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Abstract

In this paper, a modified version of nature-inspired optimization algorithm called Black Hole has been proposed. 
The proposed algorithm is population based and consists of genetic algorithm operators in order to improve 
optimization results. The proposed method enhances Black Hole algorithm performance by searching space with 
more diversity. The modified Black Hole algorithm has been applied to a well-known benchmark. The 
experimental results show that the modified Black Hole algorithm outperforms compared to some prominent 
optimization algorithms.

Keywords: Black Hole, Nature-inspired optimization, Metaheuristic algorithm, Benchmarking.

1. Introduction

Optimization problems have become a major field of 
interest for researchers in different propensities, and 
created an immense bunch of movement widely used in 
engineering applications. Due to complexity and 
nonlinearity of many engineering optimization 
problems, classic optimization approaches may tend to 
fail. Nature and bio inspired algorithms seem superior to 
their classic counterparts and have found specific places 
between the newfangled algorithms [1]. The 
effectiveness of these algorithms had been proven in 
many fields such as industry, hardware design, urban 
design, routing, image processing, project scheduling, 
Controller design, robots path planning, data clustering 
and etc. [2]

The Black Hole (BH) Algorithm is one of the 
optimization techniques inspired by the behavior of the 
real black holes. The black hole terminology is used for 
the first time in [3] to improve the convergence rate and 
efficiency of the PSO algorithm. Then, a new simple 
version of the BH algorithm was proposed in [4] for 
data clustering. In recent years, the BH algorithm and its 
modified versions have been used to solve optimization 
and engineering problems [5-18].  

The aim of this paper is to cope drawbacks of the BH 
algorithm proposed in [4] such as getting trapped in 
local minima, and to provide the ability to solve both 
high and low dimensional problems. For this purpose, a 
modified Black Hole (MBH) algorithm is proposed in 
which the genetic programming and swarm intelligence 
has been employed concurrently to solve optimization 
problems. At each iteration, a particle with the best cost 
named as the Black Hole, and other particles called stars 
start moving towards the black hole with a random 
generated angle to cover the search space and find the 
best local minima. Similar to real black hole 
phenomena, a star is swallowed by the black hole if its 
distance to the black hole reaches the minimum. Also, 
the genetic operators called crossover and mutation are 
applied to the obtained space in order to improve the 
particles cost. The main modifications are as follows:

In standard Black Hole Algorithm, stars move 
directly toward to the black hole. But, in the proposed 
algorithm, stars move toward to the black hole with a 
restricted angle between -
space has been enlarged. The swallowing formula is 
changed to avoid the loss of stars close to global 
optimum when there are a lot of local optimums. The 
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random numbers are selected between 0 and 2. 
Therefore, the proposed algorithm is able to scour the 
area around the black hole on both sides to find the best 
probable optimum. Some genetic algorithm operators 
(mutation and crossover) have been used in the 
proposed algorithm. The genetic operators are applied to 
improve the particles cost.

The rest of this paper is organized as follows: the 
black hole phenomena and standard optimization 
algorithm are presented in section 2. Section 3 describes 
the proposed MBH algorithm. A detailed comparison of 
the MBH algorithm and some prominent optimization 
algorithms are given in section 4. The paper is 
concluded in section 5.

2. Standard Black Hole Optimization Algorithm

A black hole is a geometrically defined region of space-
time exhibiting such strong gravitational effects that 
nothing, including particles and electromagnetic 
radiation such as light, can escape from inside it [19]. 
The theory of a star becoming invisible was formulated 
by John Michell and Pierre Laplace in the eighteens-
century. Then, John Wheeler named the mass collapsing 
phenomenon as a black hole in 1967 [4].

The size of a black hole, determined by the radius of 
event horizon or Schwarzschild radius, is roughly 
proportional to the mass M through

                     (1)

where G is the gravitational constant and c is the speed 
of light.

The BH algorithm is inspired by the behavior of real 
black holes. Like other population-based optimization
algorithms, the stars as a randomly generated population 
of candidate solutions are placed in the search space. 
The movement of stars towards the black hole is 
formulated as follows [4]:

(2)

where xi(t) and xi e ith star at 
BH is the location of 

the black hole in the search space. rand is a random 
number in the interval [0, 1]. In order to avoid trapping 
in local minima, if any star reaches a certain distance to 
the black hole it will be eliminated as in real black hole 

phenomena. Therefore, a new particle is created in the 
space randomly. This distance is calculated by the 
following formula [4]:

(3)

where fBH is the fitness value of the black hole, fi is the 
fitness value of the ith star and N is the number of stars.

3. Proposed Modified Black Hole Algorithm 
(MBH)

Flowchart of the proposed modified black hole 
algorithm (MBH) is shown in Fig. 1. As noted, the 
modified black hole is a population-based optimization 
algorithm. A random population is generated and values 
of the cost function are calculated for all candidate 
solutions. Afterwards, exploration and exploitation 
sections are employed to analyze the search space, yet 
with the minimum computational efforts to reach the 
best point, independent of either being the minimum or 
the maximum. First, the random population is 
distributed in the search space. Then, the point with the 
lowest cost among others is picked to be the black hole, 
while the others are known as the stars. As in real black 
hole, due to its particular characteristics, the air 
converges at the ground level and all the stars try to 
reach the black hole. Here, stars with high costs are also 
gravitated to the black hole. A detailed and fully
explained description of this procedure is discussed in 
section 3.2. At the end of each iteration, the mutation 
and crossover operators are also applied to the stars in 
order to improve the performance.

3.1. Creating initial stars

As it is conventional in evolutionary algorithms, the 
whole information of each particle is stored in an array. 
This array is known as “particle position”, 
“chromosome”, and “habitat” in PSO [20,21], GA [22], 
and CS [23] algorithms, respectively. Here, it is known 
as: “star position”. The star position is a 1×Nvar matrix 
in solving an Nvar-dimensional problem. This matrix is 
defined as Eq. (4) :

(4)
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All elements of this matrix are of floating point digit 
type. The cost of the point in space is obtained by 
applying the cost function over the point. This function 
is defined as:

(5)

At the first step of the optimization, Nvar stars are 
generated and distributed in the space randomly. The 
star with the most desirable cost is considered to be the 
black hole.

3.2. Moving stars towards the black hole

Following the aforementioned steps, the algorithm 
should make the stars move towards the black hole. This 
movement can be formulated as follows:

(6)

where and  are the star location in the 
i+1th and ith iteration, respectively. C stands for a 
1×Nvar  matrix. Unlike the standard black hole algorithm, 

all the elements of C are uniformly distributed random 
numbers between 0 and 2. Therefore, stars will search 
the area around the black hole on both sides. d is the 
connectivity vector between the particle and the black 
hole. If a 1×Nvar  matrix is chosen as the coefficient of d
, the particles will not move along the d vector. Using a 
vector instead of a number, each component change in a 
different gain. So, instead of moving across d vector 
(distance vector), new star moves along a vector in the 
2D (two dimensional) plane between star and the black 
hole. Assume that in a two-dimensional problem, 
distance vector between the star and the black hole is 
equal to d = (a, b). If two components of a distance 
vector are multiplied by a random number between 0 
and 2, new vector will certainly be along the vector d. 
But, if each component is multiplied by a separate 
random number, the vector may not be along d. The 
possible vectors are generated in the range of vectors 
(2a, 0) and (0,2b). The two vectors (2a, 0) and (0,2b) are 

The particle moves and searches the space in an angular 
direction with a restricted angle between -

algorithm leads the searching phase to be performed 
with better diversity. Because of emplacement of the 
random numbers between 0 and 2, the algorithm is able 
to scour the area around the black hole on both sides for 
finding the best probable optimum. This procedure is 
shown in Fig. 2.

After propelling stars towards the black hole, 
location of a star and the black hole are swapped, only if 
the assessed particle cost gets better than the previously 
selected black hole. In other words, particle is named as 
the new black hole and the previous black hole is known 
as the particle. Also, the other particles start to move 
towards the new black hole as shown in Fig. 3.

Fig. 1. Flowchart of Modified Black Hole Algorithm.

Fig. 2. Moving particles (stars) towards the black hole.
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3.3. Stars swallowing

In a real black hole phenomenon, when the particles 
reach the particular distance to black hole, they are 
gravitated and swallowed. The proposed method is also 
inspired by this procedure, in which, if a particle 
exceeds the minimum distance to the black hole, it will 
be swallowed and a new particle will be generated in the 
search space randomly. This distance can be defined as 
in Eq. (7) :

(7)

where stands for the cost of black hole, Npop presents 
the number of members in each iteration, and is the 
nth particle cost. Swallowing distance always is a very 
small number. In this proposed algorithm, the swallow 
distance of the standard BH algorithm has been squared 
to get an even smaller radius. Smaller radius is useful 
when there are a lot of local minimums (or maximums) 
near the global minimum (or maximum). Therefore, 
many possible favorable solutions near the black hole 
are not neglected. This particular specification is one of 
the remarkable superiorities of MBH algorithm in order 
to suppress the common drawbacks of getting trapped in 
a local minimum.

3.4. Limiting stars position
In some cases, stars are placed in a position where the 
movement towards black hole leads a particular star to 
be egressed from the search space. As a result, 
undesirable solutions may be generated. Hence, Eq. (8) 
is employed to restrict the particle probable positions in 
the search space frame.

(8)

where, is the particle position, LB and UB are the 
lower and upper bounds of the variable, respectively.

3.5. Implementing mutation and crossover 
operators

The mutation and crossover operators are applied in 
order to meliorate the algorithm performance, if there is 
no improvement in results after 10% of total continual 
iterations. The first step of genetic operators section is 
parents selection in which various strategies are 
available for different kinds of genetic algorithms [24]. 
Here, a random approach for parents selection has been 
used to improve CPU time of the presented algorithm.
Crossover is one of the important operators in the well-
known evolutionary algorithms such as GA and DE 
[25]. Crossover probability should be defined to 
perform the crossover operation, where its value is 
planned to be 70% in the MBH algorithm. Crossover is 
mainly splitted into three groups: single-point crossover, 
double-point crossover, and uniform crossover. The 
proposed algorithm employs uniform crossover due to 
its high level of diversity. The general form of a 
uniform crossover between two particles and with 
the output offsprings  and , is as follows:

(9)
(10)

where is a 1×Nvar vector consisting of real numbers 
limited in [- is a number about 0.1 
. Coefficient in Eqs. (9) and (10) is a number between 
0 and 1 like as in the standard genetic algorithm. With 
this range of , offsprings are generated between 
parents. But, it may be available vantage points around 
parents (not between them). Therefore, a bigger range 
for coefficient is considered as [- ,
chosen such that the majority of children between 
parents and few outside the interval. That is why the 
value of 0.1 is reasonable.So, offsprings position are not 
limited by their parents. The bigger causes a wider 
range out of parents position which is not desirable.
Another genetic operators used in the proposed method 
is mutation [26]. First, the jth entry of the parent is 
selected and the mutated offspring is generated 
according to the following equations:

(11)

Fig. 3. Exchanging position of a star and black hole when the 
star presents a more suitable cost.
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(12)

(13)
where z1(j) is the jth entry of locality array of a parent 
star. y1(j) is the jth entry of locality array of a offspring 
star. randn is a normally distributed random number 
between 0 and 1. The “mutation probability” is 
considered to be 20% in the present study, which means 
the 20% of the stars will be mutated. It should be noted 
that the generated offsprings should be in the defined 
bounds. 

Eventually, initial population and generated 
offsprings are sorted in terms of the cost, and Npop stars 
with the better cost introduced as the new generation. 

The pseudo code of Modified Black Hole algorithm 
has been shown in Fig. 4.

4. Experimental Results

In this section, performance of the MBH algorithm is 
evaluated. The test of reliability, efficiency and 
validation of optimization algorithms is frequently
carried out using a set of standard benchmarks or test 
functions [27]. The benchmark problems are 
categorized to low and high dimensional problems. The 
low dimensional ones are used to test the speed of 
convergence, however the high dimensional ones are 

good criterions to evaluate the computing power of an 
algorithm. In this work, the MBH algorithm has been 
applied to 20 different benchmark problems including 
ten low and ten high dimensional problems. Data sets of 
the problems are shown in Table 1.

The famous peak problem has been selected in order 
to observe the objective behavior of the MBH 
algorithm. The contour of the peak problem is shown in 
Fig. 5 and the corresponding equation is as follows:

(14)

Fig. 4. Pseudo-code for Modified Black Hole Algorithm.

Fig. 5. 3-D Contour plot of Peak function.
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Table 1.  Benchmark Problems.

Name Function Dimensions Variables Bound Global 
Minimum

High-Dimension Benchmark Functions

P1 Alpine 20 X [-10,10] 0

P2 Alpine 2 20 X [-10,10] 0

P3 csendes 20 X [-1,1] 0

P4 Deb1 20 X [-1,1] -1

P5 Quintic 20 X [-10,10] 0

P6 Rastrigin 20 X [-5.12,5.12] 0

P7 Salomon 20 X [-100,100] 0

P8 Schwefel2.21 20 X [-100,100] 0

P9 Schwefel2.26 20 X [-500,500] -418.983 

P10 Sphere 20 X [-10,10] 0

Low-Dimension Benchmark Functions

P11 Ackley 2 2 X [-32,32] -200

P12 Bartels Conn 2 X [-500,500] 1

P13 Parsopoulos 2 X [-5,5] 0

P14 Periodic 2 X [-10,10] 0.9 

P15 Price 2 X [-500,500] 0

P16 Rotated 
Ellipse 2 X [-500,500] 0

P17 Scahffer 2 X [-500,500] 0

P18 Table 1 2 X [-10,10] 0

P19 Ursem 4 2 X [-2,2] 0

P20 Hartman 1
, 

Parameters a, c, p are presented in Table 2.
3 X [0,1] -3.8628 
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Starting the problem with an initial population of 15 
particles. The algorithm behavior from the initial 
generation to the fourth iteration has been presented in 
Fig. 6. Initial population of the random generated 
particles is shown in Fig. 6(a). Location of the particles 
and the black hole after the first iteration is also 
presented in Fig. 6(b). As shown, location of the black 
hole has been changed from (-0.64,0.62) with -0.2876 of 
cost to the point (-0.83,-0.05) with -0.4141 of cost. In 
the third iteration, all the particles (stars) have been
gathered around the minimum, however, they have not 
yet reached the global minimum. It should be noted that, 
in the fourth iteration, some of stars have been distanced 
from the black hole. It indicates the point in which these 
stars are too close to the black hole. The black hole 
starts to omit them and locate these stars in a random 
point. The algorithm is reached to the global minimum 
coordinates (-0.708,0.002) with cost of -0.4289 in the 
fifth iteration of the test. It is obvious that more particles 
have been omitted in this stage due to their close 
distance to the black hole. Efficiency and the power of 
proposed method in terms of detecting the global 
minimum is expressed in the peak problem.

Now, a two dimensional problem with more than 
one local minima is considered to test the MBH 
algorithm performance. A two dimensional problem has 
been presented in Eq. (15):

(15)

There are 18 minimum points in the above-mentioned 
range, where the point (9.0390, 8.6681)  with the cost 
value of –18.5547 is the global minimum. The three-
dimensional overview of the function is presented in 
Fig. 7.

Fig. 6. Positions of stars and black hole in (a) Initial generation, (b) 1st iteration, (c) 2nd iteration, (d) 3rd iteration, 
(e) 4th iteration and (f) 5th iteration.

Fig. 7. 3-D plot of f(x,y) function.
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Starting with the initial population of 20, the progress 
procedure of solution after ten iterations is shown in 
Fig. 8. In the first iteration, the black hole is placed in 
local minima. It will gradually find its way near the 
desired global minimum up to the third iteration. In this 
stage, the black hole is at (8.9543, 8.5847) with the cost 
of -17.9116. Its distance is reduced to the global 
minimum inchmeal, and in the seventh iteration it will 
arrive to the best point (9.0387, 8.6689). Comparing 
Fig. 8(e). and Fig. 8(d)., it is clear that the omitting 
section of the very nigh particles has been done 

successfully, and the particles contiguous to the black 
hole have been generated in different coordinates. The 
diagram of the cost reduction versus iteration is shown
in Fig. 9 indicating the point in the fourth iteration. The 
algorithm has been reduced its distance to the desired 
minimum and finally, it reaches to its best cost at the 
seventh iteration.

As cited earlier in this section, 20 benchmark 
problems have been tested, and results are obtained. In 
addition, comparisons with several well-known methods 
such as PSO, BA, BH, HS [27], and FA, has been 
presented in order to analyze the performance of the 
MBH algorithm for different problems. Table 2 shows 
the parameters of each optimization algorithms. There 
are various parts with random behavior in these types of 
algorithms. If such algorithms are applied to different 
problems once, it may not express exact strengths and 
weaknesses of experimented method. Therefore, 
multiplicity of tests should be increased to avoid the 
lack of cogent gauge and the random behavior effect. 
For this purpose, procedure of algorithms have been 
repeated 50 times for each problem to validate the 
results and obtain clear outcomes. The obtained 
solutions are presented in Table 3 and Table 4 
considering the four factors, namely best, 

Fig. 8. Positions of stars and black hole in (a) Initial generation,  (b)1st iteration, (c) 3rd iteration, (d) 5th iteration and (e) 10th 
iteration.

Fig. 9. Cost minimization for the problem f(x,y).
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Table 2. Algorithms parameters. worst, average, and standard deviation. Each algorithm 
has been initialized with 50 trials. The crossover and 
mutation operators are utilized and adopted to be 70% 
and 20%, respectively. The high dimensional problems 
are presented in Table 3. Since there are many decision 
variables available in problems P1 to P10, the number 
of iterations in each run has been set to 250. Therefore, 
enough time is provided for algorithm to seek the search 
space completely, however the number of iterations for 
the low dimensional problems has been considered to be 
50. Table 4 shows the resultant of applying various 
algorithms to low dimensional sets P11 to P20. The 
modified black hole is marked as the best solutions 
available against its counterparts, showing the fastest 
convergence ratio to reach the desirable minimum.

In order to improve the comparison procedure, the
cost versus iteration diagram of PSO, MBH, and BA for 
a random test has been plotted in Fig. 10. The Alpine 
problem (P1) is studied in Fig. 10(a). The MBH 
algorithm converges to the desired global minimum 
with the best cost in the 49th iteration, while the two 

Algorithm Parameters

PSO

Personal Learning Coefficient (c1) and 
Global Learning Coefficient (c2): are 

determined by Constriction Coefficients 
method [21].

BA

Number of Scout Bees: 30
Number of Selected Sites: 15

Number of Selected Elite Sites: 6
Number of Recruited Bees for Selected Sites: 

15
Number of Recruited Bees for Elite Sites: 12

Neighborhood Radius Damp Rate: 0.99

ICA

Number of Empires/Imperialists: 10
Selection Pressure: 1

Assimilation Coefficient: 2
Revolution Probability: 0.1

Revolution Rate: 0.05
Colonies Mean Cost Coefficient: 0.1

FA

Light Absorption Coefficient: 1
Attraction Coefficient Base Value: 2

Mutation Coefficient: 0.2
Mutation Coefficient Damping Ratio: 0.99 

Algorithm Parameters

PSO

Personal Learning Coefficient (c1) and 
Global Learning Coefficient (c2): are determined 

by 
Constriction Coefficients method [21].

BA

Number of Scout Bees: 30
Number of Selected Sites: 15

Number of Selected Elite Sites: 6
Number of Recruited Bees for Selected Sites: 15

Number of Recruited Bees for Elite Sites: 12
Neighborhood Radius Damp Rate: 0.99

ICA

Number of Empires/Imperialists: 10
Selection Pressure: 1

Assimilation Coefficient: 2
Revolution Probability: 0.1

Revolution Rate: 0.05
Colonies Mean Cost Coefficient: 0.1

FA

Light Absorption Coefficient: 1
Attraction Coefficient Base Value: 2

Mutation Coefficient: 0.2
Mutation Coefficient Damping Ratio: 0.99 

Fig. 10. Comparison of the cost convergence of BA, MBH and PSO for (a) P1, (b) P3, (c) P11 and (d) P17 problems.
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other methods do not reach the minimum after 250th

iteration. Fig. 10(b) presents solutions of the discussed 
algorithms to a high dimensional problem called as 
Csendes (P3). Although all the three algorithms start the 
process almost alike, nearly with the same cost, MBH 
presents the best speed of convergence and better 
performance compared with the two other algorithms 
after 250 iteration. The cost minimization plot of the 
three aforementioned algorithms for the problems called 
as Ackley 2 (P11) and Schaffer (P17) is shown in Fig. 
10(c)-(d). As it is clear in Fig. 10(c), although the initial 
cost of MBH is much more than the others, but the best 
global optimum is obtained in the fifth iteration whereas 
the iteration number for the best solution is 11 for BA 
and 25 for PSO. Another example is shown in Fig. 10(d) 
where the seeking process is started with approximately 
the same initial cost. MBH has reached the best 
optimum in the eleventh iteration, while BA and PSO 
are incapable of reaching the optimum even after 50 
times of iterations.

Finally, the worst, mean, and best run of the cost 
minimization plot of MBH algorithm for six different 
problems are presented in Fig. 11. As shown in Fig. 
11(a) and Fig. 11(f), when the MBH algorithm reach to 
the 100% of accuracy i.e. zero for the cited problems, 
the figures are corrupted. The reason is that the 
logarithmic plots are incapable of representing zero.

5. Conclusion

In this paper, the modified Black Hole algorithm has 
been proposed for solving optimization problems. A 
new approach is employed to overcome the probable 
drawbacks caused by the trapping effect, where trapping 
is suppressed and particles close to the black hole are 
swallowed with a new swallowing range if they exceed 
the minimum distance to the black hole. Afterwards, a 
new particle is generated in the search space randomly 
to avoid probable disturbances of trapping effect. The 
proposed algorithm has been applied to 20 different 
benchmark problems on 50 tests, and the results are 
compared with the standard Black Hole algorithm and 
its other counterparts. It is clear that the proposed 
method presents various remarkable superiorities than 
the other well-known optimization algorithms such as 
BH, PSO, BA, ICA, and FA. Also, the MBH 
outperforms the others in 17 of 20 problems. It is more 
prominent that the exact solutions (100% accuracy in 
the best runs) are obtained for 10 problems, showing the 
power and highly accurate performance of the Modified 
Black Hole algorithm.

Table 3. Constants of Hartman1 problem.

I ci aij pij

J=1 2 3 J=1 2
1 1 3 10 30 0.3689 0.117
2 1.2 0.1 10 35 0.4699 0.4387
3 3 3 10 30 0.1091 0.8732
4 3.2 0.1 10 35 0.03815 0.5743
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Fig. 11. Cost minimization of Modified Black Hole algorithm in best, worst and mean test in 50 tests for (a) P1, (b) P3, (c) P6, (d) 
P16, (e) P18 and (f) P19 problems, where  the exact solutions have been obtained  in figures (a) and (f) in the best run.
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Table 4. Best, worst, mean and the standard deviation of available solution in MBH and BH, PSO, 
BA, ICA, FA for low-dimension benchmark problems.

MBH BH PSO BA ICA FA

P11 

-200 -200 -199.9999 -199.9996 -200 -199.9995 Best
-199.9999 -199.9968 -199.9748 -199.9879 -199.9998 -199.9795 Worst

-200 -199.9991 -199.9937 -199.9955 -200 -199.9921 Mean
1.6986e-005 0.0007738 0.0050905 0.0029244 3.304e-005 0.0048177 Std.

P12 

1 1 1.00005 1.0004 1 1.0003 Best
1 1.033908 1.03204 1.0312 1 1.0307 Worst
1 1.003038 1.00819 1.0074 1 1.0082 Mean

1.2781e-010 0.005630 0.007895799 0.0061017 4.1683e-006 0.00693 Std.

P13 

7.4988e-033 1.536e-018 1.2212e-010 1.8528e-010 8.7737e-020 1.2567e-009 Best
1.148e-023 0.013345 0.0009338 3.6351e-007 1.9311e-011 4.721e-007 Worst

2.7415e-025 0.0014562 2.5437e-005 4.8615e-008 6.5184e-013 1.1754e-007 Mean
1.6321e-024 0.0028489 0.0001323 6.7474e-008 2.7816e-012 1.0451e-007 Std.

P14 

0.9 0.9 0.9 0.9 0.9 0.9 Best
1 1.0136 1.0003 1 1 1 Worst

0.9164 0.93867 0.94773 0.92014 0.93921 0.992 Mean
0.036639 0.049791 0.050002 0.04034 0.048462 0.037405 Std.

P15 

0 1.9824e-021 3.4774e-006 2.6024e-006 9.1726e-015 4.5209e-005 Best
1.9474e-021 6.4145e-007 0.019067 0.00056819 1.0025e-005 0.0042154 Worst
3.8956e-023 2.5181e-008 0.0031429 0.00012437 2.1503e-007 0.0010889 Mean
2.7541e-022 9.5795e-008 0.0047193 0.00013662 1.4173e-006 0.00093021 Std.

P16 

1.7809e-036 4.1122e-019 9.8908e-006 0.00010058 6.4237e-013 9.0579e-005 Best
1.1952e-023 0.027406 0.047892 0.041529 0.00032499 1.9692 Worst
1.0299e-024 0.0014927 0.0077412 0.01229 1.2746e-005 0.051312 Mean
2.6402e-024 0.0053704 0.010168 0.011859 4.8577e-005 0.27717 Std.

P17 

0 0 1.1102e-016 2.8522e-013 0 2.3981e-014 Best
0 2.3804e-007 5.3775e-009 1.4302e-008 0.0092577 9.9654e-009 Worst
0 4.7607e-009 1.5558e-010 7.388e-010 0.0003093 1.3847e-009 Mean
0 3.3664e-008 7.7712e-010 2.2204e-009 0.0015614 2.6762e-009 Std.

P18 

4.7945e-033 3.1004e-025 3.8976e-011 3.2972e-011 1.1365e-020 4.3332e-011 Best
6.9868e-024 2.6222e-011 0.00017361 3.0583e-007 2.9605e-013 3.2899e-007 Worst
1.511e-025 5.4595e-013 2.1481e-005 3.4525e-008 9.1173e-015 7.2566e-008 Mean

9.8815e-025 3.7084e-012 3.8908e-005 5.1877e-008 4.2239e-014 9 .0057e-008 Std.

P19 

0 0 1.452e-010 5.7192e-011 0 0 Best
1.8171e-013 1.5377e-007 2.1603e-005 2.6426e-008 3.2401e-013 8.1493e-008 Worst
6.5718e-015 5.7845e-009 1.5408e-006 2.6765e-009 1.0084e-014 2.7983e-009 Mean
2.917e-014 2.8146e-008 4.4988e-006 5.3208e-009 4.7946e-014 1.1505e-008 Std.

P20 

-3.8628 -3.8626 -3.8628 -3.8628 -3.8628 -3.8628 Best
-3.8628 -3.8259 -3.8549 -3.8628 -3.8628 -3.8628 Worst
-3.8628 -3.85 -3.8626 -3.8628 -3.8628 -3.8628 Mean

1.2449e-008 0.0077845 0.0011145 1.2817e-007 5.9477e-008 4.9129e-007 Std.
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Table 5. Best, worst, mean and the standard deviation of available solution in MBH and BH, PSO, 
BA, ICA, FA for low-dimension benchmark problems.

MBH BH PSO BA ICA FA

P11 

-200 -200 -199.9999 -199.9996 -200 -199.9995 Best
-199.9999 -199.9968 -199.9748 -199.9879 -199.9998 -199.9795 Worst

-200 -199.9991 -199.9937 -199.9955 -200 -199.9921 Mean
1.6986e-005 0.0007738 0.0050905 0.0029244 3.304e-005 0.0048177 Std.

P12 

1 1 1.00005 1.0004 1 1.0003 Best
1 1.033908 1.03204 1.0312 1 1.0307 Worst
1 1.003038 1.00819 1.0074 1 1.0082 Mean

1.2781e-010 0.005630 0.007895799 0.0061017 4.1683e-006 0.00693 Std.

P13 

7.4988e-033 1.536e-018 1.2212e-010 1.8528e-010 8.7737e-020 1.2567e-009 Best
1.148e-023 0.013345 0.0009338 3.6351e-007 1.9311e-011 4.721e-007 Worst

2.7415e-025 0.0014562 2.5437e-005 4.8615e-008 6.5184e-013 1.1754e-007 Mean
1.6321e-024 0.0028489 0.0001323 6.7474e-008 2.7816e-012 1.0451e-007 Std.

P14 

0.9 0.9 0.9 0.9 0.9 0.9 Best
1 1.0136 1.0003 1 1 1 Worst

0.9164 0.93867 0.94773 0.92014 0.93921 0.992 Mean
0.036639 0.049791 0.050002 0.04034 0.048462 0.037405 Std.

P15 

0 1.9824e-021 3.4774e-006 2.6024e-006 9.1726e-015 4.5209e-005 Best
1.9474e-021 6.4145e-007 0.019067 0.00056819 1.0025e-005 0.0042154 Worst
3.8956e-023 2.5181e-008 0.0031429 0.00012437 2.1503e-007 0.0010889 Mean
2.7541e-022 9.5795e-008 0.0047193 0.00013662 1.4173e-006 0.00093021 Std.

P16 

1.7809e-036 4.1122e-019 9.8908e-006 0.00010058 6.4237e-013 9.0579e-005 Best
1.1952e-023 0.027406 0.047892 0.041529 0.00032499 1.9692 Worst
1.0299e-024 0.0014927 0.0077412 0.01229 1.2746e-005 0.051312 Mean
2.6402e-024 0.0053704 0.010168 0.011859 4.8577e-005 0.27717 Std.

P17 

0 0 1.1102e-016 2.8522e-013 0 2.3981e-014 Best
0 2.3804e-007 5.3775e-009 1.4302e-008 0.0092577 9.9654e-009 Worst
0 4.7607e-009 1.5558e-010 7.388e-010 0.0003093 1.3847e-009 Mean
0 3.3664e-008 7.7712e-010 2.2204e-009 0.0015614 2.6762e-009 Std.

P18 

4.7945e-033 3.1004e-025 3.8976e-011 3.2972e-011 1.1365e-020 4.3332e-011 Best
6.9868e-024 2.6222e-011 0.00017361 3.0583e-007 2.9605e-013 3.2899e-007 Worst
1.511e-025 5.4595e-013 2.1481e-005 3.4525e-008 9.1173e-015 7.2566e-008 Mean

9.8815e-025 3.7084e-012 3.8908e-005 5.1877e-008 4.2239e-014 9 .0057e-008 Std.

P19 

0 0 1.452e-010 5.7192e-011 0 0 Best
1.8171e-013 1.5377e-007 2.1603e-005 2.6426e-008 3.2401e-013 8.1493e-008 Worst
6.5718e-015 5.7845e-009 1.5408e-006 2.6765e-009 1.0084e-014 2.7983e-009 Mean
2.917e-014 2.8146e-008 4.4988e-006 5.3208e-009 4.7946e-014 1.1505e-008 Std.

P20 

-3.8628 -3.8626 -3.8628 -3.8628 -3.8628 -3.8628 Best
-3.8628 -3.8259 -3.8549 -3.8628 -3.8628 -3.8628 Worst
-3.8628 -3.85 -3.8626 -3.8628 -3.8628 -3.8628 Mean

1.2449e-008 0.0077845 0.0011145 1.2817e-007 5.9477e-008 4.9129e-007 Std.
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