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Abstract

The last decade has witnessed a great interest on the application of evolutionary algorithms, such as ge-
netic algorithm (GA), particle swarm optimization (PSO) and gene expression programming (GEP), for
optimization problems. This paper presents a hybrid algorithm by combining the GEP algorithm and the
orthogonal design method. A multiple-parent crossover operator is introduced for the chromosome repro-
duction using the orthogonal design method. In addition, an evolutionary stable strategy is also employed
to maintain the population diversity during the evolution. The efficiency of the proposed algorithm is
evaluated using three benchmark problems. The results demonstrate that the proposed hybrid algorithm
has a better generalization ability compared to conventional algorithms.

Keywords: Evolutionary computation, Gene expression programming, Orthogonal design, Evolutionary
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1. Introduction

In recent years, evolutionary algorithms have re-

ceived a great deal of attention for its wide appli-

cations 29,10,28. In particular, the gene expression

programming (GEP) is acknowledged as a power-

ful and problem-independent algorithm for multi-

variate optimization 11,12,31,21. Compared to con-

ventional evolutionary algorithms, it has the simi-

lar flowchart which begins with an initial population

of chromosomes or individuals. All chromosomes

are evaluated based on a predefined fitness func-

tion and this population then reproduces the next

generation via one or more genetic operators. Fi-

nally the best individual with highest fitness is se-

lected as the final output. Numerical experiments

demonstrate that GEP has a significantly better per-

formance compared to genetic algorithm (GA) 27,30

and genetic programming (GP) 1,17, and surpasses

those conventional methods by more than two or-

ders of magnitude 10,11,12. However, GEP has also

been shown to have certain disadvantages, such as

slow convergence and low solution accuracy, par-

ticularly for problems with a high-dimensional and

large space 4,6,24.

The orthogonal design (OD) is an efficient

method for experimental design and analysis 7,9,19.

It scatters the test samples uniformly over the feasi-

ble space with less computational cost and allows

the statistical testing to be conducted over only a

few combinations of factors rather than all the pos-

sible combinations in an experiment. The OD-based

methods have been applied to many areas such as

computer experiments 33, electromagnetic devices

design 18, and pumping system 14, to improve the

capability of problem solving.

Orthogonal design is also combined with many

evolutionary algorithm (such as genetic algorithm

(GA), particle swarm optimization (PSO), and sim-

ulated annealing (SA)) as a local optimization tech-
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nique. For instance, the orthogonal design method

was used in a GA-based algorithm to improve the

crossover while reproducing the population in 19. As

a result, the offspring were scattered uniformly over

the solution space. Similarly, a crossover operator

formed by the orthogonal array and the factor anal-

ysis was presented in 20. Bayraktar et al. proposed

a novel PSO using orthogonal design 3. Instead of

the generating-and-updating model in the standard

PSO, the orthogonal design method was applied to

determine the possible movements of the candidate

particles. The OD-based method was employed for

initial population generation instead of random sam-

pling in 15. The results showed that the orthogonal

design is capable of finding optimal solutions with

orthogonal sampling. A hybrid algorithm using SA

and orthogonal design was proposed in 2. The or-

thogonal table and a fractional factorial analysis was

used to extract the best combination of decision vec-

tors for simulated annealing, thereby improving the

solution accuracy.

Inspired by the preliminary research, we pro-

pose a hybrid GEP algorithm based on the OD

method, which is named the orthogonal gene ex-

pression programming algorithm (OGEP). In OGEP,

each bit character from the individual or chromo-

some is regarded as a factor and the goal of finding

the best chromosome is equivalent to searching for

the best combination of all factors. The OD-based

crossover is then proposed to optimize the factor

search. We further employ the evolutionary stable

strategy (ESS) 8,26 to maintain the population diver-

sity by controlling the number of the best chromo-

somes. Compared to the conventional GEP algo-

rithm, the proposed OGEP algorithm has the follow-

ing properties.

• The OD-based crossover involves more than two

parent chromosomes for reproduction compared

to traditional GEP algorithm.

• The OD-based crossover is directly applied on se-

lected chromosomes, which searches for the best

combination of genes among candidates.

• The number of chromosomes with high fitness is

controlled within a certain amount to allow the

survival of low-fitness chromosomes, thereby en-

hancing the population diversity.

The remainder of paper is organized as follows.

In Section 2, we briefly review the concept of the

conventional GEP algorithm and the orthogonal de-

sign method. We then introduce the OGEP algo-

rithm based on the multiple-parent crossover and

evolutionary stable strategy in Section 3. Finally, we

compare the OGEP algorithm through experiments

in Section 4 and conclude our work in Section 5.

2. The GEP algorithm and the orthogonal
design method

This section provides some background principles

and preliminaries for the standard GEP algorithm

and orthogonal design method.

2.1. GEP algorithm

GEP is proposed as a genotype/phenotype genetic

algorithm 10,31,21. The procedure of the GEP algo-

rithm shares many common steps with other evolu-

tionary algorithms. For instance, it starts with an

initial population which will be evolved until the ter-

mination criterion is reached. Then the best chromo-

some is selected as the final output according to the

predefined fitness function.
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Fig. 1. The encoded ET model (right) for a linear chro-

mosome (left). The example chromosome consists of one

gene, which is represented by a 9-bit character.

The fundamental difference between the GEP

and other evolutionary algorithms (such as GA or

GP) comes from the representation of the chromo-

somes. In GEP a single chromosome may consist

of more than one genes, while each gene is com-

posed of a head and a tail. The head includes the

function symbols (such as the plus, minus opera-

tion, etc.) and terminal symbols (such as variables

or constants); while the tail only contains the termi-

nal symbols. During the evolutionary process, the

chromosome is represented as a linear string in GEP.
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Then, the conventional crossover or mutation opera-

tor in GA or GP is applicable in GEP as well. Never-

theless, when it comes to evaluating the fitness, the

chromosome will be encoded into a non-linear ex-

pression tree (ET) model, which is also known as the

K-expressions. Figure 1 gives an example of how a

chromosome being encoded into the ET model in

GEP.

The starting position from K-expressions corre-

sponds to the root of ET, while the branches are

replaced with items from the function or terminal

set. The K-expressions structure is completely dif-

ferent from either prefix or postfix expression used

in GA or GP, which allows for wider degrees of com-

plexity. Because of the K-expressions, the research

shows that conventional generic operator, such as

the mutation, has a much more profound effect on

chromosomes than other algorithms: it usually dras-

tically reshapes the ET structure in GEP, thereby

changing the individual fitness. For instance, Fig-

ure 2 shows how the mutation operator changes a

ET model significantly. The 3rd-bit character in the

chromosome from Figure 1 is changed from “b” to

“-”. As a result, the encoded ET model is modified

considerably and two more branches are generated

on the bottom right. That is, conventional genetic

operators have a more significant effect on the GEP

based chromosomes. The representation and encod-

ing strategy in GEP makes the chromosomes sup-

porting more genome modification 10,11.

Many experiments have been conducted to anal-

yse the performance of the GEP. We refer the reader

to 31,24,4 for a more detailed discussion on GEP and

its wide applications. The simulation results show

that the GEP algorithm achieves a much better per-

formance, which surpasses GA and GP by more than

two orders of magnitude.

012345678
/*+babcac
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Fig. 2. The ET structure before and after the mutation,

which indicates the profound effect from the K-expressions

in GEP.

2.2. Orthogonal design

Orthogonal design has been developed as a mathe-

matical tool to study multiple-factor and multiple-

level problems 9,19,7. Consider an experiment that

involves some factors and each of which have sev-

eral possible values called levels. Suppose that there

are P factors, each factor has Q levels. The number

of combinations of levels of those factors is QP; and

for larger P and Q it is not practical to evaluate all

combinations.

Based on OD, an orthogonal array AM(QP)
(where A stands for the orthogonal array, M is the

row number, P is the column number, and Q indi-

cates that one column has Q different values) is com-

puted, where each row represents a combination to

be evaluated in an experiment. The orthogonal array

has the following key advantages.

1. From the orthogonal array, only a small set of

M samples will be selected from all possible

QP combinations, commonly M << QP;

2. Each column represents a factor. If some

columns are deleted from the array, it means a

smaller number of factors are considered;

3. The columns of the array are orthogonal to

each other. The selected subset is scattered

uniformly over the search space to ensure its

diversity.

An efficient method is proposed in 19 to gener-

ate an orthogonal array A where M = Q × Q and

P=Q+1. The procedures of this method are shown

in Algorithm 1.
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input : The number of levels Q.

output : An orthogonal array A.

Calculate M = Q×Q and P = Q+1;

Initialize an zero matrix A with M rows and P columns;

for i = 1 to M do
Ai,1 = mod (�(i−1)/Q�,Q);
Ai,2 = mod (i−1,Q);
for j = 1 to P−2 do

Ai,2+ j = mod (Ai,1 × j+Ai,2,Q);
end

end

Algorithm 1. Procedure of the orthogonal array A gen-

eration. The mod(*) function represents the modulo op-

eration and �(∗)� is the floor function.

Based on the orthogonal design method, the

OGEP algorithm is proposed in the next section.

The main feature is that the OGEP algorithm em-

ploys the OD method for population reproduction,

that is capable of generating the offspring uniformly

over the search space.

3. The orthogonal gene expression
programming (OGEP) algorithm

In this section, we describe the OGEP algorithm

which combines the conventional GEP and the or-

thogonal design method. First the representation of

the chromosomes in GEP is shown. Then we intro-

duce the multiple-parent crossover operator, and em-

ploy the evolutionary stable strategy for population

evolution. We finally summary the main procedure

of the proposed OGEP algorithm.

3.1. Chromosome representation

In the GEP algorithm, each solution to the optimiza-

tion problem is represented as a chromosome. Fur-

thermore, one chromosome is composed of more

than one genes. A mathematical or boolean func-

tion with more than two arguments (such as the plus

operation) can then be used as the linking function,

which is used to combine individual genes together

into one chromosome. The number of genes in one

chromosome and the type of linking function can be

a priori chosen for specific problems. Without loss

of generality, in this paper we mainly consider the

single-gene chromosome, which can be extended to

the multiple-gene case by adding any linking func-

tion.

One single gene consists of two parts: a head and

a tail. Again, the head consists of either function or

terminal symbols while the tail only contains the ter-

minals. Let h and t be the length of the head and tail,

respectively. Then a chromosome in GEP is encoded

in the form of

xi = [xi,1,xi,2, · · · ,xi,h+t ], i = 1,2, · · · ,S, (1)

where S is the population size. The length of the tail

is a function of h and the number of arguments of the

function with the most arguments k. Therefore, the

total length of a chromosome in GEP is computed as

L = h+ t = h+h× (k−1)+1 = h× k+1. (2)

The length condition in Eq. (2) guarantees that each

chromosome in the GEP algorithm can be trans-

ferred to a valid expression tree. For simplicity, we

further assume that only the operations with two ar-

guments are considered in the head. Thus, we have

k = 2 and L = 2×h+1.

3.2. Multiple-parent crossover operator

The conventional GEP algorithm reproduces the

chromosome using three crossover operators: one-

point recombination crossover, two-point recombi-

nation crossover, and gene recombination crossover.

Nevertheless, the majority crossovers are based on

two selected patents. Since only two chromosomes

are involved in reproduction, there will be a lim-

ited combination of gene structures 20,15,3. To in-

crease the diversity for offspring, the multiple-parent

crossover is employed, which employs more than

two chromosomes at one time. Then more com-

binations of gene structures will be expected from

different parents. As a result, the multiple-parent

crossover operator is able to explore more effec-

tively the search space than the classical two-parent

based crossover.

Suppose that we randomly select m chromo-

somes for the crossover. Note that each chromosome

is represented as an L-length string, in which each

character from the string can be regarded as a fac-

tor. Therefore, with m chromosomes, there are mL

combinations in total. To completely explore all the

possible combinations is not practical, particularly
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for a large value of m or L. Meanwhile, the full ex-

ploration is also very time-consuming.

To address this problem, the OD method is then

employed to select the representative cases from all

the possible mL combinations. The procedure of

OD-based crossover is detailed in Algorithm 2.

input : m chromosomes xi, j, i ∈ [1,m] and j ∈ [1,L].
output : A new set of m chromosomes pi, j .

Construct the orthogonal array A using Algorithm 1, where

Q = m;

Generate m new chromosomes:

for i = 1 to m do
for j = 1 to L do

index = Ai, j;

pi, j = xindex, j;

end
end
Compute the fitness for all pi, j;

Mix pi, j and xi, j and rank all individuals in the decreasing

order of fitness;

Select top m chromosomes as the output.

Algorithm 2. Orthogonal design based crossover opera-

tor for m chromosomes.

According to the OD method, the multiple-

parent crossover operator considers each single

character from selected chromosomes as one can-

didate factor. Then it scatters the candidate factors

using the orthogonal array (as in Algorithm 1), and

eventually generates m×m offspring. The advan-

tage is two-fold. Firstly, the offspring are repro-

duced using multiple parents. That is, a more va-

riety of genes is employed simultaneously to search

for the better combination of gene factors. Secondly,

rather than computing all possible combinations for

candidate factors, the computational cost is reduced

significantly based on OD, using only a subset of the

full combinations.

We further consider an efficient way to com-

pute the number m of selected chromosomes for the

crossover operator. On one hand, with more se-

lected chromosomes (a larger m), the crossover op-

erator has a higher possibility of finding new combi-

nation, thereby improving the gene structure as well

as the diversity. The disadvantage is that a higher-

dimensional orthogonal array will be constructed

which requires the additional computation. On the

other hand, fewer selected chromosomes (a smaller

m) will be less efficient to generate the new combi-

nation, even if less computation is need.

Herein the value of m is computed according to

the average fitness value favg from the entire popu-

lation and the fitness fbest from the best individuals.

More precisely, if the favg value is much smaller than

the fbest , then more chromosomes are required to

search for better gene pattern to accelerate the con-

vergence of the algorithm. Nevertheless, if the value

of favg is close to fbest , which indicates the entire

population starts to converge. Thus, fewer chromo-

somes are required to prevent gene structures from

being removed.

Furthermore, we also need to ensure that the di-

mension of the orthogonal array matches the length

of the chromosome, i.e., m+ 1 � L = 2× h+ 1, or

m � 2× h. Overall, the number of selected chro-

mosomes for the proposed crossover is calculated as

follows:

m = �(2− favg

fbest
)×2h�, (3)

where �∗� is the floor function. Overall, for demon-

stration purpose, Fig. 3 shows the multiple-parent

crossover operation when m = 8, and L = 9. As ob-

served, a A8×8(8
9)-sized orthogonal array is gener-

ated, while children chromosomes inherit and com-

bine parts of gene structures from their parents using

the orthogonal array.

 

   

Parents Children 

Orthogonal 
Array 

Fig. 3. Demo of multiple-parent crossover operation using

8-parent chromosomes. Genes within green boxes indicates

the crossover operation.

3.3. Evolutionary stable strategy

In conventional GEP algorithm, the generating-and-

updating or the survival of the fittest strategy is ap-

plied. Consequently, the individual with high fitness

will be selected for the next generation, while those
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with low fitness will be eliminated. As the evolu-

tion continues, the chromosomes with high fitness

will dominate the entire population. Consequently,

this conventional updating strategy may reduce the

population diversity and lead to the premature con-

vergence.

To address the premature problem while improv-

ing the diversity, the evolutionary stable strategy

(ESS) is employed in this paper to monitor the evo-

lution. The ESS is a balancing strategy in which

the population cannot be invaded by a mutant strat-

egy through the operation of natural selection 8,26.

More precisely, with ESS it is implemented by al-

ways keeping a certain amount of low-fitness chro-

mosomes in the population. Those individuals are

used to provide additional gene structures and pre-

vent best chromosomes from dominating the popu-

lation.

Based on the concept of ESS, a stable factor δ
is introduced to measure the stability of the popu-

lation using the number of best individual chromo-

somes. If the ratio of best chromosomes exceeds a

certain threshold, we then consider the population

unstable and replace the extra best individuals with

new chromosomes. As a result, the proposed strat-

egy not only keeps the number of best individuals at

a certain level, but also refresh the population with

new genes to enhance the diversity. In this paper, the

δ value is computed as follows:

δ =
Sbest

S
, (4)

where Sbest and S is the number of best individuals

and the population size, respectively. Note that as

we only remove the additional best individuals, the

convergence of the algorithm is still guaranteed.

3.4. Steps of the OGEP algorithm

In summary, the procedure of the OGEP algorithm

is shown in Algorithm 3. The maximum iteration is

used as the termination condition.

input : Population size S, maximum iterations T , and other

parameters for training GEP algorithm.

output : Best chromosome.

Construct a random initial population xi, i ∈ [1,S];
for t = 1 to T do

Execute conventional genetic operators, such as RIS or

DIC transposition;

Select m chromosomes randomly and execute Algorithm

2 to generate new m individuals;

Evaluate the fitness function for the entire population;

Record the solution: set g = argmax f (xi) and set S∗best as

the number of the best individuals;

In the case of (S∗best > δ ×S) do:

for j = 1 to (S∗best −δ ×S) do
Replace an additional best chromosome with one

random individual;
end

end

Take the chromosome g as the output.

Algorithm 3. The procedure of the orthogonal gene ex-

pression programming algorithm.

4. Experimental result

This section presents the experimental results and

comparison of the proposed OGEP algorithm with

other conventional methods. We employ three real-

world problems. The experimental data sets, param-

eters for OGEP and the evaluation criterion are pre-

sented in Section 4.1. The comparison between the

proposed algorithm and traditional methods is pre-

sented in Section 4.2.

4.1. Experimental setup

Three real-world problems are chosen for experi-

mental evaluation, which covers continuous and bi-

nary samples, a variety of numbers of input at-

tributes, and diversity in different domains. The

first problem is to formulate a prediction model for

the electricity demand in Thailand from 1986 to

2010 25,16,22,23. The sample includes four input at-

tributes, and the electricity consumption is the fi-

nal output. The second problem is the estimation

of plastic rotation capacity 5,13. In the production

environment, the movement redistribution in a steel

structure greatly depends on the rotation capacity

of the plastic. Herein, the proposed algorithm is

employed to estimate the relationship between the

rotation capacity and other properties of the steel

beam. The third problem is to predict the trend
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of the sunspot number time series 24. In this case,

100 annual observations of the Wolfer sunspots se-

ries from 1770 to 1869 is employed. Meanwhile,

the sliding window method is applied to formulate

the input and output data samples. More precisely,

by continuously sliding a time-frame window with a

given length (l) along the time axis, the input data is

produced using the previous l data samples and the

output sample is the (l+1)-th data. In this paper, the

length of the time-frame l is set as ten.

All three data sets are partitioned into two sub-

sets: a training set and a test set. The training set is

used to train and optimize the algorithms. The test

set is used for evaluation of the generalization abil-

ity. The size of the training and test sets in all cases

is 75% and 25%, respectively.

For the proposed OGEP algorithm, the training

parameters are set in Table 1. The training termi-

nates when the maximum number of iterations is

reached.

Table 1. Parameters for OGEP algorithms.

Parameters Details

Function sets +,-,×, /, sin,cos,tan,
√

,log

Terminal sets independent variables)

Population size 100 Crossover rate 0.67

Head length 6 Mutation rate 0.03

Linking function + Generations 1000

DC transposition rate 0.11 Number of genes 5

RIS transposition rate 0.11 Stable factor (δ ) 0.5

The solution accuracy is evaluated using R-

square, which is calculated as follows:

R =
∑N

i=1(y
∗
i − yi)

∑N
i=1(yi − yi)

, (5)

where N is the number of data samples, y∗i is the sim-

ulation outcome, yi is the actual output, and yi is the

average value for yi.

4.2. Performance analysis of the OGEP
algorithm

In this section, the proposed OGEP algorithm is

compared with conventional algorithms. We first

apply the OGEP algorithm to solve the prediction

problem for the electricity demand. There are in to-

tal 24 pairs of the data samples, each of which con-

sists of four input and one output attributes. The

statistics for the data samples are shown in Table 2.

Table 2. Statistics for data samples used in the prediction model
for the electricity demand.

Attributes Min Max Mean

annual population 52511000 66903000 60769357.7

GDP 1257177 4364833 2962782

stock index 207.2 1682.9 687.2

revenue 364017.3 5149902.8 2215265.6

consumption 10162.7 60266.3 36316.3

Four variables, i.e., annual population, GDP,

stock index, and revenue, are used as the input at-

tributes while the consumption is the final output.

Furthermore, all the input and output attributes are

normalized to a range of [0.05,0.95] using the fol-

lowing equation:

xnew = 0.95−
(

0.9

xmax − xmin

)
(xmax − xold), (6)

where xold and xnew represent the value before and

after the normalization, and xmax and xmin are the

maximum and minimum value for the related at-

tributes.

Existing algorithms, including standard GEP 25,

hybrid genetic programming-simulated annealing

(GSA) 23, neural network (NN) 22 and multiple lin-

ear regression (MLR) 16, are employed for the com-

parison purpose. Table 3 presents the average ap-

proximation accuracy of the proposed algorithm and

conventional methods over 30 runs.

Table 3. Comparison of various prediction models for the elec-
tricity demand.

Algorithms Training Test

OGEP 0.990 0.979

GEP 0.987 0.955

GSA 0.971 0.933

NN 1.0 0.966

MLR 0.992 0.933

A few observation can be made from the simula-

tion results. Firstly, the proposed OGEP algorithm

achieves the best generalization ability in the test

data set (R=0.979), which is better than other three
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conventional algorithms. Secondly, NN achieves the

best approximation result for the training samples,

however its generalization ability is worse than the

proposed OGEP algorithm. The phenomenon can be

explained that the neural network overfits the train-

ing samples which leads to a worse approximation

performance for the test set. The best chromosome

obtained by OGEP is shown in Figure 4.

SdS*CScdabacccbbdab S*STa-bddbababacaac C+CbCSdddbbcacbccca
CQaTdCbacdddbddddbb --SbCCaabdcbadcaabb

Fig. 4. The best chromosome for the electricity demand in

OGEP.

The chromosome later is encoded as follows:

y = sin(d)+ sin((sin(a)∗ tan((b−d))))

+ cos((cos(cos(sin(d)))+b))

+ cos(sqrt(abs(a)))

+((b− cos(a))− sin(cos(a)))

(with R-square= 0.993), where y, a, b, c, and d
stands for the electricity consumption, annual popu-

lation, GDP, stock index, and revenue, respectively.

In the second case, we investigate the estimation

problem of plastic rotation capacity for wide flange

beams. There are in total 77 groups of data sam-

ples. Each sample consists seven input attributes:

half length of flange (bmm), height of web (dmm),

thickness of flange (t fmm), thickness of web (twmm),

length of beam (Lmm), yield strength of flange

(Fy fMPa), and yield strength of web (FywMPa). Ta-

ble 4 presents the descriptive statistics of the input

attributes. For simplicity, all the input attributes are

then scaled to a range of [1,10] by dividing 10 or

100.
Table 4. Statistics of data samples for the estimation problem of
plastic rotation capacity.

Attributes bmm dmm t fmm twmm
Minimun 36.9 120.3 1.4 4.0

Maximum 150.4 320.0 17.3 11.5

Average 91.1 221.0 10.5 7.0

Attributes Lmm Fy fMPa FywMPa
Minimun 960.0 236.0 217.0

Maximum 4000.0 817.0 990.0

Average 2659.8 353.4 404.5

Table 5 reports the average approximation ac-

curacy for various algorithms, such as conventional

GEP 5 and neural networks 13, over 30 independent

runs. As seen from the simulation results, the pro-

posed OGEP method outperforms other algorithms

in terms of both the training and test set. On aver-

age, the OGEP achieves a solution accuracy of 0.869

on the test sets, which is better than the accuracy

of GEP (0.810) and NN (0.812) methods. The best

chromosome obtained by OGEP is shown in Figure

5.

*S-QQacfdffbcgdfebb /QSffcfdddcfgabbgee Q/CC*Qfcfdfcaebgdec
*-//Qdedebcfffaeabc bQQ+bgcdagfcfbdgafd

Fig. 5. The best chromosome for the estimation problem of

plastic rotation capacity.

The chromosome further is explained as the fol-

lowing equation:

y = (sin(sqrt(abs(c)))∗ (sqrt(abs( f ))−a))

+(sqrt(abs( f ))/sin( f ))

+ sqrt(abs((cos(( f ∗ c))/cos(sqrt(abs( f ))))))

+(((d/e)− sqrt(abs(b)))∗ (d/e))+b

(with R-square= 0.937), where y is the output, and

a, b, c, d, e, f , and g stands for the variable of bmm,

dmm, t fmm, twmm, Lmm, Fy fMPa, and FywMPa, respec-

tively.

Table 5. Comparisons between the proposed OGEP algorithm
and other approximation methods for the formulation model of
rotation capacity in wide flange beams.

Algorithms Training Test

OGEP 0.925 0.869

GEP 0.891 0.810

NN 0.903 0.812

In the last example, the data for the Wolfer

sunspots series from 1770 to 1869 (100 observa-

tions) is employed. The historical data shows that

a circle occurred approximately every 10 years as

time passes by. However, there was no repeated pat-

tern over time in terms of the peak value. To analy-

sis the trend of the Wolfer sunspots, the OGEP al-

gorithm is employed by comparing with different

methods, such as the standard GEP, GEP variant

methods (GEP-RNC) 32, and symbolic GEP (SGEP)

algorithm 24.

The simulation is run over 30 times and the aver-

age result is summarized in Table 6. As observed,
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OGEP outperforms its counterwork by generating

the best perdition accuracy from either the training

or test set. For instance, the proposed method im-

proves 0.107%, 0.206%, 0.03% accuracy on aver-

age in terms of the generalization ability compared

to the standard GEP, GEP-RNC, SGEP-based algo-

rithms, respectively. The best chromosome obtained

by OGEP is shown in Figure 6.

LT//-/hhcbhhhaechbg LT+C+Qbbafegbahaidh TLT+/Qicdicdaicaadh
iTbLQieehefbcgiacci T-+i-/aahiciabhhhda

Fig. 6. The best chromosome for estimating the trend of the

Wolfer sunspots series.

As a result, the chromosome from Figure 6 is

translated into the following equation:

y = log(abs(tan((((b/h)/h)/(h− c)))))

+ log(abs(tan((cos(sqrt(abs(a)))+(b+b)))))

+ tan(log(abs(tan(((i/c)+ sqrt(abs(d)))))))

+ i+ tan((((a−a)+(h/i))− i))

(with R-square= 0.931), where the variable a to i
represent the previous 9 samples while y is the final

output, respectively.

Table 6. Comparisons between the proposed OGEP algorithm
and other GEP-based methods for the Wolfer sunspots series.

Algorithms Training Test

OGEP 0.927 0.919

GEP 0.873 0.812

GEP-RNC - 0.713

SGEP - 0.889

In conclusion, it can be empirically confirmed

that the orthogonal design based operator and evolu-

tionary stable strategy improves the performance of

the standard GEP algorithm. In all three problems,

the proposed algorithm outperforms the conven-

tional GEP algorithm and its variant methods, such

as GEP-RNC and SGEP. Meanwhile, the OGEP al-

gorithm is comparable against other traditional algo-

rithms, such as neural network and multiple linear

regression model. The experimental results give us

the strong evidence.

5. Conclusion

We have presented a novel gene expression pro-

gramming algorithm using orthogonal design. Sim-

ilar to other evolutionary algorithms, the OGEP al-

gorithm makes a full use of the entire population to

search for the best solution via different genetic op-

erators. The main contribution is to introduce the

orthogonal design based crossover to reproduce the

offspring and employ evolutionary stable strategy to

monitor the evolution.

The proposed operator is a multiple-parent

crossover, which allows more than two chromo-

somes to reproduce the new gene combination.

Meanwhile, the OD-based crossover can generate

the candidate offspring uniformly over the search

space and then select a representative subset. It re-

sults in more efficient information exchange among

different individuals. Furthermore, an evolutionary

stable strategy is also employed during the ongoing

evolution. This strategy has been used to control

the number of the best chromosomes while main-

taining the population diversity. Evaluated on three

benchmark datasets, the proposed OGEP algorithm

is shown to outperform GEP-based variant and con-

ventional optimization algorithms in terms of the

generalization ability.
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