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Abstract

Optimized task scheduling is one of the most important challenges in parallel and distributed systems. In such 
architectures during compile step, each program is decomposed into the smaller segments so-called tasks. Tasks of 
a program may be dependent; some tasks may need data generated by the others to start. To formulate the problem, 
precedence constraints, required execution times of tasks, and communication costs among them are modeled using 
a directed acyclic graph (DAG) named task-graph. The tasks must be assigned to a predefined number of 
processors in such a way that the program completion time is minimized, and the precedence constraints are 
preserved. It is well known to be NP-hard in general form and most restricted cases; therefore, a number of 
heuristic and meta-heuristic approaches have so far been proposed in the literature to find near-optimum solutions 
for this problem. We believe that ant colony optimization (ACO) is one of the best methods to cope with such kind 
of problems presented by graph. ACO is a metaheuristic approach inspired from social behavior of real ants. It is a 
multi-agent approach in which artificial ants (agents) try to find the shortest path to solve the given problem using 
an indirect local communication called stigmergy. Stigmergy lets ACO to be fast and efficient in comparison with 
other metaheuristics and evolutionary algorithms. In this paper, artificial ants, in a cooperative manner, try to solve 
static task scheduling problem in homogeneous multiprocessor environments. Set of different experiments on 
various task-graphs has been conducted, and the results reveal that the proposed approach outperforms the 
conventional methods from the performance point of view.

Keywords: Ant colony optimization (ACO); metaheuristics; multiprocessor task scheduling; parallel and distributed 
systems.

1. Introduction

Today, the utilization of multiprocessor systems has
been increased due to increase in time complexity of the 
programs and decrease in hardware costs. In such
systems, programs are divided into the smaller and 
dependent segments named tasks. Some tasks need the 
data generated by the other tasks; hence, the problem 
can be modeled using a directed acyclic graph (DAG) 
so-called task graph. In the task graph, nodes are tasks 
and edges indicate the precedence constraints between 
tasks. The required execution time of each task, 
communication costs, and precedence constraints are 
specified during the program's compile step. Tasks 
should be mapped into the processors with respect to

their precedence so that the overall finish time of the 
given program is minimized.

Multiprocessor task scheduling problem is NP-hard
[1], and achieving the best possible solution is generally 
too time-consuming and maybe impossible specially for 
entries with high dimensions; therefore, we have to use 
intelligent approaches to find near-optimum solutions.
Different algorithms proposed to schedule 
multiprocessor task graph [2], [3] are divided into the 
two categories: heuristics and non-heuristics. Some of
the heuristics named TDB (Task Duplication Based) 
such as PY1 [4], DSH2 [5], LWB3 [6], BTDH4 [7], 
LCTD5 [8], CPFD6 [9], MJD7 [10], and DFRN8 [11] 
allow task duplication over processors to skip over the 
communication costs between tasks and their children in
order to make the finish time shorter. There are two
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important issues to be addressed for designing an 
effective task duplication technique. 1) Which nodes to 
duplicate? 2) Where to duplicate the nodes? 
Furthermore, task duplication requires more memory,
and cannot be used for some applications such as bank-
transactions.

Other heuristics do not allow task-duplication, 
themselves are divided into the two groups. First, the 
UNC (Unbounded Number of Clusters) methods such as
LC9 [12], EZ10 [13], MD11 [14], DSC12 [15], and DSP13

[16], which assume an unbounded number of processors 
using task-graph clustering. That is, they part the given 
task-graph into the some clusters, and then assign the 
clusters to the processors. They find the optimal number 
of processors implicitly. However, unlimited number of 
processor elements (or a large number of ones) may not 
be available in the real problems. Actually, in most the 
cases, the number of processors is predefined and 
constant.

Second, the BNP (Bounded Number of Processors) 
methods such as HLFET14 [17], ISH15 [5], CLANS16

[18], LAST17 [19], EFT18 [20], DLS19 [21], and MCP20

[14], in which the number of processors are restricted 
using list-scheduling technique (the proposed approach 
is in this group). They make a list of ready-tasks at each 
stage, and assign them some priorities. Then, the most 
priority task in the ready-list is selected to schedule on 
the processor that allows the earliest start time, until all 
the tasks are scheduled. 

Finally, among non-heuristic approaches, one can 
see genetic algorithm (GA) [22]-[32], simulated 
annealing (SA) [33], and local search [34]. Although
genetic algorithm has a significant contribution, the 
necessary time for its execution is usually more than 
random running of the tasks, especially in the given 
entries with low dimensions; therefore, trends to apply 
the faster and more efficient methods such ant colony 
optimization have been raised a lot nowadays.

Ant colony optimization (ACO) is a meta-heuristic 
approach simulating social behavior of real ants. Ants 
always find the shortest path from the nest to the food 
and vice versa. Artificial counterparts try to find the 
shortest solution of the given problem on the same 
basis. Dorigo et al. first utilized ant algorithm as a 
multi-agent approach to solve the traveling sales man 
problem (TSP) [35] and after that, it has been 
successfully used to solve a large number of difficult 
discrete optimization problems [36].

The author was the first who applied ACO to the 
static multiprocessor task-graph scheduling [46], though 
the introduced approach had some drawbacks. First of 
all, the priority measurements were not included in the
study, while the utilization of them as heuristic values 
push the ACO algorithm by far ahead. Second, the 
experiments were conducted only on the small input 

task graphs, while in this paper a comprehensive set of 
large-scale task graphs have been introduced, and the 
behavior of the proposed approach on them have been 
carefully studied. We believe the most contribution of
this work is to classify and formulate the static task-
graph scheduling in homogeneous multiprocessor 
environments in a clear and comprehensive way, and to 
propose a novel framework based on the ACO, which is 
superior in comparison with the traditional procedures.

The organization of the rest of the paper is as 
follows. In the following Section, multiprocessor task 
scheduling problem is surveyed in detail. Ant colony 
optimization is discussed in the Section 3. Section 4
introduces the proposed approach. Section 5 is devoted 
to implementation details and the results, and finally, 
the paper is concluded in the last Section. 

2. Multiprocessor Task Scheduling

A directed acyclic graph G = {N, E, W, C} named 
task graph is used to model the multiprocessor task 
scheduling problem, where N = {n1, n2,…, nn},
E = {(ni, nj) | ni, nj N} W = {w1, w2,…, wn}, 
C = {c(ni, nj) | (ni, nj) E), and n are set of nodes, set of 
edges, set of weights of nodes, set of weights of edges, 
and the number of nodes, respectively. 

Fig. 1 shows a task graph for a real program 
consisting of nine tasks. In this graph, nodes are tasks 
and edges specify precedence constraints between tasks. 
Edge (ni, nj) E demonstrates that task ni must be 
finished before the starting of task nj. In this case, ni is 
called a parent, and nj is called a child. Nodes without 
any parents and nodes without any children are called 
“entry nodes” and “exit nodes”, respectively. Each node
weight like wi is the necessary execution time of task ni,
and weight of edge like c(ni, nj) is the required time for 
data transmission from task ni to task nj identified as 
communication cost. If both ni and nj are executed on 
the same processor, the communication cost will be zero 
between them. Tasks execution time and precedence 
constraints between tasks are generated during the 
program compiling-stage. Tasks should be mapped into 
the given m processor elements according to their 
precedence so that the overall finish time of the tasks 
would be minimized.

Most BNP scheduling algorithms are based on the 
so-called list-scheduling technique. The basic idea 
behind list-scheduling is to make a sequence of nodes as 
a list for scheduling by assigning them some priorities, 
then repeatedly removing the most priority node from 
the list, and allocating it to the processor that allows the 
earliest-start-time (EST), until all the nodes in the graph 
are scheduled. The results achieved by such BNP 
methods are dominated by two major factors. Firstly, 
which order of tasks should be selected (sequence
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subproblem), and secondly, how the selected order 
should be assigned to the processors (assigning 
subproblem).

If all the parents of task ni were executed on the 
processor pj, EST(ni, pj) would be Avail(pj), that is the 
earliest time at which pj is available to execute the next 
task. Otherwise, the earliest-start-time for task ni on 
processor pj should be computed using

),()(max),(max),(
)( immnParentsnjji nncnFTpAvailpnEST

im ,
(1)

where FT(nm) = EST(nm) + wm is the actual finish-time 

of task nm, and Parents(ni) is the set of all parents of ni.
Finally, the total finish time of the program (or 
makespan) is calculated by (2).

)(max i

n

i
nFTmakespan

1
                                            (2)

For a given task-graph with n tasks using its 
adjacency matrix, an efficient implementation for 
assigning all the tasks in the task-graph to a given m
identical processors using EST method has a time-
complexity belonging to the O(mn2) [2].

Some frequently used attributes to assign priority to 
the tasks are TLevel (Top-Level), BLevel (Bottom-
Level), SLevel (Static-Level), ALAP (As-Late-As-
Possible), and the new proposed NOO (The-Number-
Of-Offspring) [47]. The TLevel or ASAP (As-Soon-As-
Possible) of a node ni is the length of the longest path 
from an entry node to the ni excluding ni itself, where 
the length of a path is the sum of all the nodes and edges 
weights along the path. The TLevel of each node in the 
task graph can be computed by traversing the graph in 
topological order using

jijjnParentsji wnncnTLevelnTLevel
i

),()(max)(
)(

(3)

The BLevel of a node ni is the length of the longest 
path from ni to an exit node. It can be computed for each 
task by traversing the graph in the reversed topological 
order as follows:

ijijnChildrenji wnncnBLevelnBLevel
i

),()(max)(
)(

, (4)

where Children(ni) is set of all children of ni.
If the edges weights are not considered in the

computation of BLevel, a new attribute called Static-
Level or simply SLevel can be generated using (5).

ijnChildrenji wnSLevelnSLevel
i

)(max)(
)(

                 (5)

The ALAP start-time of a node is a measure of how 
far the node's start-time can be delayed without
increasing the overall schedule-length. It can be drawn
for each node by using (6).

ijijnChildrenji wnncnALAPCPLnALAP
i

),()(,min)(
)( , (6)

where CPL is the Critical-Path-Length, that is, the 
length of the longest path in the task graph. 

Finally, the NOO of ni is simply the number of all its 
descendants (or offspring). Table 1 lists the above-
mentioned measures for each node in the task graph of 
Fig. 1. 

To open up how these measures can be utilized in 
order to schedule tasks of a task-graph, four well-known 
traditional list-scheduling algorithms (of course, on 
behalf of the BNP class) are surveyed as follows.

Table 1. TLevel, BLevel, SLevel, ALAP, and NOO of each 
node in the task graph of Fig. 1.

Node TLevel BLevel SLevel ALAP NOO

n1 0 37 12 0 8
n2 6 23 8 14 4
n3 3 23 8 14 3
n4 3 20 9 17 2
n5 3 30 10 7 2
n6 10 15 5 22 1
n7 22 15 5 22 1

n8 18 15 5 22 1

n9 36 1 1 36 0
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Fig.1. Task graph of a program with nine tasks [32].

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

802



H.R. Boveiri / A Novel ACO-Based Static Task Scheduling Approach

2.1. The HLFET Algorithm

The HLFET (Highest Level First with Estimated 
Times) [17] first calculates the SLevel of each node in 
the given task-graph. Then, make a ready-list in the
descending order of SLevel. At each instant, it schedules 
the first node in the ready-list to the processor that 
allows the earliest-execution-time (using the non-
insertion approach) and then, updates the ready-list by 
inserting the new nodes ready now to be executed, until 
all the nodes are scheduled. For this algorithm, the time-
complexity of the sequencing subproblem for a task-
graph with n tasks is O(n2), where assigning tasks to the 
m given processor using EST belongs to O(mn2).
Fig. 2 (a) shows the scheduling Gantt chart of the graph 
in Fig. 1 using HLFET algorithm on two processor 
elements.

2.2. The MCP Algorithm

The MCP (Modified Critical Path) algorithm [14]
uses the ALAP of the nodes as priority. It first computes 
the ALAP times of all the nodes, and then constructs a 
ready-list in the ascending order of ALAPs. Ties are 
broken by considering the ALAP times of the children of 
the nodes. The MCP algorithm then schedules the nodes 
in the list one by one to the processor that allows the 
earliest-start-time using the insertion approach. For this 
algorithm, time-complexity of sequencing subproblem 

for a task-graph with n tasks is O(n2log n), where 
assigning tasks to the m given processor using EST 
belongs to O(mn2). The scheduling of the graph of Fig. 
1 using MCP algorithm on two processor elements is 
shown by Fig. 2 (b).

2.3. The DLS Algorithm

The DLS (Dynamic Level Scheduling) algorithm 
[21] uses an attribute called dynamic-level (or DL) that 
is the difference between SLevel of a node and its 
earliest-start-time on a processor. At each scheduling 
step, the DLS algorithm computes the DL for every 
node in the ready-list on all the processors. The node-
processor pair that gives the largest DL is selected to 
schedule, until all the nodes are scheduled. The 
algorithm tends to schedule nodes in a descending order 
of SLevel at the beginning, but nodes in an ascending 
order of their TLevel near the end of the scheduling 
process. The overall time-complexity of algorithm 
belongs to O(mn3). Fig. 2 (c) shows scheduling of the
graph of Fig. 1 using DLS algorithm on two processor 
elements.

2.4. The ETF Algorithm

The ETF (Earliest Time First) algorithm [20]
computes the earliest-start-times for all the nodes in the 
ready-list by investigating the start-time of a node on all 
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Fig. 2. The scheduling of the task graph of Fig.1 using the four different traditional heuristics. (a) The HLFET algorithm. (b) The MCP 
algorithm. (c) The DLS algorithm. (d) The ETF algorithm.  
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the processors exhaustively. Then, it selects a node that 
has the smallest start-time for scheduling; ties are 
broken by selecting the node with the higher SLevel
priority. The overall time-complexity of algorithm 
belongs to O(mn3). The scheduling of the graph of Fig. 
1 using EST algorithm on two processor elements is 
shown by Fig. 2 (d).

3. Ant Colony Optimization

Ant colony metaheuristic is a concurrent algorithm 
in which a colony of artificial ants cooperates to find 
optimized solutions of a given problem. Ant algorithm 
was first proposed by Dorigo et al. as a multi-agent 
approach to solve traveling salesman problem (TSP) 
and since then, it has been successfully applied to a
wide range of difficult discrete optimization problems 
such as quadratic assignment problem (QAP) [37], job 
shop scheduling (JSP) [38], vehicle routing [39], graph 

coloring [40], sequential ordering [41], network routing 
[42], to mention a few.

Leaving the nest, ants have a completely random 
behavior. As soon as they find a food, while walking 
from the food to the nest, they deposit on the ground a 
chemical substance called pheromone, forming in this 
manner a pheromone trail. Ants smell pheromone. Other 
ants are attracted by environmental pheromone, and 
subsequently they will find the food source too. More 
pheromone is deposited, more ants are attracted, and 
more ants will find the food. It is a kind of autocatalytic 
behavior. In this way (by pheromone trails), ants have 
an indirect communication, which are locally accessible 
by the ants so-called stigmergy, a powerful tool 
enabling them to be very fast and efficient. Pheromone 
is evaporated by sunshine and environmental heat, time 
by time, destroying undesirable pheromone paths.

If an obstacle, of which one side is longer than the 
other side, cuts the pheromone trail. At first, ants have 
random motions to circle round the obstacle. 
Nevertheless, the pheromone of the longer side is 
evaporated faster, little by little, ants will convergence 
to the shorter side, and hereby, they always find the 
shortest path from food to the nest vice versa.

Ant colony optimization tries to simulate this 
foraging behavior. In the beginning, each state of the 
problem takes a numerical variable named pheromone-
trail or simply pheromone. Initially these variables have 
an identical and very small value. Ant colony 
optimization is an iterative algorithm. In each iteration, 
one or more ants are generated. In fact, each artificial 
ant is just a list (called Tabu-list) keeping the visited 
states by the ant. The generated ant is placed on the start 
state, and then selects next state using a probabilistic 
decision based on the value of pheromone trails of the 
adjacent states. The ant repeats this operation, until it 
reaches to a final state. In this time, the values of the 
pheromone variables for the visited states are increased 
based on the desirability of the achieved solution 
(depositing pheromone). Finally, all the variables are 
decreased simulating pheromone evaporation. By mean 
of this mechanism ants will be converged to the more 
optimal solutions.

One of the superiorities of ant colony optimization 
as compared to the Genetic algorithm is, as said before, 
indirect communication among ants using the 
pheromone variables. In contrast to the Genetic 
algorithm, in which decisions are often random and 
based on the mutation and cross over (many experiences 
will be also eliminated by throwing the weaker 
chromosomes away); in ant colony optimization, all 
decisions are purposeful and based on the cumulative 
experiments of all the previous ants. This indirect 
communication enables ant colony optimization to be 
more preciously and more quickly.
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Fig. 3. The flowchart of the proposed approach.
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4. The Proposed Approach

At first, an n×n matrix named is considered as 
pheromone variables, where n is the number of tasks in 
the given task graph. Actually, ij is the desirability of 
selecting task nj just after task ni. All the elements of the 
matrix initiate with a same and very small value. Then,
the iterative ant colony algorithm is executed. Each 
iteration has the following steps:

1. Generate ant (or ants).
2. Loop for each ant (until a complete scheduling of 

all the tasks in the given task-graph).
- Select the next task according to the pheromone 
variables of the ready-tasks using a probabilistic 
decision-making.

3. Deposit pheromone on the visited states.
4. Daemon activities (to boost the algorithm)
5. Evaporate pheromone.

A flowchart of these operations with more details 
and a complete implementation in pseudo-code are 
also shown in Fig. 3 and Fig. 4, respectively. In the first 
stage, just a list with the length of n, is created as ant. At 

00: int n the_number_of_nodes_in_the_task_order;
01: int m the_number_of_existing_processor_elements;
02: int Ready-List [1..n] 0; {“Current set of the tasks ready to be scheduled considering precedence constraints among tasks”}
03: int Parents [1..n] 0; {“The number of yet unscheduled parents for each task”}
04: int w [1..n] Required execution times of all the tasks
05: int [1..n, 1..n] ; {“Initiating the global pheromone matrix by a uniform very small value”}
06: int a [1..n] 0; {“The desirability of assigning a task to each of the m existing processors”}
07: int p [1..n] 0; {“The probability of assigning a task to each of the m existing processors”}
08: int FT [1..n] 0; {“The actual finish-time for each task”}
09: int Ant1..x [1..n]; {“Where x is the_total_number_of_the_ants”} 
10: int Antmin [1..n] ;
11: int makespan;
12: for k = 1 to the_total_number_of_the_ants
13: Antk [1..n] 0; {“Initiating Antk and Parents”}
14:     Parents [1..n] The total number of  parents for each task;
15:     for t = 1 to n {“For all the tasks in the task-graph”}
16:         for i = 1 to n {“Regeneration of Ready-list”}
17:             if Parents [i] = 0 then AddQueue (ni, Ready-List [ ]); {“Insert ni in to the rear of Ready-List”}
18:         next i           
19:         for j = 1 to all the ready tasks in the Ready-List [ ] 
20:             compute_the_desirability_vector (at [j]); {“Using Eq. (7)”}
21:             compute_the_probability_vector (pt [j]); {“Using Eq. (8)”}
22:         next j
23:         r randomized_number (between [0, 1));
24:         Antk [t] for iteration t, select one of the ready tasks stochastically based on the generated r and pt [1..n];
25:         DeleteQueue (Ready-List [ ], Antk [t]); {“Delete the selected task from the Ready-List”}
26:         for i = 1 to n {“For each child of the selected task i.e. Antk [t]”}
27:              if Antk [t] Parents (ni) then Parents [i] = Parents [i] - 1;
28:         next i
29:     next t
30:     for i = 1 to n {“For the task-order generated by Antk”}
31:        FT [i] = EST (ni) + w [i]; {“Calculating actual finish-time for each task using Eq. (1)”}
32:      next i
33:     makespan MAX (FT [1..n]); {“The maximum finish-time among all the tasks”}
34:     for i = 1 to n - 1 {“Depositing pheromone on the visited states by Antk”}
35:        update [Antk [i], Antk [i + 1]] based on the achieved makespan; {“Using Eq. (9)”}
36:      next i
37:     if Antk < Antmin then Antmin = Antk; {“Starting daemon activities”}
38:     for i = 1 to n - 1 {“Depositing pheromone on the visited states in Antmin”}
39:        update [Antmin [i], Antmin [i + 1]] based on the makespan of Antmin; {“Using Eq. (10)”}
40:     next i
41:     for i = 1 to n
42:         for j = 1 to n
43: [i, j] [i, j] × (1 – ); {“Pheromone evaporation using Eq. (11)”}
44:     next i, j
45: next k
46: print Antmin;

Fig. 4. The proposed approach in pseudo-code.
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first, this list is empty, and will be completed during the 
next stage. In the second stage, there is a loop for each 
ant. In each iteration, the generated ant must select a 
task from the ready-list using a probabilistic decision-
making based on the values of the pheromone variables 
and heuristic values (priorities) of the tasks. The
desirability of selecting task nj just after selecting task ni
at iteration t is obtained by the composition of the local
pheromone trail values with the local heuristic values
(priorities) as follows:

)(
][)]([

][)]([
)(

)(

tj
t

t
ta

tl
lil

jij
ij

, (7)

where ij(t) is the amount of pheromone on the edge
(ni, nj) at time instant t, j is the heuristic value (priority 
measurement) of task nj, (t) is the current set of ready-
tasks (ready-list), and and are two parameters that 
control the relative weight of pheromone trail and 
heuristic-value. It should be noted that different priority 
measurements such as TLevel, BLevel, SLevel, ALAP,
and NOO can be used as heuristic values, and the best 
one should be selected experimentally). For ant k at time 
instant t, the probability of selecting task nj just after 
selecting task ni is computed using (8).

)(

)(
)(

tl
il

ijk
ij a

ta
tp (8)

Then a random number is generated, and the next 
task will be selected according to the generated number;
of course, for each ready-task, the bigger pheromone
value and the bigger priority, the bigger chance to be 
selected. The selected task is appended to the ant's list, 
removed from the ready-list, and its children ready-to-
be-executed-now will be augmented to the ready-list. 
These operations are repeated, until the complete 
scheduling of all the tasks, which means the completion
of the ant's list.

In the third stage, tasks are extracted from the ant's 
list one by one, and mapped to the processors that 
supply the earliest-start-time. Then, the maximum 
finish-time is calculated as makespan that is also the
desirability of the obtained scheduling for this ant. 
According to this desirability, the quantity of 
pheromone which should be deposited on the visited 
states is calculated by

k
jik

k
ij Tnnif

L
),(1 , (9)

where Lk is the overall-finish-time or makespan
obtained by ant k and Tk is the executed tour of this ant. 
Accordingly, k

ij should be deposited on every ij if 

and only if the (ni, nj) exists in the Tk (task nj has been
selected just after task ni). Otherwise, ij will be 
remained unchanged. 

In the fourth stage (daemon activity), to intensify 
and to avoid removing the good solutions, the best-ant-
until-now (Antmin), is selected (as the best solution), and 
some extra pheromone is deposited on the states visited 
by this ant using

min
min

min ),(1 Tnnif
L jiij (10)

In the last stage, by using (11), pheromone variables 
are decreased simulating pheromone evaporation in the
real environments. It should be taken to avoid premature 
convergence and stagnation because of the local 
minima.

ijij )1( , (11)

where, is the evaporation rate in the range of [0, 1)
should be determined experimentally.

5. Implementation Details and Experimental 
Results

The proposed approach was implemented on a 
Pentium IV (2.6 GHz LGA) desktop computer with 
Microsoft Windows XP (SP2) platform using Microsoft 
Visual Basic 6.0 programming language. All initial 
values of the pheromone variables were identically set 
to 0.1. The evaporation rate was considered as 0.998, 
and the parameters and were elected 1 and 0.5 
respectively obtained experimentally. The algorithm 
was terminated after 1500 iterations, that is, after 
generating 1500 ants.

The implementation of the proposed approach in 
pseudo-code in Fig. 4 reveals that there are two main 
iterations in the sequencing subproblem (lines 12, 15,
and 16) and (lines 12, 41, and 42) with time-complexity

(the_total_number_of_the_ants × n2) where n is the 
number of tasks in the task graph. Since 
the_total_number_of_the_ants is a constant initiated to 
2500, for the big-enough numbers of n, we can assume 
that overall time-complexity of the proposed approach
in sequencing subproblem belongs to the O(n2), which 
is equal or better than the traditional preintroduced 
heuristic methods. On the other hand, the time-
complexity of assigning the generated task-order to the 
existing m processors using EST method (lines 30 and 
31) is O(mn2) as usual.

5.1. The Utilized Dataset

Table 2 lists six task graphs of the real-world 
applications (and their comments) considered to 
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evaluate the proposed approach. These six graphs are 
the standard ones in the literature, and have utilized to 
evaluate a number of related works; hence, they let us to 
compare the proposed approach versus its traditional 
counterparts. All these six graphs are used to compare 
the proposed approach against the traditional heuristics,
not only the BNP algorithms but also the UNC ones, 
and then, the proposed approach will be evaluated in 
comparison with the genetic algorithm using the last 
two graphs (that are G5 and G6).

In addition, a set of 45 random task graphs are used 
for better evaluation of the proposed approach. These
random task graphs have different shapes on the three 
following parameters:

Size (n): that is the number of tasks in the task 
graph. Five different values were considered {32, 
64, 128, 256, and 512}.
Communication-to-Computation Ratio (CCR): 
demonstrate how much a graph is communication 
or computation base. The weight of each node was 
randomly selected from uniform distribution with 
mean equal to the specified average computation 
cost that was 50 time-instance. The weight of each 
edge was also randomly selected from a uniform 
distribution with mean equal to average-
computation-cost CCR. Three different values of 
CCR were selected {0.1, 1.0, and 5.0}. Selecting 
0.1 makes computation intensive task-graphs. In 
contrast, selecting 5.0 makes communication 
intensive ones.
Parallelism: the parameter which determine the 
average number of children for each node in the 
task-graph. Increase in this parameter makes the 

graph more connected. Three different values of 
parallelism were chosen {3, 5, and 12}.

Because the achieved makespans extracted from
these random graphs are in a wide range according to
their various parameters, NSL (normalized schedule 
length), which is a normalized measure, is used. It can 
be calculated for every inputted task-graph by dividing 
the achieved makespan to the lower bound defined as 
the sum of weights of the nodes on the original critical 
path:

CPn i
i

w
LengthScheduleNSL ,                                       (12)

where CP is the set of nodes on the critical path (the 
longest path) of the given graph.

5.2. The Experiments and Results

The first set of experiments has been conducted to 
select the proper heuristic values for using in the (7).
Table 3 lists the results of mean of 10 times of 
algorithm execution on the six given graphs using 
various priority measurements that are TLevel, BLevel,
SLevel, ALAP, and NOO. The algorithm using SLevel
was statistically more successful. Therefore, this priority 
measurement will be used in all the subsequent
experiments.

The second set of experiments evaluates the 
proposed approach against the four introduced
traditional BNP heuristics (in Section 2) using all the six 
given graphs in Table 2. Table 4 shows the best 
achieved scheduling for the proposed approach along 
with these heuristics using only two processor elements.
As one can see, the proposed approach outperforms the 
heuristics by far in all the cases. 

Table 2. Selected task graphs for evaluating the proposed 
approach

Communication  
CostsNodesCommentsGraph

Variable9Kwok and Ahmad [2]G1
Variable17Al-Mouhamed [43]G2

60 and 4018Wu and Gajski [14]G3
Variable16Al-Maasarani [44]G4
Variable9Fig. 1 [32]G5

120 and 8018Hwang et al. [32]G6

Table 3. Results of mean of 10 times of execution of
algorithm using different priority measurements as heuristic 

values

Graph TLevel BLevel SLevel ALAP NOO

G1 16.9 16.2 16.1 16.2 16.2
G2 38 38 38 38 38
G3 390 390 390 390 390
G4 47 47 47 47 47
G5 23.9 23.5 23.4 23.7 23.2
G6 470 470 459 443 470
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In the next set of experiments, the number of 
processor elements is large enough for each algorithm to
show its best performance. This experiment makes it 
possible to compare the proposed approach against not 
only the traditional BNP heuristics but also the UNC 
ones. The results of these experiments have been listed
in Table 5. In addition, the best-achieved-solutions of 
the proposed approach have been shown in Fig. 5.
Again, in these experiments, the proposed approach
outperforms the other methods.

The last two graphs evaluate the proposed approach 
compared to the one of the best genetic algorithms
proposed for multiprocessor task scheduling (without 
task duplication) [32]. Table 6 lists achieved results of 
not only these two algorithms but also four other 
traditional ones (for better justification). The results 
show the proposed approach with the genetic algorithm 
outperforms the other methods, yet the proposed 
approach has a better performance on the last graph. It 
should be noted that in this genetic algorithm, each 
generation has 100 chromosomes and the maximum 
number of generations is 1000, that is, it achieves its
best scheduling by generating 100,000 solutions while 
the proposed approach examines only 1500 complete 
scheduling (1500 ants) to find its best answer. In other 
words, the proposed approach finds the solution faster 
than the genetic algorithm. It is logical because the ant 
colony optimization has an indirect communication by 
pheromone variables (Stigmergy) so that each new 
decision is based on the cumulative experience of all the 
previous ants.

The last set of the experiments is conducted using 
random task graphs. Fig. 6 illustrates the achieved 
results (in NSL) for the proposed approach besides its
traditional counterparts with respect to the different 
graph sizes. The entire 45 random task graphs are used, 
and the results are favored again the proposed approach.
In addition, Fig. 7 shows the diagram of the achieved
NSLs of the entire 45 random task graphs regarding 
utilization of the different number of processors. Again, 
the proposed approach outperforms the other methods
by far in all the cases, and this confirms the prior 
experiments.

6. Conclusion

In this paper, a new proposed approach based on ant 
colony optimization for multiprocessor task scheduling 
problem was introduced. The proposed approach is an 
iterative algorithm. In each iteration, an ant is created 
which finally produces a complete scheduling by 
assigning tasks to the processors using a probabilistic 
decision-making based on the dynamic pheromone 
variables and heuristics values (the priority 
measurement of the tasks). A set of experiments was 
conducted to specify the qualified priority measurement 
as heuristic values for each task. TLevel, BLevel, SLevel,
ALAP, and NOO were considered, and finally the results 
showed that SLevel is more appropriate. Besides, six 
task graphs (G1-G6) were elected to evaluate the 
proposed approach against not only the traditional 
heuristics but also the genetic algorithm. Two sets of 
experiments were done to compare the proposed 
approach with traditional heuristics, one using a
restricted number of processors (by two processor 
elements), and another using unbounded number of 
processors in order to interject the UNC approaches. 
The proposed method outperformed the heuristics in all 

Table 5. The best achieved results of the proposed approach (ACO) and some traditional BNP and UNC heuristics [45], [32].
ACODLSMCPLASTETFISHHLFETDCPDSCMDEZLCGraph

1619201919191916-171819G1
384140434138413838384039G2

390390390470390390390390390420540420G3
474748-48-48-----G4
212929-29-29232732--G5

440520520-520-520440460460--G6

Table 4. The best achieved scheduling of the proposed 
approach (ACO) and the four heuristics using only two 

processor elements

Graph HLFET MCP DLS ETF ACO

G1 23 19 21 21 17
G2 44 43 46 44 42
G3 410 420 410 400 390
G4 63 62 60 60 52
G5 30 29 23 23 21
G6 540 550 520 520 440

Table 6. The best achieved results of ACO-MTN, Genetic 
algorithm, and four traditional heuristics [32]

Graph MCP DSC MD DCP Genetic ACO
G5 29 27 32 32 23 21
G6 520 460 460 440 440 440
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the cases. In addition, another set of experiments on the 
last two graphs (G5 and G6) evaluated the proposed 
approach in comparison with one of the best genetic 
algorithms introduced to solve this problem. The 
proposed approach also outperformed the genetic 
algorithm. Furthermore, the aforementioned genetic 
algorithm examines about 100,000 solutions to achieve 
its best scheduling while the proposed approach 
considers only 1500 ones. In addition, the proposed 
approach was the winner of the race on a 
comprehensive set of 45 random task-graphs with 
different shape parameters such as size, CCR and the 
parallelism. All of these are of strong evidences to 
demonstrate the capability and superiority of the 
proposed approach in multiprocessor task-graph
scheduling. Future work may be introducing a novel 
TDB approach based on ACO, and comparing and 
contrasting it versus the relevant methods.
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Fig. 6. The achieved results (in NSL) of the proposed approach 
besides its traditional counterparts on the entire 45 random 
task-graphs with respect to the different graph sizes.
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Fig. 7. The diagram of the achieved NSLs of the entire 45 
random task graphs regarding the different number of utilized 
processors.
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