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Abstract

The flexible job shop scheduling problem (FJSP) is one of the most important problems in the field of production 
scheduling, which is the abstract of some practical production processes. It is a complex combinatorial optimization 
problem due to the consideration of both machine assignment and operation sequence. In this paper, an efficient 
artificial fish swarm model with estimation of distribution (AFSA-ED) is proposed for the FJSP with the objective 
of minimizing the makespan. Firstly, a pre-principle and a post-principle arranging mechanism that operate by 
adjusting machine assignment and operation sequence with different orders are designed to enhance the diversity of 
population. Following this, the population is divided into two sub-populations and then two arranging mechanisms 
are applied. In AFSA-ED, a preying behavior based on estimation of distribution is proposed to improve the 
performance of algorithm. Moreover, an attracting behavior is proposed to improve the global exploration ability 
and a public factor based critical path search strategy is proposed to enhance the local exploitation ability. 
Simulated experiments are carried on BRdata, BCdata and HUdata benchmark sets. The computational results 
validate the performance of the proposed algorithm in solving the FJSP, as compared with some other state of the 
art algorithms.
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Holm procedure.
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1. Introduction

The Flexible Job-shop Scheduling Problem (FJSP) is an 
extension of classical JSP for flexible production 
situation, which allows an operation to be processed by 
any machine from a given set. Generally, the FJSP can 
be divided into two sub-problems, i.e., the machine 
assignment problem that arranges each operation to a 
machine from a given set of alternative machines, and 
the operation sequence problem that determines the 
processing sequence of all operations to obtain a 
feasible schedule. It has been proved that FJSP is a
strongly NP-hard problem1.

Many research efforts have focused on the 
development of efficient methods for FJSP. The first 
study was performed by Bruker and Schlie2 for two jobs 
FJSP, in which a polynomial graphical algorithm was 
developed. Then the researchers have concentrated on 
exact optimization techniques such as branch and 
bound3,4, dynamic programming5, and disjunctive graph 
representation6,7. However, since the FJSP is a strongly 
nondeterministic polynomial-time hard problem, only 
moderate-size instances of the problems can be solved 
within a reasonable time by exact techniques. On the 
one hand, the approximate and heuristic methods make 
a tradeoff between solution quality and computational 
cost. These methods include dispatching priority rules8,
shifting bottleneck approach9, and Lagrangian 
relaxation10. More recently, with the emergence of new 
techniques from the field of artificial intelligence, much 
attention has been devoted to meta-heuristics. The tabu 
search (TS) has been widely used, such as Brandimart11,
Mastrolilli and Gambardella12, Bozejko et al. 13 and Li et 
al. 14, while the genetic algorithm (GA) has also been 
examined to be an efficient method such as in Chen et 
al.15, Kacem et al.16, Pezzella et al. 17 and Gao et al.18

Besides, some other meta-heuristics have been 
employed for this problem such as simulated annealing 
(SA)19-21, particle swarm optimization (PSO)22-24, ant 
colony optimization (ACO)25, artificial neural network 
(ANN)26, and artificial immune system (AIS) 27.

Among the above algorithms, the meta-heuristics 
have acquired great achievements and become a popular
tool for solving NP hard combinational optimization 
problems28. The artificial fish swarm algorithm (AFSA) 
proposed by Li 29 is a population-based meta-heuristic. 
It is insensitive to initial values, and possesses good 

performance such as fast convergence, high fault 
tolerance and robustness30. Thus it has gained an 
increasing study and wide applications such as multi-
objective optimization31, job shop schedule problem32

and clustering problem33. Motivated by these 
perspectives, we propose an efficient artificial fish 
framework with estimation of distribution (AFSA-ED) 
for FJSP. Meanwhile, some oriented heuristic strategies 
are proposed and embedded in the framework to 
enhance the overall performance, which include the 
integrated initialization process, the pre-principle and 
post-principle arranging mechanisms, the attracting 
behavior, and the public factor based critical path search 
strategy. The proposed algorithm balances the global 
exploration ability and the local exploitation ability.

2. Flexible Job-shop Scheduling and Basic 
Artificial Fish Swarm Algorithm

2.1. Flexible Job-shop Scheduling Problem

The FJSP can be described as follows. There are jobs 
= { , , , } to be processed on machines =

{ 1, , }. Each job has operations { , , , , ,

, } to be processed according to a given sequence. 
Each operation , can be processed on any machine 
among a subset , . The FJSP is to solve the 
assignment of machines and the sequence of operations 
to minimize a certain scheduling objective, e.g., the 
makespan of all the jobs ( ).

Moreover, the following conditions should be 
satisfied while processing. Each machine processes one 
operation at a given time. Each operation is assigned to 
only one machine. Once the process starts, it cannot be 
interrupt. All jobs and machines are available at the 
beginning. The order of the operations for each job is 
predefined and cannot be modified.

Table 1  A sample instance of FJSP
Job Operation

1,1O 3 5 - 6
6 - 4 5
- 5 2 3
1 1 5 3
2 3 - 2

For explaining explicitly, an example of FJSP is 
shown in Table 1. There are 2 jobs and 4 machines, 
where the rows correspond to the operations and the 

1M 2M 3M 4M

1J
1,2O

2J

2,1O
2,2O
2,3O
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columns correspond to the machines. Each element 
denotes the processing time of this operation on the 
corresponding machine, and the “-” means that an 
operation cannot be processed on the corresponding 
machine.

2.2. Standard Artificial Fish Swarm Algorithm

The artificial fish swarm algorithm (AFSA) is a 
population-based optimization algorithm, which is 
inspired from fish swarm behaviors. In an AFSA 
system, each artificial fish (AF) adjusts its behavior 
according to its current state and its environmental state, 
making use of the best position encountered by itself 
and its neighbors. The optimization of artificial fish 
swarm algorithm is conducted by four behaviors, i.e., 
preying, swarming, following, and moving.

Suppose = ( , , , ) is the current position 
of artificial fish ; = ( ) is the fitness function at 
position . is the visible distance of ;

_ is the try times of preying behavior; 
is the maximum moving step of ; is the crowd 
factor; is the number of s within its visual. For 

, one target position in its visual can be described 
by Eq.(1), () is a function that generate random 
numbers in the interval [0,1]. Then the updates its
state by using Eq.(2) when the updating condition is 
satisfied.

= + ()                         (1)

/ = + ()               (2)

The four behaviors of AF are described as follows:
(1) Preying: The chooses a position randomly 
within its visible region using Eq.(1). If < , it 
moves one step to according to Eq.(2). Otherwise, it 
chooses another position and determines whether it 
satisfies the requirement < . If the requirement is 
still not satisfied after _ times, executes 
the moving behavior.
(2) Swarming: Suppose is the center position in the 
visible region, if the center has more food and low 
crowd degree as indicated by < , then 
moves a step towards according to Eq.(2). 
Otherwise, executes default preying behavior.
(3) Following: Suppose is the best found position in 
the visible region, if the position has high food 
consistence and low crowd degree as indicated by 

< , then moves a step towards 

according to Eq.(2). Otherwise, executes default 
preying behavior.
(4) Moving: choose a random position in its visual 
region and moves a step towards this direction. It is a 
default behavior of preying.

In AFSA, swarming and following are simulated in 
each generation. The AFs will choose the behavior to 
find the position with better fitness value, and the 
default behavior is preying. The flow chart of AFSA is 
shown in Fig. 1.

Initialize parameters of AFSA

Calculate the food consistence of each AF and record
the best AF on bulletin board

Update the position of AF and renew the bulletin

Meet maximum iterations?

Output the final solution

NO

YES

Evaluate the behaviors of AF: Swarming, Following
behavior

Select a better behavior to execute, otherwise execute
Preying

Fig.1 The framework of basic AFSA

3. Artificial Fish Swarm Algorithm with 
Estimation of Distribution (AFSA-ED)

The main components of the proposed AFSA-ED 
include the following strategies. Firstly, the pre-
principle and the post-principle arranging mechanisms 
are applied to adjust the machine assignment and the 
operation sequence. Secondly, the preying behavior 
based on estimation of distribution is imitated by an 
object-oriented probability model. Thirdly, the 
attracting behavior is applied to improve the global 
search ability of algorithm. And finally, the local search 
based on critical path is applied to balance exploration 
and exploitation.

3.1. Pre-principle and post-principle Mechanisms

The FJSP optimizes the objective function by adjusting 
the machine assignment and the operation sequence. 
The order of solving the two sub-problems may affect 
the optimal results. Thus, we propose a pre-principle 
arranging mechanism and a post-principle arranging 
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mechanism to adjust machine assignment and operation 
sequence. The objective is to enhance the diversity of 
population and make the algorithm searching the 
feasible solutions more comprehensively. The proposed 
mechanisms work as follows:
(1) Pre-principle arranging mechanism (PrA): The 
machine assignment part is firstly adjusted for balancing 
the workload of each machine, and then the operation 
sequence part is adjusted for minimizing the total 
makespan.
(2) Post-principle arranging mechanism (PoA): The 
operation sequence part is firstly adjusted for balancing 
the completion time of each job, and then the machine 
assignment part is adjusted for minimizing the total 
workload of machines.

While implementing the AFSA, the population is 
divided into two sub-populations. The two sub-
populations respectively adopts the PrA and PoA
mechanisms. After the independent evolution for each 
sub-populations, they are recombined to an entire 
population for further evolution.

3.2. The preying behavior based on estimation of 
distribution

In an AFSA system, preying behavior usually tends to 
be blindfold since the selection of destination locations 
is achieved by a random process. To overcome this 
shortcoming, we propose to estimate the distribution of 
the individuals, and then use the distribution model to 
guide preying behavior. The estimation of distribution 
algorithm (EDA) can reduce the randomness of 
behavior and make the search move toward and 
converge to the promising regions in the solution space.

The EDA works as follows: (1) Select a set of 
promising individuals from the population according to 
the fitness value; (2) Estimate the probability 
distribution of the selected individuals according to a 
probabilistic model. The probability distribution is 
constructed by two matrixes, i.e., the machine 
probabilistic matrix and the operation probabilistic 
matrix; (3) Generate new individuals according to the 
estimated probability.

Let denote the number of promising individuals 
selected from the current population, and be the 
machine probabilistic matrix  at the th generation. Each 
entry of means the probability of operation ,

being processed on machine and it is determined by 
the following formula:

=                                 (3)

Where is the number of individuals that select 
to process operation , .

Let denote the operation probabilistic matrix  at 
the th generation. Each entry of means the 
probability of job being arranged in position in the 
operation sequence and it is calculated by the following 
formula:

=                                (4)

Where is the number of individuals arranging in 
position .

While implementing the preying behavior, a new 
individual is generated by sampling the two 
probabilistic matrixes. The machine assignment vector
is generated through sampling the probabilistic 
matrix . For each operation , , machine is
selected with a probability of . Similarly, the
operation sequence vector is generated by sampling the 
probabilistic matrix . Job is selected with a 
probability of to replace the j-th position of
operation sequence vector.

3.3. Attracting behavior

In AFSA, each AF determines its next position 
according to current state and its environmental state 
within its visible region, which may limit the 
exploration ability and interaction with the other AFs
outside its visible region. We propose an attracting 
behavior to enhance exploration ability.

The bulletin board that records the state of the current 
optimal individual is setup. For each AF, it reads the 
position information of the optimal individual from the 
bulletin board, and then it moves one step toward this 
direction.

Suppose is the current position of , is the 
fitness value. is the position of the global optimal 
individual and its fitness value is . If > ,
then , moves towards for a step according to 
Eq. (2). Otherwise, if = , which means that it is 
the optimal individual, then it executes default preying 
behavior.

3.4. Critical Path Local Search based on Public 
Factor

In this subsection, a local search procedure is presented 
to enhance the exploitation around the best solution 
obtained by the AFSA. The local search is based on the 
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critical path, so it is applied to the schedule represented 
by the disjunctive graph rather than by the AF. Hence, 
when a solution is to be improved by the local search, it 
should be firstly decoded to a schedule represented by 
the disjunctive graph.

3.4.1.  The disjunctive graph

A feasible solution of FJSP can be represented by the 
disjunctive graph = ( , ), where is a set of 
nodes which includes all the operations and two dummy 
nodes: starting and terminating; is a set of conjunctive 
arcs which represents precedence constraints in the 
same job; is a set of disjunctive arcs which 
correspond to the precedence of operations processed on 
the same machine. The weight of each node is the 
processing time of corresponding operation. In a 
disjunctive graph, the longest path form the starting 
node to terminating node is called critical path, whose 
length determines the makespan of the schedule. Any 
operation on the critical path is called critical operation.

Take the problem shown in Table 1 for instance, a 
possible schedule represented by the disjunctive graph 
is showed in Fig.2. and are respectively dummy 
starting and terminating nodes. The operations , and 

, are performed on successively, , and , are 
performed on successively, and , is processed in 

.
3 4

2 1 2

1,1O

3,2O2,2O1,2O

2,1O

GEGS

Fig.2 Illustration of  framework of disjunctive graph

3.4.2. Neighborhood structure based on public 
factor

The disjunctive graph usually has more than one critical 
paths. Only changing the length of all the critical paths, 
the makespan can be changed. For obtaining a better 
schedule from the current one, lots of operations may be 
tried to move. The process is time consuming. So the 
public factor based critical path search in the 
neighborhoods is proposed. The public factor is used to 
identify the influence degree of the critical for all the 
critical paths. The public factor of an operation , can 
be defined by the formula:

, = ,                            (5)
Where is the total number of critical paths, and ,

is the number of the critical paths including the 
operation , . , is in the interval [0,1]. , =

0 means this operation does not include any critical 
path, in other words, it is not a critical operation; 

, = 1 means this operation is included in all critical 
paths. For each critical operation, the higher value of 
public factor one operation possess, the greater impact 
for disjunctive graph it has while moving it. In the 
neighborhood structure, the critical operation with the 
highest public factor will be moved preferentially.

While moving an operation, the precedence constrains 
should be satisfied. For an operation , processed on

, we define ( , ) as the earliest start time and 
, = , + , , as the earliest completion 

time. Similarly, denote the latest start time without 
delaying the makespan as ( , ) and the latest 
completion time as , = , + , , . Let 

, = , be the precedent of operation , and 
, = , be the successor of operation , . Denote 

, as the operation performed on right before ,

and , as the operation performed on right after 
, . In the disjunctive graph , the process of moving an 

operation , is to delete it from its current machine 
sequence by moving all its disjunctive arcs and then
insert it at another available machine by adding 
disjunctive arcs. Let ( = 1,2, , ) be the critical 
operation to be moved, where is the total number of 
critical operations in . Let be the disjunctive graph 
obtained by deleting the critical operation from .
For no increasing the makespan after inserting operation 

, we take ( ) as the makespan of when we 
calculate the latest start time ( , ) for each 
operation in . If is inserted before , on 
machine in , it could be started as early as 

, and should be completed as late as 
( , ) without delaying the required makespan 
( ). In addition, needs to comply with the 

operation precedence constraints. So, the available idle 
time for inserting to machine need to satisfy the 
following condition:

max , , + ,

< min { , , } (6)

This moving process is repeated until a better schedule
strategy is found or all critical operations have been tried 
to move. The procedure of local search is shown in 
Algorithm 1.
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Algorithm 1. The procedure of critical path local search
1. Convert the feasible schedule to the disjunctive graph 
2. Get all the critical operations in the 
3. Calculate the of all the critical operations and sort them in 
      descending order to form a set { , , }
4. for = 1 to do
           Delete from to get 
            Calculate all the idle time intervals in 
            if existing an available time interval for 
            then
                 Insert the operation to get 
                  Return the disjunctive graph 
           end if

end for
5. Return the final disjunctive graph.

Figure 3 gives an illustration of the local search for 
the example in Table 1. In Fig.3 (a), the only critical 
path is , , , , , and the 
makespan is 17. The critical operation set is =

{ , , , , , , , }, and all the public factors for the 
critical operations are 1. So we can try to move the 
critical operations , , , , , , and , successively. 
In this process, the algorithm preferentially selects the 
machine with the least processing time is and then 
judges the feasibility according to Eq. (6). Fig.3 (b) 
show the disjunctive graph obtained by moving the 
critical operation , to machine . In this case, the 
makespan is reduced to 12. Fig.3 (c) show the 
disjunctive graph obtained by moving the critical
operation , to machine . IN this case, the
makespan is 11. Following this, the critical operation

, is not satisfied the moving condition according to 
Eq. (6). Finally, the algorithm obtains the disjunctive 
graph Fig.3 (d) by moving the critical operation , to 
machine . In this case, the makespan is reduced to 9.

Move 1,1O
GS GE

5 6

5 5 2

1,1O 2,1O

1,2O 2,2O 3,2O

1M 2M 3M 4M

G

GS GE

3 6

5 5 2

1,1O 2,1O

1,2O 2,2O 3,2O

1G

(a) makespan=17

Move 3,2O

Move 1,2O

GS GE

3 6

2 5 2

1,1O 2,1O

1,2O 2,2O 3,2O

2G

GS GE

3 6

2 5 2

1,1O 2,1O

1,2O 2,2O 3,2O

3G

(b) makespan=12

(c) makespan=11 (d) makespan=9

Fig.3 Illustration of the local search

4. The Implementation of AFSA-ED for FJSP

In this section, we will give the implementation of the 
AFSA-ED for FJSP. Firstly, the representation of the 

AF, decoding method and the population initialization 
are introduced. Then, the framework of the algorithm is 
presented.

4.1. Representation and movement

In AFSA-ED, each AF represents a feasible solution of 
the problem. Each AF is expressed by two vectors: 
machine assignment vector and operation sequence 
vector, which correspond to the two sub-problems of the 
FJSP. The machine assignment vector is represented by 
a vector of integer values and is the total number of 
operations. Each element of vector denotes the machine 
selection of each operation and the value is the index of 
the array of alternative machine set. The operation 
sequence vector is an un-partitioned permutation with 

repetitions of job ( = 1,2, , ). The length of 
operation sequence vector equals to . The index of 
job  occurs times in the vector, and the k-th 
occurrence of a job number refers to the k-th operation 
in the technological sequence of this job. 

For the problem in Table 1, a representation of a 
feasible solution is shown in Fig.4. The machine 
assignment vector is . If the operation , is 
processed on { , , }, then the corresponding 
element '2' means that operation , will be assigned to 
the second machine . If the operation sequence is 
given as , then scanning the vector from left 
to right, the processing order of operations can be 
obtained: , , , , , .

1 2 1 12 2 3 2 2 2

machine assignment operation sequence
Job1 Job2

1,2O 1,1O 2,2O 3,2O 2,1O

machine set

processing order

2M 1M

2M3M

4M 4M

Fig.4 Illustration of  the representation of a solution

To address the discrete FJSP, the movement of an AF 
in the solution space is completed by learning the partial 
structure from the target AF. Fig.5 gives an illustrative 
example of the movement process. Assume the i-th AF 
is (1,2,2,2,3;2,1,2,2,1) in the current generation, and its 
target AF is (2,2,1,3,2;1,2,2,1,2), then an indicator 
vector with the same length is produced by randomly 
filled with the elements of the set {0, 1}. The number of 
the element “1” is [ ] in the first part of the indicator 
vector, whereas the second part of the indicator vector 
has only one position filled by “1”. The elements in the 
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first part of the indicator vector decide the sources of the 
corresponding elements in new produced AF, namely 
from the parent or the target. The elements “1” in the 
second part of the indicator vector represents the 
starting position of the operation sequence segment 
from the target AF, and its length is also taken as

[ ] , and the remainder is from the parent AF. 
Finally, machine selections and operation orders are 
adjusted randomly according to the corresponding 
update formula, and = [ ()] as in the 
formula (2).

2 1 2 2 11 2 2 2 3Parent AFi (k)

2 2 1 3 2 1 2 2 1 2Target AFt (k)

{Length=INT[N/2]

Indicator vector 1 1 0 0 0 1 0 0 01

1()randStepIF , one new possible AF from AFt (k+1):

New AFt (k+1) 1 22 1 3 3 2 12 1

New AF't (k+1) 1 22 1 3 2 1 22 1

Fig.5 Illustration of the movement of an AF

4.2. Decoding of AF

For calculating the value of the makespan, each 
individual in the artificial fish swarm is decoded to the 
corresponding schedule sequence. The decoding is 
achieved by the process that assigns operations to the 
machines at their earliest possible starting time 
according to technological order of the jobs. It is worth 
noticing that the scheduling acquired in this way is 
semi-active. Then the active decoding is applied, which 
checks the possible blank time interval before 
appending an operation at the last position, and fills the 
first blank interval before the last operation to convert 
the semi-active schedule to an active one so that the 
makespan can be shorten34.

4.3. Initialization

In this subsection, an integrated initialization algorithm 
is proposed for machine assignment initialization and 

operation sequence initialization. To generate the initial 
machine assignments, the following rules are applied:
(1) Global approach of localization (GAL) 17.
(2) Local approach of localization (LAL).
(3) Random rule.

The LAL makes a random permutation for the 
positions of machines. Following this, for each 
operation, it selects the machine with minimum 
processing time in the alternative machine set, and 
updates the machine workload by adding this processing 
to the processing time of the remaining unarranged 
operations within the same job. Take the problem 
showed in Table 1 as an example, Table 2 shows a 
possible machine assignment obtained by using the 
LAL. The last four columns indicate the final 
assignments obtained by LAL. In the table, the items in 
bold type are the updated workload of machines, and the 
“-” means that the operation cannot be processed on 
the corresponding machine.

The random rule executes by randomly selecting a 
machine from the alternative machine set for each 
operation. The GAL emphasizes the global workload 
among all the machines. The advantage of the LAL is 
that it obtains different initial assignments in different 
runs of the algorithm and emphasizes the workload 
among the set of machines within the same job. In 
addition, the random rule can increase the diversity of 
initial population. In our algorithm, the above three 
rules are used in a hybrid way. More specially, the 
initial machine assignments of 30% solutions in the 
population are generated by the GAL, 50% solutions by 
the LAL, and 20% solutions by random rule.

In our algorithm, the initial operation sequences are 
generated by the following three dispatching rules: 
(1) Most time remaining (MTR). The job with the most 
remaining processing time will be arranged first. 
(2) Most number of operations remaining rule (MOR). 
The job with the most remaining unprocessed 
operations has a high priority to be arranged. 
(3) Random rule. Randomly generate the sequence of 
the operations. In particular, the above three rules are 
used in a hybrid way, then 20% of initial operation 
sequences are generated by random rule, 40% by the 
MTR, and 40% by the MOR.

Table 2  Initial assignments by LAL
…

- 5 6 3 - 5 6 3 - 5 6 3 … - 5 6 3
4 - 5 6 4 - 5 9 4 - 5 9 … 4 - 5 9
2 5 3 - 2 5 3 - 2 5 3 - … 2 5 3 -
5 1 3 1 5 1 3 1 5 1 3 1 7 1 3 1
- 3 2 2 - 3 2 2 - 3 2 2 - 4 2 2

3M 2M 4M 1M 3M 2M 4M 1M 3M 2M 4M 1M 3M 2M 4M 1M

1,1O

1,2O

2,1O

2,2O

2,3O
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4.4. The framework of AFSA-ED

The framework of AFSA-ED for solving FJSP is shown 
in Fig.6. At the beginning of each generation, the entire 
population is randomly divided into two equal size sub-
populations with one sub-population using machine 
based mechanism, and the other sub-population using 
operation based mechanism. Each AF evaluates by 
executing swarming, following, attracting behaviors. If 
the algorithm obtains a better solution using the three 
behaviors, it selects a better behavior to execute, 
otherwise, it executes the default improved preying 
behavior. When all individuals complete the searching 
process, the two sub-populations are combined into an 
entire population. Then the optimal individual of the 
population executes the critical path based on local 
search for further exploitation. If a new better individual 
is obtained, then the bulletin board is updated 
accordingly. The algorithm stops when the maximum 
iteration time is reached.

P1:Use the pre-principle assignment mechanism.
Evaluate the behaviors: swarming, following, attracting

and preying behavior

P2:Use the post-principle assignment mechanism.
Evaluate the behaviors: swarming, following, attracting

and preying behavior

Combine P1 and P2 into an entire population

Critical path Local search on the best solution obtained

Update the bulletin board

Meet maximum iterations?

Output the final solution

NO

YES

Divide the population into two sub-populations P1 and P2

Calculate the food consistence of each AF and record
the best AF on bulletin board

Initialize the parameters and the population

Fig.6 The framework of the AFSA-ED for the FJSP

5. Experimental Results

5.1. Instances and parameters

To evaluate the performance of the AFSA-ED, we 
consider three sets of well-known benchmarks with 160
instances:

(1) BRdata: The data set includes 10 instances from 
Brandimarte11. The number of jobs ranges from 10 to 
20, the number of machines ranges from 4 to 15, and the
flexibility of each operation ranges from 1.43 to 4.10.
(2) BCdata: The data set includes 21 instances from 
Barnes and Chambers35, which were acquired from the 
classical JSP mt10 and the la24, la40 instances. The 
number of jobs ranges from 10 to 15, the number of
machines ranges from 11 to 18, and the flexibility of 
each operation ranges from 1.07 to 1.30.
(3) HUdata: The data set includes 129 instances from 
Hurink et al. 36, which were obtained from 3 classical 
JSP instances (mt06, mt10, mt20) by Fisher and 
Thompson and 40 classical JSP instances (la01–la40) by 
Lawrence. HUdata is divided into three subsets: Edata, 
Rdata, and Vdata. The number of jobs ranges from 6 to
30, the number of machines ranges from 5 to 15, and the 
flexibility of each operation ranges from 1.15 to 7.5.

The AFSA-ED is coded and implemented in matlab 
language on an Intel Core i5 2.53 GHz personal 
computer with 1GB of RAM. The algorithm runs 30 
independent times for each instance from BRdata and 
BCdata, and runs 10 independent times for each 
instance from HUdata on account of the large number of 
instances in this data set. The computational results are 
compared with several performing algorithms from the 
existing literatures.

Each instance can be characterized by the following 
parameters: number of jobs ( ), number of machines 
( ), number of operations ( ) and the flexibility of 
problem ( ). The parameters in the AFSA-ED 
include population size ( ), the maximum iteration 
times, the try number, the step of AF ( ), the visual 
of AF ( ), and the crowd factor ( ). In our 
experiment, the iteration times and the try number are 
taken as 40. The settings of the other parameters for 
each data set are listed in Table 3.

Table 3  Parameter settings of the AFSA-ED
Data set
BRdata 20 5 40 10
BCdata 40 10 100 20
HUdata 60 20 200 30

5.2. Computational results

The computational results for each data set are shown in 
this subsection. In the following tables, (LB,UB)
denotes the lower and upper bounds 37. The LB of 
BRdata and BCdata instances are taken from Mastrolilli 
12, while the LB of HUdata instances are computed by 
Jurisch.38 denotes the best makespan. AV denotes the 
average makespan. SD denotes standard deviation of the 
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makespan. is the average running time of the 
algorithm in terms of seconds. To illustrate the quality 
of the results obtained by the AFSA and the compared 
algorithms, the mean relative error (MRE) is also 

introduced. The relative error ( ) is calculated as 
follows: = ( ) × 100% , where is 
the makespan obtained by the corresponding algorithm.

Table 4  Results of ten BRdata instances
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Fig.7 Convergence curves of MK07                                          Fig.8 Convergence curves of MK10

5.2.1.  Influence of proposed EDA process

To investigate the influence of proposed EDA process
for preying behavior, the experiments on the BRdata are 
conducted by implementing the AFSA-ED and the 
AFSA without EDA, respectively. The parameters in 
the AFSA are taken as the same in AFSA-ED, and the
two algorithms runs 30 independent times for each 
instance. The results are given in Table 4. Compared 
with AFSA, AFSA-ED outperforms AFSA in all 10
instances for the average makespan and the best 
makespan, and the SD values obtained by AFSA-ED are 
relative smaller than AFSA for most of the instances.
However, the overall computation time of the AFSA-
ED is slightly longer than AFSA because of the EDA 
process. Fig.7 and Fig.8 show the convergence curves in 
solving MK7 and MK10 by AFSA-ED and AFSA 
respectively. The experiment results show the validity 
of the proposed EDA process for preying behavior.

5.2.2. Results of BRdata problems

The AFSA-ED is first tested on ten instances of BRdata. 
Meanwhile, we make a comparison with ABC algorithm 
by Wang et al.39 and HHS algorithm by Yuan et al.40.
These results are also given in Table 4. It can be seen 

that AFSA-ED, ABC and HHS obtain the same best 
result for instances Mk01-Mk05, and Mk07-Mk09. For 
Mk06 and Mk10, AFSA-ED obtains the values of 57 
and 201, respectively. On the other hand, the ABC 
obtains the best values of 60 and 208, respectively, and 
HHS obtains the best values of 58 and 205, respectively. 
Compared with ABC, AFSA-ED outperforms ABC in 
all 10 instances for the average makespan, and the SD
values of AFSA-ED are relative smaller than ABC. In
comparison with HHS, AFSA-ED outperforms HHS in 
7 out 10 instances for the average makespan. It is worth 
noting that AFSA-ED can obtain average value of 
201.93 and SD value of 1.06 for instance Mk10, 
respectively. On the other hand, the HHS can obtain 
average value of 211.13 and SD value of 2.37, 
respectively.

In addition, Table 5 gives a detailed comparison in 
terms of the MRE of the best value and the MRE of 
average value. We compare AFSA-ED with the PVNS 
of Yazdani et al.41, the CDDS of Ben Hmida et al.37, the 
BEDA of Wang et al.42, the ABC and the HHS.
represents the best known solution ever reported in the 
literature for each instance. It can be seen that AFSA-
ED finds 9 best known solutions for 10 instances. The 
AFSA-ED obtains the MRE of the best value which is 
equal to 14.85%, while PVNS, CDDS, ABC, BDEA, 

Instance ×m T0 Flex. (LB,UB) ABC HHS AFSA AFSA-ED
AV SD AV SD AV SD AV SD

Mk01 10×6 55 2.09 (36,42) 40 40.00 0.00 40 40.00 0.00 40 41.25 0.65 1.39 40 40.00 0.00 2.59
Mk02 10×6 58 4.01 (24,32) 26 26.50 0.50 26 26.63 0.49 28 29.04 0.58 1.61 26 26.10 0.30 2.82
Mk03 15×8 150 3.01 (204,211) 204 204.00 0.00 204 204.00 0.00 204 204.00 0.00 1.00 204 204.00 0.00 1.12
Mk04 15×8 90 1.91 (48,81) 60 61.22 1.36 60 60.03 1.18 64 65.51 1.03 5.68 60 60.27 0.72 12.94
Mk05 15×4 106 1.71 (168,186) 172 172.98 0.14 172 172.80 0.41 177 177.69 0.47 4.75 172 172.40 0.48 10.49
Mk06 10×15 150 3.27 (33,86) 60 64.48 1.75 58 59.13 0.63 62 63.86 0.72 20.58 57 58.60 0.75 39.27
Mk07 20×5 100 2.83 (133,157) 139 141.42 1.20 139 139.57 0.50 142 143.03 0.95 28.47 139 140.63 0.71 57.63
Mk08 20×10 225 1.43 523 523 523.00 0.00 523 523.00 0.00 523 523.00 0.00 1.04 523 523.00 0.00 2.14
Mk09 20×10 240 2.53 (299,369) 307 308.76 1.63 307 307.00 0.00 310 310.75 0.54 4.06 307 307.13 0.43 9.40
Mk10 20×15 240 2.98 (165,296) 208 212.84 2.43 205 211.13 2.37 213 214.91 1.37 50.44 201 201.93 1.06 104.10

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

925



H. W. Ge et al./ An Efficient Artificial Fish

and HHS are 16.43%, 14.98%, 16.19%, 16.07%, and 
15.40%, respectively. For the MRE of average value 
obtained, AFSA-ED generates 15.64%, faced to 16.48% 
for HHS, 17.01% for PVNS, 18.55% for ABC, and 
19.24 % for BDEA. However, faced to 15.34 % for the 
CDDS algorithm, the AFSA-ED Obtains a higher MRE.
The Gantt chart of solution of MK06 obtained by 
AFSA-ED is showed in Fig.9.

To determine the statistical differences between the 
AFSA-ED and the compared algorithms, the Friedman 

test and Holm procedure are conducted. The results are 
presented in Table 6. It can be seen from the Friedman 
test results that the differences among the six algorithms 
are statistically relevant with 98% certainty. The AFSA-
ED obtains the best overall rank. The holm procedure 
shows that the AFSA-ED obtains better results than the 
compared five algorithms, and the differences are 
statistically relevant with 97%, 66%, 81%, 86%, and 
67% certainty, respectively.

Table 5  Comparison between AFSA-ED and several existing algorithms on BRdata
Instance BKS AFSA-ED PVNS CDDS

( ) ( ) ( )
Mk01 40 40 (40) 11.11(11.11) 40 (40) 11.11(11.11) 40 (40) 11.11(11.11)
Mk02 26 26(26.10) 8.33(8.75) 26(26.04) 8.33(8.50) 26(26) 8.33(8.33)
Mk03 204 204(204) 0.00(0.00) 204(204) 0.00(0.00) 204(204) 0.00(0.00)
Mk04 60 60(60.27) 25.00(25.56) 60(60.60) 25.00(26.25) 60(60) 25.00(25.00)
Mk05 172 172(172.40) 2.38(2.62) 173(173) 2.98(2.98) 173(173.5) 2.98(3.27)
Mk06 57 57(58.60) 72.73(77.57) 60(61) 81.82(84.85) 58(59) 75.76(78.79)
Mk07 139 139(140.63) 4.51(5.73) 141(141.2) 6.02(6.17) 139(139) 4.51(4.51)
Mk08 523 523(523) 0.00(0.00) 523(523) 0.00(0.00) 523(523) 0.00(0.00)
Mk09 307 307(307.13) 2.68(2.72) 308(308.8) 3.01(3.28) 307(307) 2.68(2.68)
Mk10 197 201(201.93) 21.82(22.38) 208(209.4) 26.06(26.91) 197(197.75) 19.39(19.85)

14.85(15.64) 16.43(17.01) 14.98(15.34)

Table 5 (Continued.)  Comparison between AFSA-ED and several existing algorithms on BRdata

Instance BKS
ABC BEDA HHS

( ) ( ) ( )

Mk01 40 40 (40) 11.11(11.11) 40 (41.02) 11.11(13.94) 40 (40) 11.11(11.11)
Mk02 26 26(26.50) 8.33(10.24) 26(27.25) 8.33(13.54) 26(26.63) 8.33(10.96)
Mk03 204 204(204) 0.00(0.00) 204(204) 0.00(0.00) 204(204) 0.00(0.00)
Mk04 60 60(61.22) 25.00(27.54) 60(63.69) 25.00(32.69) 60(60.03) 25.00(25.06)
Mk05 172 172(172.98) 2.38(2.96) 173(173.38) 2.98(3.20) 172(172.80) 2.38(2.86)
Mk06 57 60(64.48) 81.82(95.39) 60(62.83) 81.82(90.39) 58(59.13) 75.76(79.18)
Mk07 139 139(141.42) 4.51(6.33) 139(141.55) 4.51(6.43) 139(139.57) 4.51(4.94)
Mk08 523 523(523) 0.00(0.00) 523(523) 0.00(0.00) 523(523) 0.00(0.00)
Mk09 307 307(308.76) 2.68(2.93) 307(310.35) 2.68(3.80) 307(307) 2.68(2.68)
Mk10 197 208(212.84) 26.06(28.99) 206(211.92) 24.85(28.44) 205(211.13) 24.24(27.96)

16.19(18.55) 16.07(19.24) 15.40(16.48)

Table 6 Friedman test and Holm procedure of different algorithms
Friedman test Holm procedure

Algorithm Rank 1 value Diff.? Algorithm 1 value
AFSA-ED 2.85

14.42 0.98 Yes

- - -
PVNS 4.50 AFSA-ED v.s. PVNS 1.97 0.98
CDDS 3.20 AFSA-ED v.s. CDDS 0.41 0.66
ABC 3.60 AFSA-ED v.s. ABC 0.89 0.81

BEDA 3.75 AFSA-ED v.s. BEDA 1.07 0.86
HHS 3.10 AFSA-ED v.s. HHS 0.29 0.67

Fig.9 Gantt chart of solution of MK06 obtained by AFSA-ED (makespan=57)

MRE

MRE
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5.2.3. Results of BCdata problems

In this subsection, we carry out experiments on 21 
instances of BCdata. The detail computational results 
are reported and compared with the CDDS and the 
HDE-N1 of Yuan et al. 43 in Table 7. As can be seen 
from Table 7, AFSA-ED outperforms CDDS and HDE-

N1 in 10 out of 21instances. For the cases of seti5xxx 
and seti5xyz, CDDS obtains the best results of three 
algorithms, while AFSA-ED obtains better results than 
HDE-N1. The average values and SD values of AFSA-
ED are better than HDE-N1. AFSA-ED offers the 
comparable results with HDE-N2 while being faster than 
HDE-N2.

Table 7 Comparison of AFSA-ED with CDDS and HDE-N1 on BCdata

Instance
×

Flex (LB,UB)
CDDS HDE-N1 HDE-N2 AFSA-ED

(s) (s) (s)
mt10x 10×11 1.10 (655,929) 918 918 918 922.86 6.11 21.43 918 918.58 2.20 179.22 918 918.00 0.00 23.47
mt10xx 10×12 1.20 (655,929) 918 918 918 922.04 6.31 21.70 918 918.38 1.90 179.84 918 918.53 1.35 20.91
mt10xxx 10×13 1.30 (655,936) 918 918 918 919.94 3.96 23.05 918 918.00 0.00 179.39 918 918.17 0.37 25.38
mt10xy 10×12 1.20 (655,913) 906 906 905 906.52 1.09 22.51 905 905.56 0.79 169.77 905 905.23 0.55 22.80
mt10xyz 10×13 1.30 (655,849) 849 850.5 847 856.80 3.99 21.79 847 851.14 4.65 160.24 847 851.07 2.93 24.63
mt10c1 10×11 1.10 (655,927) 928 928.5 927 928.92 1.96 21.07 927 927.72 0.45 174.19 927 927.20 0.47 23.35
mt10cc 10×12 1.20 (655,914) 910 910.75 910 913.92 3.40 21.00 908 910.60 2.40 165.61 908 908.40 1.13 40.86
setb4x 15×11 1.10 (846,937) 925 925 925 931.50 2.48 33.04 925 925.82 2.11 338.30 925 925.83 1.79 35.89
setb4xx 15×12 1.20 (847,930) 925 925 925 930.38 3.29 29.76 925 925.64 1.98 336.24 925 925.56 1.72 38.64
setb4xxx 15×13 1.30 (846,925) 925 925 925 931.42 3.59 29.89 925 925.48 1.68 353.55 925 925.60 1.45 36.42
setb4xy 15×12 1.20 (845,924) 916 916 910 921.38 4.44 31.13 910 914.00 3.50 330.18 910 913.90 2.70 36.50
setb4xyz 15×13 1.30 (838,914) 905 906.5 905 913.40 4.21 30.39 903 905.28 1.16 314.64 903 904.06 0.85 76.28
setb4c9 15×11 1.10 (857,924) 919 919 914 919.32 2.87 32.19 914 917.12 2.52 313.02 914 916.26 2.17 64.27
setb4cc 15×12 1.20 (857,909) 909 910.5 909 912.58 3.81 32.00 907 909.58 1.89 316.89 907 908.00 1.13 83.61
seti5x 15×16 1.07 (955,1218) 1201 1201.5 1204 1215.48 5.36 73.20 1200 1205.64 3.43 1112.77 1198 1202.95 2.64 153.82
seti5xx 15×17 1.13 (955,1204) 1199 1199 1202 1205.66 2.56 72.52 1197 1202.68 2.02 1078.60 1198 1201.23 1.99 93.12
seti5xxx 15×18 1.20 (955,1213) 1197 1197.5 1202 1206.10 3.18 72.07 1197 1202.26 2.37 1087.12 1197 1202.63 2.24 97.86
seti5xy 15×17 1.13 (955,1148) 1136 1138 1138 1146.86 5.04 78.98 1136 1137.98 2.82 1250.62 1136 1138.13 1.98 142.65
seti5xyz 15×18 1.20 (955,1127) 1125 1125.3 1130 1137.44 3.42 80.85 1125 1129.76 2.44 1244.22 1125 1129.53 1.76 405.74
seti5c12 15×16 1.07 (1027,1185) 1174 1174.5 1175 1182.54 7.62 69.06 1171 1175.42 1.63 1141.43 1174 1174.67 1.02 313.40
seti5cc 15×17 1.13 (955,1136) 1136 1137 1137 1145.62 5.58 78.83 1136 1137.76 2.48 1222.53 1136 1137.73 1.60 324.07

Table 8 lists the best makespan and the of 
AFSA-ED, TSBM2h by Bozejko et al. 13, CDDS37, IFS 
by Oddi et al. 44, HDE-N1 and HDE-N2 by Yuan et al.43.
For the IFS algorithm, its performance depends on the 
relaxing factor , the table lists the results obtained by 
running IFS with ranging from 0.2 to 0.7, respectively.
The difference between HDE-N1 and HDE-N2 is 
neighborhood structure. Moreover, HDE-N2 is more 
effective than HDE-N1, but its computational time is 
much longer than HDE-N1. From Table 8, as for the 
best makespan obtained, AFSA-ED obtains 85% of best 
known solutions, while TSBM2h obtains 81%, CDDS 
obtains 52%, IFS obtains 47%, HDE-N1 obtains 52%, 
and HDE-N2 obtains 95%. It can be seen that HDE-N2

outperforms AFSA-ED on two instances (seti5xxx, 
seti5c12), while AFSA-ED outperforms HDE-N2 on one 
instance (seti5x). In particular, the of best 
makespan of AFSA is 22.39%, faced to 22.45% for 

TSBM2h, 22.54% for CDDS, 22.55% for HDE-N1,
23.09% for IFS ( = 0.7), and 22.39% for HDE-N2. We 
note that AFSA-ED performs better than the TSBM2h, 
CDDS, IFS and HDE-N1, while the same with HDE-N2.
However, the HDE-N2 tends to spend long time for 
finding best solutions. To determine the statistical 
differences among the AFSA-ED and the compared 
algorithms, the Friedman test and Holm procedure are 
also conducted. The results are presented in Table 9. It 
can be seen that the differences among the six 
algorithms are statistically relevant with 100% certainty. 
The AFSA-ED and the HDE-N2 obtain the best overall 
rank. The Holm procedure shows that the AFSA-ED 
obtains the same results with the HDE-N2. The Holm 
procedure also shows that the AFSA-ED obtains better 
results than other four algorithms, and the differences 
are statistically relevant with 62%, 94%, 100%, and 
94%, respectively.
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Table 8 Comparison of results using different algorithms (AFSA-ED, TSBM2h, CDDS, IFS, HDE)
Instance BKS AFSA-ED TSBM2h CDDS IFS HDE-N1 HDE-N20.2 0.3 0.4 0.5 0.6 0.7
mt10x 918 918 922 918 980 936 936 934 918 918 918 918
mt10xx 918 918 918 918 936 929 936 933 918 926 918 918
mt10xxx 918 918 918 918 936 929 936 926 926 926 918 918
mt10xy 905 905 905 906 922 923 923 915 905 909 905 905
mt10xyz 847 847 849 849 878 858 851 862 847 851 847 847
mt10c1 927 927 927 928 943 937 986 934 934 927 927 927
mt10cc 908 908 908 910 926 923 919 919 910 911 910 908
setb4x 925 925 925 925 967 945 930 925 937 937 925 925
setb4xx 925 925 925 925 966 931 933 925 937 929 925 925
setb4xxx 925 925 925 925 941 930 950 950 942 935 925 925
setb4xy 910 910 910 916 910 941 936 936 916 914 910 910
setb4xyz 903 903 903 905 928 909 905 905 905 905 905 903
setb4c9 914 914 914 919 926 937 926 926 920 920 914 914
setb4cc 907 907 907 909 929 917 907 914 907 909 909 907
seti5x 1198 1198 1198 1201 1210 1199 1199 1205 1207 1209 1204 1200
seti5xx 1197 1198 1197 1199 1216 1199 1205 1211 1207 1206 1202 1197
seti5xxx 1197 1197 1197 1197 1205 1206 1206 1199 1206 1206 1202 1197
seti5xy 1136 1136 1136 1136 1175 1171 1175 1166 1156 1148 1138 1136
seti5xyz 1125 1125 1128 1125 1165 1149 1130 1134 1144 1131 1130 1125
seti5c12 1171 1174 1174 1174 1196 1209 1200 1198 1198 1175 1175 1171
seti5cc 1136 1136 1136 1136 1177 1155 1162 1166 1138 1150 1137 1136

22.39 22.45 22.54 25.48 24.25 24.44 23.96 23.28 23.09 22.55 22.39

Table 9 Friedman test and Holm procedure of different algorithms on BCdata
Friedman test Holm procedure
Algorithm Rank 1-p value Diff.? Algorithm z 1-p value
AFSA-ED 2.76

143.05 1.00 Yes

- - -
TSBM2h 3.10 AFSA-ED v.s. TSBM2h 0.33 0.62
CDDS 4.36 AFSA-ED v.s. CDDS 1.56 0.94
IFS 0.2 9.79 AFSA-ED v.s. IFS 0.2 6.86 1.00
IFS 0.3 8.88 AFSA-ED v.s. IFS 0.3 5.97 1.00
IFS 0.4 8.45 AFSA-ED v.s. IFS 0.4 5.55 1.00
IFS 0.5 7.95 AFSA-ED v.s. IFS 0.5 5.07 1.00
IFS 0.6 6.71 AFSA-ED v.s. IFS 0.6 3.85 1.00
IFS 0.7 6.83 AFSA-ED v.s. IFS 0.7 3.97 1.00
HDE-N1 4.40 AFSA-ED v.s. HDE- N1 1.60 0.94
HDE-N2 2.76 AFSA-ED v.s. HDE- N2 0.00 0.50

Table 10 Comparison of MRE obtained by using AFSA-ED , CDDS and HDE-N1 on HUdata

Instance
Edata ( =1.15) Rdata ( =2.0) Vdata ( [2.5,7.5])

CDDS   HDE-N1     AFSA-ED CDDS    HDE-N1     AFSA-ED CDDS HDE-N1    AFSA-ED

mt06/10/20 6×6
10×10
20×5

0.00
(0.05)

0.05
(0.13)

0.00
(0.08)

0.34
(0.47)

0.34
(0.45)

0.34
(0.39)

0.00
(0.00)

0.00
(0.01)

0.00
(0.00)

la01-la05 10×5 0.00
(0.73)

0.00
(0.00)

0.00
(0.00)

0.11
(0.28)

0.11
(0.31)

0.08
(0.22)

0.13
(0.23)

0.04
(0.19)

0.09
(0.20)

la06-la10 15×5 0.00
(0.19)

0.00
(0.10)

0.00
(0.06)

0.03
(0.19)

0.05
(0.10)

0.02
(0.15)

0.00
(0.00)

0.03
(0.10)

0.07
(0.11)

la11-la15 20×5 0.29
(1.12)

0.29
(0.29)

0.29
(0.29)

0.02
(0.37)

0.00
(0.02)

0.00
(0.22)

0.00
(0.00)

0.00
(0.01)

0.00
(0.00)

la16-la20 10×10 0.49
(1.15)

0.02
(0.48)

0.04
(0.45)

1.64
(1.90)

1.64
(1.69)

1.64
(1.65)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

la21-la25 15×10 5.70
(6.27)

5.82
(6.41)

5.66
(6.35)

3.82
(4.26)

3.73
(4.57)

3.68
(4.46)

0.70
(1.01)

1.63
(2.15)

1.40
(1.89)

la26-la30 20×10 3.96
(4.84)

3.89
(4.71)

3.78
(4.69)

0.66
(0.98)

1.04
(1.41)

0.97
(0.84)

0.11
(0.19)

0.42
(0.63)

0.09
(0.17)

la31-la35 30×10 0.42
(0.83)

0.50
(0.59)

0.37
(0.55)

0.22
(0.41)

0.22
(0.33)

0.18
(0.33)

0.02
(0.04)

0.12
(0.18)

0.07
(0.12)

la36-la40 15×15 9.10
(9.88)

9.63
(10.43)

9.64
(9.95)

4.85
(4.97)

3.98
(4.92)

3.89
(4.88)

0.00
(0.00)

0.00
(0.01)

0.00
(0.00)

(%) 2.32
(2.91)

2.35
(2.68)

2.30
(2.60)

1.34
(1.59)

1.28
(1.59)

1.24
(1.51)

0.12
(0.16)

0.26
(0.38)

0.20
(0.29)

n m

MRE
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5.2.4. Results of HUdata problems

This subsection shows the results of AFSA-ED for 
HUdata benchmark instances. Table 10 presents the 
MRE of the best makespan and average makespan 
obtained by AFSA-ED, CDDS and HDE-N1. It can be 
seen that AFSA can obtain the MRE of best value of 
2.30%, 1.24% and 0.20% for Edata, Rdata and Vdata, 
respectively, while CDDS can obtain the MRE of best 
value of 2.32%, 1.34% and 0.12%, respectively, HED-
N1 can obtain the MRE of best value of 2.35%, 1.28% 
and 0.26%, respectively. Compared with CDDS, AFSA-
ED could obtain better results than CDDS for some 

instances of Edata (la16-la35), some instances of Rdata 
(la01-la15, la31-la40), and some instances of Vdata 
(la01-la05, la26-la30). For the MRE of best and average 
makespan, AFSA-ED outperforms CDDS for Edata and 
Rdata, while CDDS obtains the best result of three 
algorithms for Vdata. In comparison with HDE-N1,
AFSA-ED can obtain better results than HDE for some 
instances of Edata (mt06/10/20, la21-35), some 
instances of Rdata (la01-10,la21-40) and some instances 
of Rdata (la06-10,la21-35). For the MRE of best and 
average makespan, AFSA-ED outperforms HDE-N1 for 
three datasets.

Table 11 MRE of the best makespan obtained by AFSA-ED and other known algorithms
Dada set AFSA-ED GA_Chen TS GA_Pezzella CDDS PVNS HHS HDE-N1 HDE-N2

BRdata 10 14.85 19.55 19.55 17.53 14.98 16.39 15.40 15.58 14.67
BCdata 21 22.39 38.64 38.64 29.56 22.54 26.66 22.89 22.55 22.39

Hurink Edata 43 2.30 5.59 2.17 6.00 2.32 3.86 2.67 2.35 2.11
Hurink Rdata 43 1.24 4.41 1.24 4.42 1.34 1.88 1.88 1.28 1.05
Hurink Vdata 43 0. 20 2.59 0.095 2.04 0.12 0.42 0.39 0.26 0.080

5.3. Discussions

In Table 11, we summarize the of the best 
makespan obtained by our algorithm and other known 
algorithm for BRdata set, BCdata set and HUdata set.
The first column shows the name of data set, the second 
column shows the number of problems for each set, the 
following nine columns show the MRE of AFSA-ED, 
GA of Chen15, TS of Mastrolilli 12, GA of Pezzella17,
CDDS, PVNS, HHS, HDE-N1 and HDE-N2. As can be 
seen in Table 11, HDE-N2 achieves the state-of-the-art 
performance on three data sets. Except for HDE-N2,
AFSA-ED outperforms the other seven algorithms on 
BRdata and BCdata; it outperforms GA_Chen, 
GA_Pezzella, PVNS and HHS on three sub-data sets of 
HUdata, and CDDS on Edata and Rdata. TS works 
better than AFSA-ED on the HUdata, and CDDS works 
better than AFSA-ED on Vdata. In particular, HDE-N2
is a time consuming algorithm, in which the 
computational time is about 5 times longer than AFSA-
ED as shown in Table 7. In conclusion, the results show 
that the AFSA-ED is an effective algorithm for FJSP.

6. Conclusion

In this paper, an efficient artificial fish swarm algorithm 
with estimation of distribution was proposed for solving 
the flexible job-shop scheduling problem with the 
criterion to minimize the makespan. Considering the 
interaction of two sub-problems, we propose the pre-

principle and post-principle arranging mechanism to 
adjust machine assignment and operation sequence with 
different orders. For improving the global exploration of 
algorithm, we modify preying behavior with estimation 
of distribution and embed attracting behavior to the 
algorithm. To balance the exploration and exploitation, 
the critical path based local search was used. The 
proposed algorithm is tested on 160 well known 
benchmark instances and 121 best known solutions are 
found. The computational results and comparisons 
demonstrate that the proposed AFSA-ED outperforms 
several existing algorithms and is especially effective 
for the FJSP. In the future research, the AFSA could be 
used in multi-objective FJSP or many real world 
manufacturing systems.
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