
Received 13 July 2015

Accepted 4 March 2016

A Generic Preprocessing Optimization Methodology
when Predicting Time-Series Data

Ioannis Kyriakidis
School of Computing and Mathematics, University of South Wales

Treforest, Pontypridd, CF37 1DL, United Kingdom
E-mail: kyriakidis@teicrete.gr

Kostas Karatzas
Department of Mechanical Engineering, Aristotle University

Thessaloniki, GR-54124, Greece
E-mail: kkara@eng.auth.gr

Andrew Ware
School of Computing and Mathematics, University of South Wales

Treforest, Pontypridd, CF37 1DL, United Kingdom
E-mail: andrew.ware@southwales.ac.uk

George Papadourakis
Department of Informatics Engineering, T.E.I. of Crete

Estavromenos, GR-71004 Heraklion, Crete, Greece
E-mail: papadour@cs.teicrete.gr

Abstract

A general Methodology referred to as Daphne is introduced which is used to find optimum combinations of 
methods to preprocess and forecast for time-series datasets. The Daphne Optimization Methodology (DOM) is 
based on the idea of quantifying the effect of each method on the forecasting performance, and using this 
information as a distance in a directed graph. Two optimization algorithms, Genetic Algorithms and Ant Colony 
Optimization, were used for the materialization of the DOM. Results show that the DOM finds a near optimal
solution in relatively less time than using the traditional optimization algorithms.

Keywords: Preprocessing Optimization Methodology, forecasting, Genetic Algorithms, Ant Colony Optimization.

1. Introduction

In data-oriented analysis and modelling, data 
preprocessing (DP) is the most resource intensive
phase. 1, 2 DP covers all computational steps that deal 
with raw data and lead to the final dataset which will be 
explored with the aid of data-mining computational 
intelligence (CI) algorithms. DP is often recommended
in order to highlight relationships between members of 

the feature space, to create more uniform data in order 
to facilitate CI algorithm learning, and to meet 
algorithm requirements, avoiding computational
problems. 3, 4

In Ref. 5 we have focused on the computational 
steps preceding the use of forecasting models. In the 
current paper we extend this approach by suggesting the 
Daphne Optimization Methodology (DOM), which is 
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built to improve the preprocessing computational steps 
over time-series dataset, in terms of the performance of 
various forecasting algorithms applied to the output of 
the DOM. The order of the computational steps prior to 
the application of forecasting models, which define the 
optimization problem, are described in the Daphne 
Optimization Procedure (DOP).

The motivation for creating the DOM originated 
from the following question: Given a specific dataset 
with time stamped feature records, a set of data 
preprocessing algorithms and a set of forecasting 
algorithms, which combination of these algorithms
leads to the best performance of the forecasting 
algorithms?

he DOM is evaluated in comparison to the 
traditional use of the optimization algorithms, Genetic 
Algorithms (GAs) and Ant Colony Optimization
(ACO). The next four optimization algorithms have 
been used and evaluated for their optimization 
performance: 1) Traditional GA, 2) Traditional ACO, 3) 
Daphne-GA, and 4) Daphne-ACO. Each optimization 
algorithm was used to find solutions that lead to the 
best performances of the forecasting methods, when 
forecasting the daily mean concentration of respirable 
particles. These optimization algorithms were executed 
with different predefined execution parameters in order 
to evaluate their performance. The performance of the 
optimization algorithms was calculated in terms of best 
forecasting performance in minimum execution time. In 
addition, an exhaustive search of all solutions has been 
performed, for comparison.

The rest of the paper is structured as follows:
Section 2 describes a) the optimization algorithms that 
were used by DOM, b) the methods that were used to 
deal with the problem of each computational step, c) the 
dataset that was used, and d) how the data was 
separated. Section 3 describes how the optimization 
problem was divided into discreet steps (that formulate 
a general procedure), and how the distance between 
different methods was calculated. Sections 4 describe 
the phases of DOM in detail. Sections 5 and 6 describe 
how the DOM was materialized by using the selected 
optimization algorithms, Genetic Algorithms and Ant 
Colony Optimization, respectively. Section 7 describes 
the evaluated models and the procedure that was 
performed in order to evaluate them. Section 8
describes the results of the work and discusses the basic 
findings of this study. Finally section 9 draws 
conclusions for DOM performance in comparison to the 
traditional use of the selected optimization algorithms.

2. Materials and Methods

In the optimization problem under study the initial 
dataset represents a knowledge pool that we would like 

to map in the best possible way, in order to facilitate the 
forecasting of the future state and behavior of the 
system that such a pool represents and describes. This 
requires a learning process that is well suited to the 
characteristics of CI-based evolution algorithms. For 
this reason we have selected to make use of two 
algorithms of this category, namely Genetic Algorithms 
and Ant Colony Optimization.

2.1. Genetic Algorithms

GAs are one of the well-known evolutionary algorithms
(EAs) and were initially proposed and analyzed by 
Holland. 6, 7, 8 The GA is an optimization and search 
technique inspired by the theory of evolution and an
understanding of biology and natural selection. 6, 7, 9, 10

The basic concept of GAs is to simulate the processes 
of natural systems necessary for evolution. As such they 
represent an intelligent exploitation of a random search 
within a defined search space, rendering them 
appropriate for an optimization problem such as the one 
addressed in our study.

2.2. Ant Colony Optimization

Dorigo et al. 11, 12 were inspired by the double bridge 
experiment 13, 14 to design the first ACO system, with an 
algorithm called Ant System (AS), which initially 
applied to the travelling salesman problem. An essential 
aspect of ACO is the indirect communication of the ants 
via pheromone (stigmergy). Ants deposit pheromone on 
the ground (environment) to mark their paths towards 
food sources. The pheromone traces can be detected by 
other ants and thus lead them to the food source. ACO 
exploits a similar mechanism for solving optimization 
problems. 15, 16

2.3. Fitness Function

The fitness function is the method of assigning a 
heuristic numerical estimate of quality (fitness) to a
particular solution. 17, 18 In GAs, fitness evaluation 
provides feedback to the learning algorithm regarding 
which solution should have a higher probability of 
being allowed to procreate and which individuals 
should have a higher probability of being removed from 
the population. 6 In ACO, ants deposit a quantity of 
pheromone depending on the fitness of the solution. 
The quantity of pheromone’s deposition increases as 
fitness increases. For minimization problems, the 
fitness function usually approaches zero as the optimal 
value. For maximization problems, the fitness function 
usually approaches some upper boundary threshold as 
its optimal value. 18
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2.4. Cross Validation
Cross validation (CV) is a popular method applied in 
order to evaluate the predictive performance of a 
statistical model. 19 In CV, the available dataset is 
divided into two segments, one is used to teach or train 
a model and the other is used to validate the 
performance of the model. There are several types of 
CV methods such as the Holdout method, k-fold, and 
leave-one-out. 20

K-fold CV divides the dataset into k (equal) subsets.
Each one of the k subsets is used as the test set (i.e. the 
set against which the model performance is evaluated) 
and the other k-1 subsets are used as a training set. The 
k results from the folds (k times) are averaged for 
producing a single estimation. The advantage of this 
method is that the results are not influenced by the way 
the data are divided.

2.5. Arsenal of Methods
The DOP requires an arsenal of methods for each 
computational step. In this study a total of 40 methods 
were available for the DOP. Table 1 presents the 
methods that have been used for each computational 
step of the DOP. The reasons that lead us to select these 
methods are:

The majority of them are included in Matlab’s 
libraries or have been published on the Matlab File 
Exchange website 21. Moreover, they have received 
positive reviews in terms of comments and ratings.
They are generally well-known preprocessing and 
forecasting techniques. Unfortunately in a 
significant number of cases researchers and 
practitioners have, when reporting their results, 
omitted to name the preprocessing techniques that 
they used. 22, 23

Additional methods could be used for each 
computational step, but it would increase significantly 
the search space of the optimization problem. This 
would make it impossible to use the selected evaluation 
procedure, which is described in Section 7.

Table 1.  The methods used for each computational step of 
the DOP (Continued)

Computational 
Step

Methods

Step 1:Remove 
Outliers
(Total: 11 
methods)

Standard Deviation Criterion (i.e. 
removing all values that are more than 2 
STD away from the mean) 24

Robust Function Bisquare (Tukey's 
biweight) 25

Robust Function Andrews 25

Robust Function Cauchy 25

Table 1.  The methods used for each computational step of 
the DOP (Continued)

Robust Function Fair 25

Robust Function Huber 25

Robust Function Logistic 25

Robust Function Ols (Ordinary least 
squares) 25

Robust Function Talwar 26

Robust Function Welsch 25, 27

Median Absolute Deviation (MAD) 23

Step 2: 
Handling of 
Missing Data 
(Total: 10 
methods)

Interpolation algorithm Linear
Interpolation algorithm Linear with 
extrapolation
Interpolation algorithm Piecewise 28

Interpolation algorithm Piecewise with 
extrapolation
Interpolation algorithm Cubic 28

Interpolation algorithm Cubic with 
extrapolation
Interpolation algorithm Spline 28

Interpolation algorithm Spline with 
extrapolation
Interpolation algorithm Nearest 29

Interpolation algorithm Nearest with 
extrapolation

Step 3: 
Smoothing 
Data
(Total: 6 
methods)

Moving Average
Local regression 1st degree polynomial 
model (lowess) 30, 31

Local regression 2nd degree polynomial 
model (loess) 32

Savitzky-Golay filter 33

A robust version of 'lowess' 30

A robust version of 'loess' 30

Step 4: 
Detrending 
Data
(Total: 4 
methods):

Constant detrending 22

Straight (linear) detrending 22

Fit and remove a 2nd degree of 
polynomial curve 34

Hodrick-Prescott filter 35

Step 5: Feature 
Selection /
Extraction
(Total: 3 
methods):

Factor Analysis 36, 37

A simple feature selection based on the 
Covariance. Which selects the features 
with highest covariance (between the 
target variable)
Principal Components Analysis (PCA), 
with variable explained criteria 38

Step 6: 
Forecasting
(Total: 6 
methods):

Linear Regression
Artificial Neural Networks, Feed Forward 
Back Propagation (FFBP) 39

Linear Neural Networks 40

Generalized Regression Neural Networks
41

Generalized linear model regression 42

Multivariate adaptive regression splines 
(MARS) 43
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2.6. Data Presentation
The data used in this study consist of air quality 
observations made at the Agia Sofia monitoring station 
in Thessaloniki, Greece. Thessaloniki is the second 
largest city of Greece, and is characterized by a 
pronounced problem of air pollution, especially in 
terms of Particulate Matter (PM) and more specifically 
of respirable particles (PM10, i.e. particles of 

reason, the selected forecasting parameter of this study 
was the daily mean concentration of PM10.

The data consists of 1010 daily records for the years 
2010 to 2012 (3 years) and includes a total of 12 
parameters: 8 air pollutant parameters and 4 
meteorological parameters. The air pollutant parameters 
were: 1) Daily mean concentration of Particulate Matter 
(PM10), 2) Daily maximum eight-hour running average 
concentration of Ozone, 3) Daily mean concentration of 
Ozone (O3), 4) Daily mean concentration of Nitrogen 
dioxide (NO2), 5) Daily mean concentration of Nitrogen 
oxides (NOX), 6) Daily mean concentration of Carbon 
monoxide (CO), 7) Daily maximum eight-hour running 
average concentration of CO, and 8) Daily mean 
concentration of Nitrogen monoxide (NO). The 
meteorological parameters were daily mean values of: 
1) Relative Humidity (%), 2) Air Temperature (C), 3) 
Wind Speed (Km/h), and 4) Wind Direction (Degrees).

The air pollutant data were obtained from the 
European air quality database (AirBase) 44, and the 
meteorological data were obtained from the weather 
underground web site. 45

2.7. Data Separation
One of the most important parts of evaluating machine 
learning is to train the models on a training set that is 
separate and distinct from the test set, for which their 
modelling accuracy will be evaluated. If this part is not 
performed, it can result in models that do not generalize 
to unseen data.

The data in this study were separated into two 

datasets. The first 70% of the data (approximately, 2 
years of daily records) were used in the training set, and 
the remaining 30% of the data (approximately, 1 year of 
daily records) were used in the test set. As an exception, 
in the Artificial Neural Network (ANN) models, the 
aforementioned 30% of the data was divided in two 
parts; the first 15% of the data were used in the test set, 
and the remaining 15% of the data were used for the 
validation set. The validation set is used by the ANNs 
to monitor the error during the training process, in order 
to stop the training when the network begins to overfit 
the data. 46

In addition the 10-Fold CV was used in order to 
measure the predictive performance of a statistical 
model. Fig. 1 shows a) how the data was separated and 
b) how the CV was performed on the data. The test set 
(and the validation set in the case of ANNs) was not 
included in the preprocessing steps in order to evaluate 
their contribution to the forecasting performance. As an 
exception, the replacement of missing values was 
performed on the test set (and validation set), for the 
cases where some forecasting methods cannot interpret 
them.

3. The Daphne Optimization Procedure

Although there are various approaches to DP in the 
literature, it is generally accepted that they include the 
following computational steps when applied prior to the 
application of forecasting models: 2, 47

Identification and removal of outliers
Dealing with the missing value problem
Denoising-Smoothing of data
Detrending
Feature selection
Forecasting

It should be emphasized that the forecasting step 
mentioned here is actually the testing step that evaluates 
the effectiveness of all previous preprocessing

Input
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Fig. 1. Data separation in the evaluation procedure
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computational steps. On this basis, the DP efficiency is 
verified, and its results can then be used with various 
forecasting algorithms.

On this basis, the DOP describes the order in which
to use the six aforementioned computational steps and 
define the optimization problem. Table 2 presents the 
computational steps, while Fig. 2 demonstrates the 
graphical structure of the DOP. Each computational 
step in DOP consists of a number of computational
methods that can be applied to the data. At each
computational step only one computational method is
applied to the input data, to avoid redundancy (Fig. 2).
This can be seen in Fig. 2 where the bold edges show a
possible path. Steps 1, 3, 4 and 5 include also the option 
not to use any computational method. In the current 
paper the computational methods of the computational 
steps prior to the forecasting step, are referred to as 
preprocessing methods.

There are no algorithms that can select the 
computational method per step that optimizes the 
overall DP procedure, apart from the exhaustive search 
of all combinations of available computational methods.
Our problem has the form of a longest path problem 48,

with the following characteristics:

(a) the paths between DP methods are directed 
and simple (weighted edges), and 

(b) only one method can be used per 
computational step.

In our case, we aim at finding the path with the best 
forecasting performance. Nevertheless, in order to 
accomplish this, we have to compute the distance 
(weights of the edges of the graph representing the 
optimization path) between the methods of the different 
computational steps, an issue addressed in the following 
section.

3.1. The Distance between Different Methods

To calculate the distance (D) or edge’s weights of the 
DOP graph, we have to apply those methods to the 
input data, one at a time, and calculate their individual 
forecasting performance. The basic idea of the weights 
is thus to represent the effect of each method on the 
forecasting performance. Fig. 3 presents an example of 

Fig. 2. A graphical example of the DOP

Table 2. The DOP computational steps
Computational 
Step

Name Description

1 Remove Outliers The outliers will be identified and removed from the data (will be treated as missing 
values)

2 Replace Missing Data All missing values will be replaced by an estimated value

3 Smooth Data A smoothing function will be used to remove noise

4 Detrend Data Trends will be identified and removed from data

5 Feature Selection / 
Extraction

Input data will be reduced, either by selecting a subset of relevant features, or by 
reducing their dimensionality

6 Forecasting A forecasting method will be used as the criterion to evaluate previous computational 
steps and thus lead to the final dataset
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a distance calculation in the DOP graph. In this 
example, in order to calculate the distance D (1.2), 
method 1.2 (means: computational step 1, 
computational method of aforementioned step= 2) must 
be applied to the input data.

( . ) = ( . ) min( ( )) (1)

where,
( . ), is the forecasting performance, by 

using data which are preprocessed using
method c of step a.
( ), is the vector of forecasting 

performances for all computational methods 
of step a.

( . , . ) = ( . , . ) ( . ) (2)

where,
( . , . ), is the forecasting 

performance, when using data which are 
preprocessed using method c of step a
followed by method d of step b

Fig. 3. Distance calculation in DOP graph

The example presented in Fig. 4 demonstrates the 
calculation of the distance of the various computational
methods in the DOP graph. Here we can see that 
methods 2.1 and 2.2 lead to a better forecasting 
performance, provided that method 1.1 was used in the 
previous computational step. In addition, method 2.1 
has a negative effect on the forecasting performance in 
the case that method 1.2 was used in the previous step, 
while method 2.2 has no effect on the processing 
forecasting performance, when method 1.2 is preceding.

D(1.1) = P(1.1) – min(P(1)) = 0.90 – 0.90 = 0
D(1.2) = P(1.2) – min(P(1)) = 0.91 – 0.90 = 0.1
D(1.1, 2.1) = P(1.1, 2.1) – P(1.1) = 0.93 – 0.90 = 0.03
D(1.1, 2.2) = P(1.1, 2.2) – P(1.1) = 0.92 – 0.90 = 0.02
D(1.2, 2.1) = P(1.2, 2.1) – P(1.2) = 0.85 – 0.91 = -0.06
D(1.2, 2.2) = P(1.2, 2.2) – P(1.2) = 0.91 – 0.91 = 0

For the case where the methods are skipped from the 
evaluation procedure, their distances have been set to 
zero (i.e. no effect on the forecasting performance).

Fig. 4. Example of a DOP graph, a) with forecasting 
performance (on the top) and b) the calculated distance (on 
the bottom)

4. The Daphne Optimization Methodology

The DOM initiates the phases in the following order.

Phase 1. The performance of each one of the forecasting 
methods is calculated without using any data 
preprocessing method. (In cases where the 
forecasting methods have special requirements,
certain computational steps are followed: for 
example, ANNs cannot interpret missing 
values, thus a preprocessing method to deal 
with missing values must be used.)

Phase 2. Calculate the performance of each one of the 
forecasting methods by using only one data 
preprocessing method for all computational 
steps. This is an optional phase, as it can be 
part of the optimization algorithm that will be 
used for the final selection of the best possible 
combination of optimization steps. In our 
study, we included this phase in the two 
optimization algorithms employed, i.e. GA and 
ACO.

Phase 3. Get the next feasible combination of
computational methods to evaluate, by taking 
into consideration the distance-effect of each 
method. The formulation of the next feasible 
combination depends on the optimization 
algorithm employed. In the next sections, we 
describe the modifications necessary for GA
and ACO to be applied in the frame of the 
DOM.

Phase 4. Apply the combination of computational 
methods to the input data and calculate the 
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distances. For the intermediate computational
steps of the DOP (Step 1 to Step 5, of Fig. 2),
the Linear Regression method can be used to 
calculate the forecasting performance for the 
distance calculations. Linear Regression can be 
used for this purpose in order to provide a
quick estimation of the forecasting 
performance. The output of each preprocessing 
method of the combination can be stored 
temporarily (as cache) in order to be reused in 
different combinations of preprocessing 
methods. This will reduce the processing time 
but will increase the necessary disk space and 
memory. If this mechanism is used, a search 
for existing cached output data must be carried 
out in order to facilitate its reuse and also any 
unsaved preprocessed output data must be 
saved temporarily (cached).

Phase 5. If the terminal conditions are reached the 
process stops, otherwise Phases 3 to 5 are to be 
repeated. The next two terminal condition were 
used in all optimization algorithms:
1. The maximum number of iterations (in GA

parlance referred to as generations) has 
been reached.

2. The fitness function does not change over 
successive iterations. For that purpose, the 
average changes in fitness between 
successive iterations of Eq. (3) must be 
calculated. When the 3-iterations moving 
average of | | is equal or lower than a
preset change tolerance threshold, the 
optimization procedure stops.

=
1

(3)

Where,
is the average change in the 

fitness from one iteration to the 
next.

is the total number of 
iterations elapsed.

is the average fitness of the nth

iteration.

5. DOM for Genetic Algorithms

In order to use GAs for the materialization of the DOM, 
we need to generate an initial population of solutions,
which, in this case, are possible combinations of
methods for the computational steps. In addition, we 
need to define the crossover mechanism to be used 
when combining GA solutions in order to produce the 

(better) solutions of the next generation. For this reason, 
two parts of the “traditional” GAs have been modified. 
In the first modification, a function that generates initial 
populations with a) feasible and b) unique solutions was 
created. In our optimization problem a solution is a 
combination of methods (one for each DOP step). The 
initial solutions did not include any preprocessing 
technique, except from a method to replace the missing 
values, which was selected at random. This function 
will be applied during Phase 1 of the DOM.

In the second modification, the Daphne Uniform 
Crossover (DUC) method was created in order to use 
the calculated distance-effect of each method and 
perform targeted genome crossovers. This method is a 
modified version of the Uniform Crossover which uses 
the distance between the different methods to perform 
crossover. The advantage of DUC method is that it
swaps the genomes on the basis of a probability 
depending on the distance-effect of each method, and 
not at random by using a constant probability (mixing 
rate).

5.1. The Daphne Uniform Crossover

In the traditional uniform crossover the loci positions in 
the genome are selected at random (using a constant 
probability referred to as the mixing rate) and the 
specific genes are exchanged. The DUC selects the loci 
positions in the genome from a variable probability 
depending on the distance-effect of each method. In this 
way the DUC controls the genetic diversity.

The DUC can be used in many different ways, in 
order to compute the exchange rate for each gene. In the 
following section we present three different ways to 
compute the exchange rate for each gene from the 
distance-effect.

Method-1 crossover: Exchange the “bad” genes

In this method of exchange, the loci positions with 
“bad” genes (i.e. the genes with lower distance) have 
higher probability of being exchanged. The idea is to 
keep the “good” genes, which will probably be 
consecutive, and thus, the behavior that evolves as 
patterns in the population will be preserved. This is not 
possible in the traditional uniform crossover. In 
addition, by exchanging the loci positions of the “bad” 
genes of both parents, it is expected that the fitness of 
the offspring will increase. The exchange probability of 
each loci position varies around a constant mixing rate, 
as can be seen in Eq. (4).

= (1 ( ( ) (| |))) (4)
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Where,
, is the th loci position
, in the distance for each loci position in 

the genome

The exchange rate can be calculated by using Eq. (4)
for each parent, and the maximum value is kept for each 
loci position.

Method-2 crossover: Pass the “good” genes to the 
first child

Zajonc formulated 49 and applied 50 the confluence 
theory to explain the relationships between birth order 
and intellectual development, arguing that later-born 
children tend to be less intelligent than earlier-born 
children. Method-2 of selecting the loci positions to be 
exchanged was inspired by Zajonc’s work. Method-2
exchanges the loci positions where the second child’s 
distance is greater than the first’s. The exchange rate in 
these cases has a value of 1, and in all others have a
value of 0. In this way the first child will get all the
“good” genes and is expected to show an increase its 
fitness. It should be noted that in this type a constant 
mixing rate is not needed.

Method-3 crossover: A combination of Method-1
and Method-2

This crossover method combines the previous two 
methods in order to exchange the parent’s genes. First, 
Method-2 is used in order for the first child to get all 
the “good” genes; in the cases where the second child’s 
distance is greater than the first’s. In the cases in which 
the first child has already all the good genes (and no 
exchange will be performed by Method-2), the Method-
1 was used. By using Method-1 in these cases, we will 
prevent premature convergence in the GA.

6. DOM for Ant Colony Optimization

The ACO is very close to our methodology because the 
ants travel through a path towards their destination 
(food source). The application of the ACO meta-
heuristic to the traveling salesman problem 51 is similar 
to our problem. The main differences are: a) our 
problem has to find the longest path (not the minimum), 
and b) our path is not a Hamiltonian circuit.

In order to compute the ant-routing table, Eq. (5)
was used, where ( . , . ) is the distance between 
methods c (of step a) and d (of step b), as shown in Eq. 
(6). The distance of each edge (methods c and d) of the 
path has been calculated with Eq. (1) and Eq. (2), with a 
value range of [-1, 1]. In Eq. (6), the value 1 was added, 

in order to produce a positive heuristic value in the
range of [0, 2]. Thus, the longer the distance between 
two methods, the higher the local heuristic value.

. , . =
. , . . , .

. , . . , .

(5)

Where,
. , . is the strength of the pheromone, 
. , . is visibility, i.e. a simple heuristic 

used in deciding which edge is the most 
attractive to be visited next 

is a constant affecting the strength of 
the pheromone

: a constant affecting visibility

. , . = ( . , . ) + 1 (6)
Where,

is the set of all the neighbor nodes of 
node i.

Each ant deposits a quantity of pheromone ( ) on 
each connection that it has used. The ( ) is the 
forecasting performance of the model, by ant in 
iteration , as shown in Eq. (7).

. , . ( ) . , . ( ) + ( ), = 1, , (7)

Where,
is the number of ants (is maintained 

constant in all iterations)

In order to avoid convergence to a locally optimal 
solution, pheromone evaporation is performed. In 
pheromone evaporation, the arc’s pheromone strength is 
updated as follows: = (1 ) , where 

(0, 1] controls the speed of pheromone decay. 52

The probability . , . ( ) where in the t-th 
algorithm iteration, an ant that used method (of step 

) chooses to use method (of step ), is given 
by Eq. (8). Without using the DOM, which calculates 
the distance between methods, this probability will only 
use the pheromone strength Eq. (5). In these 

. , . ( ) =
. , . ( )

. , . ( )
(8)

Where,
is the feasible neighborhood of 

node for ant .

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

645



I. Kyriakidis et al. / Generic Preprocessing Optimization Methodology

7. DOM Evaluation

The DOM was applied together with two optimization 
algorithms (GA and ACO). As a result the next four 
optimization algorithms have been used and evaluated 
for their optimization performance:
(i) Traditional GA

(ii) Traditional ACO
(iii) Daphne-GA, and
(iv) Daphne-ACO.

The evaluation was performed in terms of best 
forecasting performance in minimum execution time. 
By the term “traditional” we mean the use of the 
optimization algorithms in their original form. In the 
earliest genetic algorithms (traditional), the related 
research on Holland’s original GA 53 usually maintains 
a single population of potential solutions to a problem 
and uses a single crossover operator and a single 
mutation operator to produce successive generations. 54,

55, 56 For the case of the traditional ACO the Ref. 57
meta-heuristic was used, which models the behavior of
a group of real ant colonies to rapidly find the shortest 
path between food sources and nests. 58

For comparison, several (existing) methods for each 
step of the GA were used. Table 3 shows a) the 
methods that have been used for each step of the GA,
and b) the design parameters of the GAs. This table 
includes the important decisions that factor into the 
design of the GAs. 17

In addition, in order to have accurate evaluation 
results an exhaustive search of all combinations of data 
preprocessing methods and forecasting methods 
(solutions) has been performed, for comparison. For the 
selected number of methods per computational step 
(Table 1), the exhaustive search equates to the 
execution of 100,800 different solutions (all possible 
combinations). The number of methods per 
computational step was selected in such a manner that 
would result in a limited search space where the 
exhaustive search could be used. In addition, a 
relatively small dataset (3-years of daily values) was 
selected for the same purpose.

Tables 4 and 5, show the investigated optimization 
algorithms models, for GA and ACO respectively. 
These optimization algorithms models can be used with 
different predefined execution parameters, which will 
affect their results (in performance and execution time). 
In this study, the optimization algorithms models have 
been executed with the predefined execution parameters 
of Table 6. Each execution, for the combination of 
optimization algorithms and different parameters, was 
repeated 10-times and the performance criteria was 
calculated from the average of those repeated 
executions. This was performed in order to produce 

reliable results, because of the heuristic nature of the 
optimization algorithms.

Table 3.  The methods that have been used for each step of the 
GA and the design parameters of the GAs

Method or Parameter
Selection (of parents) Double Tournament Selection, 

without replacement (the same 
parent cannot be selected twice)

Roulette Wheel Selection
Rank Selection

Crossover Parents 
(produce offspring)

Uniform Crossover
Double Point Crossover
Daphne Uniform Crossover

Mutation Uniform Mutation
Elite offspring One elite offspring
Data structure 
(representation)

Real values

Fitness Function Sugeno Forecasting Performance 
Index (FPIs)

59

Table 4.  The investigated GA models

# GA Model Name Crossover Selection
1 DDO (Traditional GA) Double-

Point
Double 
Tournament

2 DRA (Traditional GA) Double-
Point

Rank

3 DRO (Traditional GA) Double-
Point

Roulette 
Wheel

4 UDO (Traditional GA) Uniform Double 
Tournament

5 URA (Traditional GA) Uniform Rank

6 URO (Traditional GA) Uniform Roulette 
Wheel

7 D-UDO (Daphne-GA) DUC Double 
Tournament

8 D-URA (Daphne-GA) DUC Rank

9 D-URO (Daphne-GA) DUC Roulette 
Wheel

Table 5.  The investigated ACO algorithm models

# ACO algorithm 
Model Description

1 Traditional ACO Using only the pheromone trails to 
guide the ants.

2 Daphne ACO Using a local heuristic value 
depending on the calculated distance, 
and the pheromone trails to guide the 
ants.
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Table 6.  The execution parameters of the optimization 
algorithms models

Optimization 
Algorithm Parameter Value(s)

GA

Crossover Rate 0.2, 0.3, 0.5

Mutation Rate 0.05, 0.1, 0.2

Tournament 
Selection Size (TSS)

3, 5, 8

Exchange Method Method-1, Method-
2, Method-3

ACO

0.5, 0.75, 1

1, 2.5, 5, 7.5, 10

0.25, 0.5, 0.75

7.1. The Optimization Performance Score
The criteria to compare the performance of each 
optimization algorithm’s execution were a) the best 
forecasting performance, and b) the execution time 
(speed). The goal of the optimization algorithms was to 
find a forecasting performance (that is close to the best) 
in a relatively short time period. In order to compare the 
performance of an optimization algorithm's execution 
( ) with the performance of the other optimization 
algorithms executions, the Performance Score ( )
as defined in eq. (9) was used. The performance criteria 
were firstly normalized by using feature scaling to 
standardize their range. The simplest method of feature 
scaling is to rescale the range of the variables to the 
range [0, 1] (Eq. (10) and Eq. (12)). The lower the 

value, the higher the overall performance of the 
optimization algorithm.

( )

= ( ( ) 2)

+ ( ( ) 2) (9)

Where,
, is an optimization algorithm's execution

( )

=
( ) ( )

( ) ( ) (10)
( )

= 1 ( ) (11)
( )

=
( ) ( )

( ) ( ) (12)

The forecasting performance (the fitness function in 
GA) was calculated by using the Sugeno Forecasting 
Performance Index (FPIs) as proposed in Ref. 59.
DOM is not restricted in the use of the FPIs as a 

forecasting performance method, but it can be used with 
other methods such as: Index of Agreement (dr) 60, 61 or 
Coefficient of Determination (r2).

8. Results and Discussion

The exhaustive search equates to the execution of 
100,800 different models (all possible combinations). 
The time needed to execute all possible models was 
approximately 13 days, when using a personal 
computer, with an Intel(R) Core(TM)2 Quad CPU 
Q6600 @ 2.40GHz CPU (with Average CPU Mark: 
2991) 62, and 4GByte RAM. The use of the exhaustive 
search helped a) to evaluate the results of the 
optimization accurately, and b) enables to study the 
search space of the problem. Fig. 5 shows the 
percentage of the models for each forecasting 
performance group. From Fig. 5 we can see that the 
highest performance of all models for the specific 
dataset used in this study is 0.5. In general this is not a 
very good forecasting performance, but its 
improvement was not a goal of this study. In addition, 
we can see that 3.7% of these models provide the best 
possible results (for the studied models), i.e. a 
performance between 0.4 and 0.5. The optimization 
algorithms would try to find the models corresponding 
to this 3.7%.

Fig. 5.  The percentage of the models for each forecasting 
performance group

Table 7 shows the ten best GA Models (from a total 
of 72 models) in terms of . From Table 7 we can 
see that 90% of those models used the Double 
Tournament Selection method, with a TSS value 8. In 
addition, 70% of those models use a mutation rate value 
of 0.1. From Table 7, it is clear that the models with the 
highest (50% of these models) used the DOM. 
The difference between the best model using DOM (1st
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model), compared to the best model not using DOM (4th

model) was 2% .
Table 8 shows the ten best ACO Models (from a 

total of 48 models) in terms of . From Table 8
we can see that a) 60% of those models use an Alpha 

Table 
8, it is clear that the models with the highest 
(70% of these models) use the DOM. The difference 
between the best model using DOM (1st model), 
compared to the best model not using DOM (5th model) 
was 6% .

In order to compare the results of the GA models 
with the results of the ACO models, the values 
were calculated from both. From this calculation, we 
have seen that the best ACO model (of Table 8) is 3% 
better (in ) comparted to the best GA model (of 
Table 7). By comparing the results of the exhaustive 
search with the results of the optimization algorithms, 
the superiority of the optimization algorithms over the 
exhaustive search is evident. The optimization 
algorithms needed approximately 0.1% of the total time 
that was necessary for the exhaustive search, in order to 
find a near optimal solution (in terms of performance). 
These solutions were in the group of the best solutions 
(0.3% of the total search space).

9. Conclusions

In order to perform forecasts for time-series data, a 
combination (chain) of computational methods is 
employed (including the forecasting method). The 
selection of these methods is a very difficult but 
important task because it influences the forecasting 
performance. In this study, a general optimization 
methodology (referred to as Daphne) is introduced and 
evaluated in order to select the appropriate combination 
of methods to forecast time-series data.

The Daphne Optimization Methodology (DOM) is 
based on the idea of measuring the effect of each 
method on the forecasting performance, and using it as 
a distance in a directed graph. This graph represents all 
possible combinations of methods, which are grouped 
in six steps. Each step deals with a specific problem 
(e.g. remove outliers) and consists of a number of 
methods for the problem of each step. In addition, we
have described two paradigmatic implementations 
together with Genetic Algorithms (GAs) and Ant 
Colony Optimization (ACO). The DOM is a general 
methodology, thus, it could be applied together with 
optimization algorithms (GA and ACO) in a different 
manner. For example, in the case of GAs, it could be 

Table 7. The ten best GA Models in terms of the 

GA Model Crossover Mutation TSS Exchange 
Method

Time 
(mm:ss)

Best 
Performance

D-UDO 0.2 0.1 8 Method-3 14:29 0,47 0,36
D-UDO 0.5 0.05 8 Method-2 08:27 0,45 0,37
D-UDO 0.2 0.1 8 Method-3 15:06 0,47 0,38
UDO 0.3 0.1 8 - 15:27 0,47 0,38
DDO 0.5 0.05 8 - 09:09 0,45 0,39
DDO 0.3 0.1 8 - 12:51 0,46 0,40
D-UDO 0.5 0.1 8 - 16:05 0,47 0,40
DDO 0.5 0.1 8 - 16:08 0,47 0,40
URO 0.5 0.05 8 - 13:21 0,46 0,41
D-UDO 0.5 0.1 8 Type-2 16:41 0,47 0,42

Table 8. The ten best ACO Models in terms of the 

ACO Model Alpha ( ) Beta ( ) rho ( ) Time 
(mm:ss)

Best 
Performance

Daphne ACO 0,5 7,5 0,5 20:23 0,49 0,41
Daphne ACO 0,5 10 0,5 21:20 0,49 0,43
Daphne ACO 0,75 5 0,5 21:26 0,49 0,43
Daphne ACO 1 2,5 0,5 22:46 0,49 0,47
Traditional ACO 0,5 0 0,25 15:12 0,47 0,47
Daphne ACO 0,5 5 0,5 19:21 0,48 0,48
Daphne ACO 0,5 1 0,25 19:42 0,48 0,49
Traditional ACO 0,75 0 0,5 08:29 0,45 0,50
Daphne ACO 0,5 7,5 0,25 20:04 0,48 0,50
Traditional ACO 1 0 0,75 04:50 0,44 0,50
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used to create a driven mutation by the distance-effect 
of each method. 

The DOM was applied and evaluated in the two 
aforementioned optimization algorithms: GAs and 
ACO. The evaluation procedure included comparisons 
with the traditional use of the optimization algorithms 
and with the exhaustive search.

Results show that the DOM has 2% and 6% better 
, compared to the traditional use of the 

optimization algorithms, when using GA and ACO 
respectively. In addition, we have seen that the DOM 
provides 3% better if it is used in the ACO, 
instead of in the GA. Thus, the DOM finds a solution 
(combination of preprocessing and forecasting 
methods) which is near the optimal in comparatively 
shorter time than with the traditional use of the 
optimization algorithms. This has the potential to be 
very helpful in "real" world problems, where commonly 
the search space is very large.
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