk02 10×6 58 4.01 (24,32) 26 26.50 0.50 26 26.63 0.49 28 29.04 0.58 1.61 26 26.10 0.30 2.82
Mk03 15×8 150 3.01 (204,211) 204 204.00 0.00 204 204.00 0.00 204 204.00 0.00 1.00 204 204.00 0.00 1.12
Mk04 15×8 90 1.91 (48,81) 60 61.22 1.36 60 60.03 1.18 64 65.51 1.03 5.68 60 60.27 0.72 12.94
Mk05 15×4 106 1.71 (168,186) 172 172.98 0.14 172 172.80 0.41 177 177.69 0.47 4.75 172 172.40 0.48 10.49
Mk06 10×15 150 3.27 (33,86) 60 64.48 1.75 58 59.13 0.63 62 63.86 0.72 20.58 57 58.60 0.75 39.27
Mk07 20×5 100 2.83 (133,157) 139 141.42 1.20 139 139.57 0.50 142 143.03 0.95 28.47 139 140.63 0.71 57.63
Mk08 20×10 225 1.43 523 523 523.00 0.00 523 523.00 0.00 523 523.00 0.00 1.04 523 523.00 0.00 2.14
Mk09 20×10 240 2.53 (299,369) 307 308.76 1.63 307 307.00 0.00 310 310.75 0.54 4.06 307 307.13 0.43 9.40
Mk10 20×15 240 2.98 (165,296) 208 212.84 2.43 205 211.13 2.37 213 214.91 1.37 50.44 201 201.93 1.06 104.10

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

925

H. W. Ge et al./ An Efficient Artificial Fish

and HHS are 16.43%, 14.98%, 16.19%, 16.07%, and
15.40%, respectively. For the MRE of average value
obtained, AFSA-ED generates 15.64%, faced to 16.48%
for HHS, 17.01% for PVNS, 18.55% for ABC, and
19.24 % for BDEA. However, faced to 15.34 % for the
CDDS algorithm, the AFSA-ED Obtains a higher MRE.
The Gantt chart of solution of MK06 obtained by
AFSA-ED is showed in Fig.9.

To determine the statistical differences between the
AFSA-ED and the compared algorithms, the Friedman

test and Holm procedure are conducted. The results are
presented in Table 6. It can be seen from the Friedman
test results that the differences among the six algorithms
are statistically relevant with 98% certainty. The AFSA-
ED obtains the best overall rank. The holm procedure
shows that the AFSA-ED obtains better results than the
compared five algorithms, and the differences are
statistically relevant with 97%, 66%, 81%, 86%, and
67% certainty, respectively.

Table 5 Comparison between AFSA-ED and several existing algorithms on BRdata
Instance BKS AFSA-ED PVNS CDDS

() () ()
Mk01 40 40 (40) 11.11(11.11) 40 (40) 11.11(11.11) 40 (40) 11.11(11.11)
Mk02 26 26(26.10) 8.33(8.75) 26(26.04) 8.33(8.50) 26(26) 8.33(8.33)
Mk03 204 204(204) 0.00(0.00) 204(204) 0.00(0.00) 204(204) 0.00(0.00)
Mk04 60 60(60.27) 25.00(25.56) 60(60.60) 25.00(26.25) 60(60) 25.00(25.00)
Mk05 172 172(172.40) 2.38(2.62) 173(173) 2.98(2.98) 173(173.5) 2.98(3.27)
Mk06 57 57(58.60) 72.73(77.57) 60(61) 81.82(84.85) 58(59) 75.76(78.79)
Mk07 139 139(140.63) 4.51(5.73) 141(141.2) 6.02(6.17) 139(139) 4.51(4.51)
Mk08 523 523(523) 0.00(0.00) 523(523) 0.00(0.00) 523(523) 0.00(0.00)
Mk09 307 307(307.13) 2.68(2.72) 308(308.8) 3.01(3.28) 307(307) 2.68(2.68)
Mk10 197 201(201.93) 21.82(22.38) 208(209.4) 26.06(26.91) 197(197.75) 19.39(19.85)

14.85(15.64) 16.43(17.01) 14.98(15.34)

Table 5 (Continued.) Comparison between AFSA-ED and several existing algorithms on BRdata

Instance BKS
ABC BEDA HHS

() () ()

Mk01 40 40 (40) 11.11(11.11) 40 (41.02) 11.11(13.94) 40 (40) 11.11(11.11)
Mk02 26 26(26.50) 8.33(10.24) 26(27.25) 8.33(13.54) 26(26.63) 8.33(10.96)
Mk03 204 204(204) 0.00(0.00) 204(204) 0.00(0.00) 204(204) 0.00(0.00)
Mk04 60 60(61.22) 25.00(27.54) 60(63.69) 25.00(32.69) 60(60.03) 25.00(25.06)
Mk05 172 172(172.98) 2.38(2.96) 173(173.38) 2.98(3.20) 172(172.80) 2.38(2.86)
Mk06 57 60(64.48) 81.82(95.39) 60(62.83) 81.82(90.39) 58(59.13) 75.76(79.18)
Mk07 139 139(141.42) 4.51(6.33) 139(141.55) 4.51(6.43) 139(139.57) 4.51(4.94)
Mk08 523 523(523) 0.00(0.00) 523(523) 0.00(0.00) 523(523) 0.00(0.00)
Mk09 307 307(308.76) 2.68(2.93) 307(310.35) 2.68(3.80) 307(307) 2.68(2.68)
Mk10 197 208(212.84) 26.06(28.99) 206(211.92) 24.85(28.44) 205(211.13) 24.24(27.96)

16.19(18.55) 16.07(19.24) 15.40(16.48)

Table 6 Friedman test and Holm procedure of different algorithms
Friedman test Holm procedure

Algorithm Rank 1 value Diff.? Algorithm 1 value
AFSA-ED 2.85

14.42 0.98 Yes

- - -
PVNS 4.50 AFSA-ED v.s. PVNS 1.97 0.98
CDDS 3.20 AFSA-ED v.s. CDDS 0.41 0.66
ABC 3.60 AFSA-ED v.s. ABC 0.89 0.81

BEDA 3.75 AFSA-ED v.s. BEDA 1.07 0.86
HHS 3.10 AFSA-ED v.s. HHS 0.29 0.67

Fig.9 Gantt chart of solution of MK06 obtained by AFSA-ED (makespan=57)

MRE

MRE

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

926

H. W. Ge et al./ An Efficient Artificial Fish

5.2.3. Results of BCdata problems

In this subsection, we carry out experiments on 21
instances of BCdata. The detail computational results
are reported and compared with the CDDS and the
HDE-N1 of Yuan et al. 43 in Table 7. As can be seen
from Table 7, AFSA-ED outperforms CDDS and HDE-

N1 in 10 out of 21instances. For the cases of seti5xxx
and seti5xyz, CDDS obtains the best results of three
algorithms, while AFSA-ED obtains better results than
HDE-N1. The average values and SD values of AFSA-
ED are better than HDE-N1. AFSA-ED offers the
comparable results with HDE-N2 while being faster than
HDE-N2.

Table 7 Comparison of AFSA-ED with CDDS and HDE-N1 on BCdata

Instance
×

Flex (LB,UB)
CDDS HDE-N1 HDE-N2 AFSA-ED

(s) (s) (s)
mt10x 10×11 1.10 (655,929) 918 918 918 922.86 6.11 21.43 918 918.58 2.20 179.22 918 918.00 0.00 23.47
mt10xx 10×12 1.20 (655,929) 918 918 918 922.04 6.31 21.70 918 918.38 1.90 179.84 918 918.53 1.35 20.91
mt10xxx 10×13 1.30 (655,936) 918 918 918 919.94 3.96 23.05 918 918.00 0.00 179.39 918 918.17 0.37 25.38
mt10xy 10×12 1.20 (655,913) 906 906 905 906.52 1.09 22.51 905 905.56 0.79 169.77 905 905.23 0.55 22.80
mt10xyz 10×13 1.30 (655,849) 849 850.5 847 856.80 3.99 21.79 847 851.14 4.65 160.24 847 851.07 2.93 24.63
mt10c1 10×11 1.10 (655,927) 928 928.5 927 928.92 1.96 21.07 927 927.72 0.45 174.19 927 927.20 0.47 23.35
mt10cc 10×12 1.20 (655,914) 910 910.75 910 913.92 3.40 21.00 908 910.60 2.40 165.61 908 908.40 1.13 40.86
setb4x 15×11 1.10 (846,937) 925 925 925 931.50 2.48 33.04 925 925.82 2.11 338.30 925 925.83 1.79 35.89
setb4xx 15×12 1.20 (847,930) 925 925 925 930.38 3.29 29.76 925 925.64 1.98 336.24 925 925.56 1.72 38.64
setb4xxx 15×13 1.30 (846,925) 925 925 925 931.42 3.59 29.89 925 925.48 1.68 353.55 925 925.60 1.45 36.42
setb4xy 15×12 1.20 (845,924) 916 916 910 921.38 4.44 31.13 910 914.00 3.50 330.18 910 913.90 2.70 36.50
setb4xyz 15×13 1.30 (838,914) 905 906.5 905 913.40 4.21 30.39 903 905.28 1.16 314.64 903 904.06 0.85 76.28
setb4c9 15×11 1.10 (857,924) 919 919 914 919.32 2.87 32.19 914 917.12 2.52 313.02 914 916.26 2.17 64.27
setb4cc 15×12 1.20 (857,909) 909 910.5 909 912.58 3.81 32.00 907 909.58 1.89 316.89 907 908.00 1.13 83.61
seti5x 15×16 1.07 (955,1218) 1201 1201.5 1204 1215.48 5.36 73.20 1200 1205.64 3.43 1112.77 1198 1202.95 2.64 153.82
seti5xx 15×17 1.13 (955,1204) 1199 1199 1202 1205.66 2.56 72.52 1197 1202.68 2.02 1078.60 1198 1201.23 1.99 93.12
seti5xxx 15×18 1.20 (955,1213) 1197 1197.5 1202 1206.10 3.18 72.07 1197 1202.26 2.37 1087.12 1197 1202.63 2.24 97.86
seti5xy 15×17 1.13 (955,1148) 1136 1138 1138 1146.86 5.04 78.98 1136 1137.98 2.82 1250.62 1136 1138.13 1.98 142.65
seti5xyz 15×18 1.20 (955,1127) 1125 1125.3 1130 1137.44 3.42 80.85 1125 1129.76 2.44 1244.22 1125 1129.53 1.76 405.74
seti5c12 15×16 1.07 (1027,1185) 1174 1174.5 1175 1182.54 7.62 69.06 1171 1175.42 1.63 1141.43 1174 1174.67 1.02 313.40
seti5cc 15×17 1.13 (955,1136) 1136 1137 1137 1145.62 5.58 78.83 1136 1137.76 2.48 1222.53 1136 1137.73 1.60 324.07

Table 8 lists the best makespan and the of
AFSA-ED, TSBM2h by Bozejko et al. 13, CDDS37, IFS
by Oddi et al. 44, HDE-N1 and HDE-N2 by Yuan et al.43.
For the IFS algorithm, its performance depends on the
relaxing factor , the table lists the results obtained by
running IFS with ranging from 0.2 to 0.7, respectively.
The difference between HDE-N1 and HDE-N2 is
neighborhood structure. Moreover, HDE-N2 is more
effective than HDE-N1, but its computational time is
much longer than HDE-N1. From Table 8, as for the
best makespan obtained, AFSA-ED obtains 85% of best
known solutions, while TSBM2h obtains 81%, CDDS
obtains 52%, IFS obtains 47%, HDE-N1 obtains 52%,
and HDE-N2 obtains 95%. It can be seen that HDE-N2

outperforms AFSA-ED on two instances (seti5xxx,
seti5c12), while AFSA-ED outperforms HDE-N2 on one
instance (seti5x). In particular, the of best
makespan of AFSA is 22.39%, faced to 22.45% for

TSBM2h, 22.54% for CDDS, 22.55% for HDE-N1,
23.09% for IFS (= 0.7), and 22.39% for HDE-N2. We
note that AFSA-ED performs better than the TSBM2h,
CDDS, IFS and HDE-N1, while the same with HDE-N2.
However, the HDE-N2 tends to spend long time for
finding best solutions. To determine the statistical
differences among the AFSA-ED and the compared
algorithms, the Friedman test and Holm procedure are
also conducted. The results are presented in Table 9. It
can be seen that the differences among the six
algorithms are statistically relevant with 100% certainty.
The AFSA-ED and the HDE-N2 obtain the best overall
rank. The Holm procedure shows that the AFSA-ED
obtains the same results with the HDE-N2. The Holm
procedure also shows that the AFSA-ED obtains better
results than other four algorithms, and the differences
are statistically relevant with 62%, 94%, 100%, and
94%, respectively.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

927

H. W. Ge et al./ An Efficient Artificial Fish

Table 8 Comparison of results using different algorithms (AFSA-ED, TSBM2h, CDDS, IFS, HDE)
Instance BKS AFSA-ED TSBM2h CDDS IFS HDE-N1 HDE-N20.2 0.3 0.4 0.5 0.6 0.7
mt10x 918 918 922 918 980 936 936 934 918 918 918 918
mt10xx 918 918 918 918 936 929 936 933 918 926 918 918
mt10xxx 918 918 918 918 936 929 936 926 926 926 918 918
mt10xy 905 905 905 906 922 923 923 915 905 909 905 905
mt10xyz 847 847 849 849 878 858 851 862 847 851 847 847
mt10c1 927 927 927 928 943 937 986 934 934 927 927 927
mt10cc 908 908 908 910 926 923 919 919 910 911 910 908
setb4x 925 925 925 925 967 945 930 925 937 937 925 925
setb4xx 925 925 925 925 966 931 933 925 937 929 925 925
setb4xxx 925 925 925 925 941 930 950 950 942 935 925 925
setb4xy 910 910 910 916 910 941 936 936 916 914 910 910
setb4xyz 903 903 903 905 928 909 905 905 905 905 905 903
setb4c9 914 914 914 919 926 937 926 926 920 920 914 914
setb4cc 907 907 907 909 929 917 907 914 907 909 909 907
seti5x 1198 1198 1198 1201 1210 1199 1199 1205 1207 1209 1204 1200
seti5xx 1197 1198 1197 1199 1216 1199 1205 1211 1207 1206 1202 1197
seti5xxx 1197 1197 1197 1197 1205 1206 1206 1199 1206 1206 1202 1197
seti5xy 1136 1136 1136 1136 1175 1171 1175 1166 1156 1148 1138 1136
seti5xyz 1125 1125 1128 1125 1165 1149 1130 1134 1144 1131 1130 1125
seti5c12 1171 1174 1174 1174 1196 1209 1200 1198 1198 1175 1175 1171
seti5cc 1136 1136 1136 1136 1177 1155 1162 1166 1138 1150 1137 1136

22.39 22.45 22.54 25.48 24.25 24.44 23.96 23.28 23.09 22.55 22.39

Table 9 Friedman test and Holm procedure of different algorithms on BCdata
Friedman test Holm procedure
Algorithm Rank 1-p value Diff.? Algorithm z 1-p value
AFSA-ED 2.76

143.05 1.00 Yes

- - -
TSBM2h 3.10 AFSA-ED v.s. TSBM2h 0.33 0.62
CDDS 4.36 AFSA-ED v.s. CDDS 1.56 0.94
IFS 0.2 9.79 AFSA-ED v.s. IFS 0.2 6.86 1.00
IFS 0.3 8.88 AFSA-ED v.s. IFS 0.3 5.97 1.00
IFS 0.4 8.45 AFSA-ED v.s. IFS 0.4 5.55 1.00
IFS 0.5 7.95 AFSA-ED v.s. IFS 0.5 5.07 1.00
IFS 0.6 6.71 AFSA-ED v.s. IFS 0.6 3.85 1.00
IFS 0.7 6.83 AFSA-ED v.s. IFS 0.7 3.97 1.00
HDE-N1 4.40 AFSA-ED v.s. HDE- N1 1.60 0.94
HDE-N2 2.76 AFSA-ED v.s. HDE- N2 0.00 0.50

Table 10 Comparison of MRE obtained by using AFSA-ED , CDDS and HDE-N1 on HUdata

Instance
Edata (=1.15) Rdata (=2.0) Vdata ([2.5,7.5])

CDDS HDE-N1 AFSA-ED CDDS HDE-N1 AFSA-ED CDDS HDE-N1 AFSA-ED

mt06/10/20 6×6
10×10
20×5

0.00
(0.05)

0.05
(0.13)

0.00
(0.08)

0.34
(0.47)

0.34
(0.45)

0.34
(0.39)

0.00
(0.00)

0.00
(0.01)

0.00
(0.00)

la01-la05 10×5 0.00
(0.73)

0.00
(0.00)

0.00
(0.00)

0.11
(0.28)

0.11
(0.31)

0.08
(0.22)

0.13
(0.23)

0.04
(0.19)

0.09
(0.20)

la06-la10 15×5 0.00
(0.19)

0.00
(0.10)

0.00
(0.06)

0.03
(0.19)

0.05
(0.10)

0.02
(0.15)

0.00
(0.00)

0.03
(0.10)

0.07
(0.11)

la11-la15 20×5 0.29
(1.12)

0.29
(0.29)

0.29
(0.29)

0.02
(0.37)

0.00
(0.02)

0.00
(0.22)

0.00
(0.00)

0.00
(0.01)

0.00
(0.00)

la16-la20 10×10 0.49
(1.15)

0.02
(0.48)

0.04
(0.45)

1.64
(1.90)

1.64
(1.69)

1.64
(1.65)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

la21-la25 15×10 5.70
(6.27)

5.82
(6.41)

5.66
(6.35)

3.82
(4.26)

3.73
(4.57)

3.68
(4.46)

0.70
(1.01)

1.63
(2.15)

1.40
(1.89)

la26-la30 20×10 3.96
(4.84)

3.89
(4.71)

3.78
(4.69)

0.66
(0.98)

1.04
(1.41)

0.97
(0.84)

0.11
(0.19)

0.42
(0.63)

0.09
(0.17)

la31-la35 30×10 0.42
(0.83)

0.50
(0.59)

0.37
(0.55)

0.22
(0.41)

0.22
(0.33)

0.18
(0.33)

0.02
(0.04)

0.12
(0.18)

0.07
(0.12)

la36-la40 15×15 9.10
(9.88)

9.63
(10.43)

9.64
(9.95)

4.85
(4.97)

3.98
(4.92)

3.89
(4.88)

0.00
(0.00)

0.00
(0.01)

0.00
(0.00)

(%) 2.32
(2.91)

2.35
(2.68)

2.30
(2.60)

1.34
(1.59)

1.28
(1.59)

1.24
(1.51)

0.12
(0.16)

0.26
(0.38)

0.20
(0.29)

n m

MRE

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

928

H. W. Ge et al./ An Efficient Artificial Fish

5.2.4. Results of HUdata problems

This subsection shows the results of AFSA-ED for
HUdata benchmark instances. Table 10 presents the
MRE of the best makespan and average makespan
obtained by AFSA-ED, CDDS and HDE-N1. It can be
seen that AFSA can obtain the MRE of best value of
2.30%, 1.24% and 0.20% for Edata, Rdata and Vdata,
respectively, while CDDS can obtain the MRE of best
value of 2.32%, 1.34% and 0.12%, respectively, HED-
N1 can obtain the MRE of best value of 2.35%, 1.28%
and 0.26%, respectively. Compared with CDDS, AFSA-
ED could obtain better results than CDDS for some

instances of Edata (la16-la35), some instances of Rdata
(la01-la15, la31-la40), and some instances of Vdata
(la01-la05, la26-la30). For the MRE of best and average
makespan, AFSA-ED outperforms CDDS for Edata and
Rdata, while CDDS obtains the best result of three
algorithms for Vdata. In comparison with HDE-N1,
AFSA-ED can obtain better results than HDE for some
instances of Edata (mt06/10/20, la21-35), some
instances of Rdata (la01-10,la21-40) and some instances
of Rdata (la06-10,la21-35). For the MRE of best and
average makespan, AFSA-ED outperforms HDE-N1 for
three datasets.

Table 11 MRE of the best makespan obtained by AFSA-ED and other known algorithms
Dada set AFSA-ED GA_Chen TS GA_Pezzella CDDS PVNS HHS HDE-N1 HDE-N2

BRdata 10 14.85 19.55 19.55 17.53 14.98 16.39 15.40 15.58 14.67
BCdata 21 22.39 38.64 38.64 29.56 22.54 26.66 22.89 22.55 22.39

Hurink Edata 43 2.30 5.59 2.17 6.00 2.32 3.86 2.67 2.35 2.11
Hurink Rdata 43 1.24 4.41 1.24 4.42 1.34 1.88 1.88 1.28 1.05
Hurink Vdata 43 0. 20 2.59 0.095 2.04 0.12 0.42 0.39 0.26 0.080

5.3. Discussions

In Table 11, we summarize the of the best
makespan obtained by our algorithm and other known
algorithm for BRdata set, BCdata set and HUdata set.
The first column shows the name of data set, the second
column shows the number of problems for each set, the
following nine columns show the MRE of AFSA-ED,
GA of Chen15, TS of Mastrolilli 12, GA of Pezzella17,
CDDS, PVNS, HHS, HDE-N1 and HDE-N2. As can be
seen in Table 11, HDE-N2 achieves the state-of-the-art
performance on three data sets. Except for HDE-N2,
AFSA-ED outperforms the other seven algorithms on
BRdata and BCdata; it outperforms GA_Chen,
GA_Pezzella, PVNS and HHS on three sub-data sets of
HUdata, and CDDS on Edata and Rdata. TS works
better than AFSA-ED on the HUdata, and CDDS works
better than AFSA-ED on Vdata. In particular, HDE-N2
is a time consuming algorithm, in which the
computational time is about 5 times longer than AFSA-
ED as shown in Table 7. In conclusion, the results show
that the AFSA-ED is an effective algorithm for FJSP.

6. Conclusion

In this paper, an efficient artificial fish swarm algorithm
with estimation of distribution was proposed for solving
the flexible job-shop scheduling problem with the
criterion to minimize the makespan. Considering the
interaction of two sub-problems, we propose the pre-

principle and post-principle arranging mechanism to
adjust machine assignment and operation sequence with
different orders. For improving the global exploration of
algorithm, we modify preying behavior with estimation
of distribution and embed attracting behavior to the
algorithm. To balance the exploration and exploitation,
the critical path based local search was used. The
proposed algorithm is tested on 160 well known
benchmark instances and 121 best known solutions are
found. The computational results and comparisons
demonstrate that the proposed AFSA-ED outperforms
several existing algorithms and is especially effective
for the FJSP. In the future research, the AFSA could be
used in multi-objective FJSP or many real world
manufacturing systems.

Acknowledgements

The authors would like to thank the support of the
National Natural Science Foundation of China
(61572104, 61103146, 61402076, 61502072), Startup
Fund for the Doctoral Program of Liaoning Province
(20141023), the Fundamental Research Funds for the
Central Universities (DUT15QY26, DUT15RC(3)088),
and the project of the Key Laboratory of Symbolic
Computation and Knowledge Engineering in Jilin
University (93K172016K11).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

929

H. W. Ge et al./ An Efficient Artificial Fish

References

1. M.R. Garey, D.S. Johnson, and R. Sethi, The complexity
of flow shop and job shop scheduling, Math. Oper. Res.
1(2) (1976) 117-129.

2. P. Bruker, and R. Schlie, Job-shop scheduling with multi-
purpose machines, Computing. 45(4) (1991) 369-375.

3. M. Singer and M. Pinedo, A computational study of
branch and bound techniques for minimizing the total
weighted tardiness in job shops, IIE trans. 30(2) (1998)
109-118.

4. N. Zribi, I. Kacem, A.E. Kamel, and P. Borne,
Assignment and scheduling in flexible job-shops by
hierarchical optimization, IEEE T. Syst. Man Cy. C. 37(4)
(2007) 652-661.

5. J.B. Yang, GA-based discrete dynamic programming
approach for scheduling in FMS environments, IEEE T.
Syst. Man. Cy. B. 31(5) (2001) 824-835.

6. C.R. Scrich, V.A. Armentano, and M. Laguna, Tardiness
minimization in a flexible job shop: a tabu search
approach, J. Intell. Manuf. 15(1) (2004) 103-115.

7. B. Barzegar, H. Motameni, and H. Bozorgi, Solving
flexible job-shop scheduling problem using gravitational
search algorithm and colored Petri net, J. Appl. Math. 9
(2012) 701-708.

8. K. Kianfar, S.M.T. Fatemi Ghomi, and B. Karimi, New
dispatching rules to minimize rejection and tardiness
costs in a dynamic flexible flow shop, Int. J. Adv. Manuf.
Technol. 45(7-8) (2009) 759-771.

9. M. Pinedo and M. Singer, A shifting bottleneck heuristic
for minimizing the total weighted tardiness in a job shop,
Nav. Res. Log, 46(1) (1999) 1-17.

10. C.A. Kaskavelis and M.C. Caramanis, Efficient
Lagrangian relaxation algorithms for industry size job-
shop scheduling problems, IIE transactions. 30(11)
(1998) 1085-1097.

11. P. Brandimarte, Routing and scheduling in a flexible job
shop by tabu search, Ann. Oper. Res, 41(3) (1993) 157-
183.

12. M. Mastrolilli and L. Gambardella, Effective
neighbourhood functions for the flexible job shop
problem. J. Scheduling. 3(1) (2000), 3-20.

13. W. Bozejko, M. Uchronski, and M. Wodecki, Parallel
hybrid metaheuristics for the flexible job shop problem,
Comput. Ind. Eng. 59(2) (2010) 323-333.

14. J. Li, Q. Pan, P. Suganthan, and T. Chua, A hybrid tabu
search algorithm with an efficient neighborhood structure
for the flexiblejob shop scheduling problem, Int. J. Adv.
Manuf. Technol. 52(5-8) (2011) 683-697.

15. H. Chen, J. Ihlow, and C. Lehmann, A genetic algorithm
for flexible job-shop scheduling, Proc. of the
International Conference on Robotics and Automation,
(Detroit, Michigan, 1999), pp.1120-1125.

16. I. Kacem, S. Hammadi, and P. Borne, Approach by
localization and multiobjective evolutionary optimization
for flexible job-shop scheduling problems, IEEE T. Syst.
Man. Cy. C. 32(1) (2002) 1-13.

17. F. Pezzella, G. Morganti, and G. Ciaschetti, A genetic
algorithm for the flexible job-shop scheduling problem,
Comput. Oper. Res. 35(10) (2008) 3202-3212.

18. J. Gao, L. Sun, and M. Gen, A hybrid genetic and
variable neighborhood descent algorithm for flexiblejob
shop scheduling problems, Comput. Oper. Res. 35(9)
(2008) 2892-2907.

19. N.M. Najid, S. Dauzere-Peres, and A. Zaidat, A modified
simulated annealing method for Flexible Job Shop
Scheduling Problem, IEEE Sys. Man. Cy. A. 5 (2002)
117-123.

20. P. Fattahi, A hybrid multi objective algorithm for flexible
job shop scheduling, Int. J. Comput. Math. Sci. 3 (2009)
215-220.

21. N. Shivasankaran, P. Senthilkumar, and K. Venkatesh
Raja K, Hybrid non-dominated sorting simulated
annealing algorithm for flexible job shop scheduling
problems, Proc. of the 48th Annual Convention of
Computer Society Visakhapatnam, India, 2014 ,
vol.248, pp.101-107.

22. B.S. Girish and N. Jawahar, A particle swarm
optimization algorithm for flexible job shop scheduling
problem, Proc. of the IEEE International Conference on
Automation Science and Engineering (Bangalore, India,
2009), pp.298-303.

23. G. Zhang, X. Shao, P. Li, and L. Gao, An effective
hybrid particle swarm optimization algorithm for multi-
objective flexible job-shop scheduling problem, Comput.
Ind. Eng. 56(4) (2009) 1309- 1318.

24. X. Shao, W. Liu, Q. Liu, and C. Zhang, Hybrid discrete
particle swarm optimization for multi-objective flexible
job-shop scheduling problem, Int. J. Adv. Manuf.
Technol. 67(9-12) (2013) 2885-2901.

25. B.Z. Yao, C.Y. Yang, J.J. Hu, J.B. Yao, and J. Sun, An
improved ant colony optimization for flexible job shop
scheduling problems, Adv. Sci. Lett. 4(6-7) (2011) 2127-
2131.

26. S.K. Sim, K.T. Yeo, and W.H. Lee, An expert neural
network system for dynamic job-shop scheduling, Int. J.
Prod. Res. 32(8) (1994) 1759-1773.

27. A. Bagheri, M. Zandieh, I. Mahdavi, and M. Yazdani, An
artificial immune algorithm for the flexible job-shop
scheduling problem, Future Gener. Comp. Sy. 26(4)
(2010) 533–541.

28. X.S. Han, Y.C. Liang, and Z.G. Li, An efficient genetic
algorithm for optimization problems with time-
consuming fitness evaluation, Int. J. Comp. Meth.-Sing,
12(1) (2015) 1350106 1-24.

29. X. Li, Z. Shao, and J. Qian, An optimizing method based
on autonomous animates: fish-swarm algorithm, Syst.
Eng. Theory. Prac. 22(11) (2002): 32-38.

30. M. Neshat, G. Sepidnam, M. Sargolzaei, and A.N. Toosi,
Artificial fish swarm algorithm: a survey of the state-of-
the-art, hybridization, combinatorial and indicative
applications, Artif. Intell. Rev. 42(4) (2002) 965-997.

31. M. Jiang and K. Zhu, Multiobjective optimization by
artificial fish swarm algorithm. Proc. of the IEEE

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

930

H. W. Ge et al./ An Efficient Artificial Fish

International Conference on Automation Science and
Engineering, (Trieste, Italy, 2011), pp.506-511.

32. K. Zhu and M. Jiang, The optimization of job shop
scheduling problem based on artificial fish swarm
algorithm with tabu search strategy, Proc. of
International Workshop on Advanced Computational
Intelligent (Hangzhou, China, 2013), pp.323–327.

33. S. He, N. Belacel, H. Hamam, and Y. Bouslimani, Fuzzy
clustering with improved artificial fish swarm algorithm,
Proc. of the Int. Joint Conf. on Computational Sciences
and Optimization (Hainan, Sanya, China, 2009), vol.2,
pp.317-321.

34. H.W. Ge, L. Sun, Y.C. Liang, and F. Qian, An effective
PSO-and-AIS-based hybrid intelligent algorithm for job-
shop scheduling, IEEE T. Syst. Man. Cy. A., 38(2) (2008)
358-368.

35. J.W. Barnes and J.B. Chambers, Flexible job shop
scheduling by tabu search, Graduate program in
operations research and industrial engineering, the
University of Texas at Austin, Technical Report Series
(1996), ORP96-09.

36. J. Hurink, B. Jurisch, and M. Thole, Tabu search for the
job-shop scheduling problem with multi-purpose
machines, OR. Spectrum. 15(4) (1994) 205–215.

37. A. Ben Hmida, M. Haouari, M.J. Huguet, and P. Lopez,
Discrepancy search for the flexible job shop scheduling
problem, Comput. Oper. Res. 37(12) (2010) 2192- 2201.

38. B. Jurisch, Scheduling jobs in shops with multi-purpose
machines. Thesis PhD. Fachbereich Mathematik
Informatik (Universitat Osnabruck, 1992).

39. L. Wang, G. Zhou, Y. Xu, S. Wang, and M. Liu, An
effective artificial bee colony algorithm for the flexible
job-shop scheduling problem, Int. J. Adv. Manuf.
Technol. 60(1-4) (2012) 303-315.

40. Y. Yuan, H. Xu, and J. Yang, A hybrid harmony search
algorithm for the flexible job shop scheduling problem,
Appl. Soft. Comput. 13(7) (2013) 3259-3272.

41. M. Yazdani, M. Amiri, and M. Zandieh, Flexible job-
shop scheduling with parallel variable neighborhood
search algorithm, Expert Syst. Appl. 37(1) (2010) 678-
687.

42. L. Wang, S. Wang, Y. Xu, G. Zhou, and M. Liu, A bi-
population based estimation of distribution algorithm for
the flexible job-shop scheduling problem, Comput. Ind.
Eng. 62(4) (2012) 917-926.

43. Y. Yuan and H. Xu, Flexible job shop scheduling using
hybrid differential evolution algorithms, Comput. Ind.
Eng. 65(2) (2013) 246-260.

44. A. Oddi, R. Rasconi, A. Cesta, and S. Smith, Iterative
flattening search for the flexible job shop scheduling
problem, Proc. of the International Joint Conferences on
Artificial Intelligence (Barcelona, Catalonia, Span, 2011),
22(3): 1991-1996.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

931

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

