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Abstract

Teaching-learning based optimization is a newly developed intelligent optimization algorithm. It imitates the pro-
cess of teaching and learning simply and has better global searching capability. However, some studies have shown 
that TLBO is good at exploration but poor at exploitation and often falls into local optimum for certain complex 
problems. To address these issues, a novel autonomous teaching-learning based optimization algorithm is proposed
to solve the global optimization problems on the continuous space. Our proposed algorithm is remodeled according
to the three phases of the teaching and learning process, learning from a teacher, mutual learning and self-learning
among students instead of two phases of the original one. Moreover, the motivation and autonomy of students are
considered in our proposed algorithm, and the expressions of autonomy are formulated. The performance of our 
proposed algorithm is compared with that of the related algorithms through our experimental results. The results in-
dicate the proposed algorithm performs better in terms of the convergence and optimization capability.
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1 Introduction

Optimization problems are solved commonly by mathe-
matical methods to obtain the optimal solution, but it is
basically very difficult to find the optimal solution within
an acceptable time because the optimization problems in
practice are NP-hard. Thus, many researchers have pro-
posed some intelligent optimization approaches to opti-
mization problems, and have achieved fruitful results.

Recently, the design principle of intelligent optimi-
zation algorithms are generally based on biological be-
havior, the laws of physics (or phenomena) and human
behavior (or cognitive), etc., which are all the innovative
design ideas. The algorithms inspired by some biological
phenomena including genetic algorithm (GA)1, artifi-
cial immune algorithm (AIA)2, ant colony optimization
(ACO 3, particle swarm optimization (PSO) 4, differen-
tial evolution algorithm (DE)5, artificial bee colony algo-
rithm (ABC)6, chaos ant swarm optimization(CASO)7

and so on. As for CASO, it is devised according to the
chaotic behavior of ants and the self-organization behav-

ior of the ant colony; and it has been proved to be effec-
tive in a lot of real-world problems. Furthermore, the
author and coworkers developed the CASO, and discover
the principle of chaos–order transition in foraging behav-
ior of ants8. Other algorithms are designed based on the
physical phenomena such as simulating annealing (SA)9,
gravitational search algorithm (GSA)10, and grenade ex-
plosion method (GEM)11, fireworks algorithm (FWA)12.
The third type of algorithms is based on human social 
behavior or cognitive. For example, Moscato proposed a
memetic algorithm (MA)13 based on cultural evolution-
ary. Especially, Rao et al. proposed a teaching-learning
based optimization (TLBO)14, which is under help of
teaching and learning process of human.

TLBO's design philosophy is relatively new, and it 
has solved some engineering design problems15,16,17,18,
some studies show that TLBO is not among the best me-
ta-heuristics19,20 and has some shortcomings such as,
(i) the design of TLBO is so simple that it only includes 
two phase, teacher phase and leaner phase. In fact, the 
process of learning includes learning from teacher, learn-
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ing from his/her classmates and self-learning. Besides,
motivation is a direct factor to affect learning. Some 
learners maybe have their stronger desires for improving 
their scores, while others have their weaker motivation. 
Consequently, the effect of learners depends on their own 
learning desires, in other words, learning desires can re-
flect the ability to gain a sense of achievement through 
learning. This capability of learners is called autonomy in 
this paper. Obviously, TLBO doesn’t reflect the autono-
my of the learners. (ii) TLBO suffers from premature and 
falls into the local optimum. To avoid the disadvantages 
of TLBO and to improve the autonomy, we reconstruct
an autonomous teaching-learning based optimization,
called ATLBO, on the basis of the teaching and learning
process.

In our ATLBO, we firstly assume that the teach-
ing-learning process has three phases: learning from
teacher, group learning and self-learning. Then, we for-
mulate some expressions according to the characteristics
of each learning phase. Finally, we verify the validity of
the ATLBO algorithm by means of the extensive experi-
ments.

The main contributions of this paper are presented in
the following.

(i). We propose a novel behavior-inspired swarm 
intelligence algorithm on the basis of the teaching and 
learning process. This population-based optimization 
algorithm demonstrates an outstanding performance in 
the global optimization.

(ii). We introduce the learning desire into our pro-
posed algorithm to embody the learners’ autonomy.

(iii). We carry out a large number of experiments to 
investigate the effectiveness and efficiency on some clas-
sical functions in previous references, and the latest 
CEC2014 benchmark suite.

The rest of this paper is organized as follows: Sec-
tion 2 presents the TLBO algorithm proposed by R. V.
Rao. Section 3 explains the process how to design the
ATLBO algorithm in detail. Section 4 shows simulation
results. Finally, conclusions are stated in Section 5.

2 Teaching-learning based Optimization Algorithm

The TLBO algorithm is a population-based optimization
algorithm, which was developed according to the teach-
ing and learning. There are two characters in the teach-
ing-learning system, one is a teacher, and the other is
learner. The best individual (learner) is viewed as the

teacher. Learners learn from the teacher or from another
learner. The purpose of the teacher is to improve the av-
erage score of a whole class, while the targets of these
learners are to increase their own scores. Therefore,
TLBO has two phases, i.e., teacher phase and learner
phase.

To facilitate the description, we have an example 
with minimum optimization problem. Let the objective 
function be with -dimensional variables

, where and are the lower 
bound and the upper bound of the independent varia-
ble , respectively. represents 
the position of the th learner, . The 
teacher is denoted by ,

. The mean position of all learners 
.

2.1 Teacher phase

During the teacher phase, the teacher imparts knowledge
to his/her learners. Then, the position of learner is
updated as follows:

(1)
where is the current time, is the last time is
a step factor which is a random number in the range

is a teaching factor which determines the
average change between two times, we can choose 1 or 2
according to Eq.(2)

(2)
If , then we accept .

2.2 Learner phase

In the learner phase, learners learn from each other. That
is, a learner randomly selects another one

( ), and interacts with . Then, the learning can
be expressed as follows.

(3)

2.3 Remove duplicates phase

According to the TLBO description16,17 and the TLBO 
MATLAB code obtained from its inventors, duplicate 
elimination step is applied. The duplicate elimination 
strategy is given in the following. 
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Duplicate elimination strategy
Foreach do

random_solution();
Evaluate( );

;
If == then

    return best( );
End

End

Where indicates that the solution of 
has existed in the candidate solutions, is 

the number of fitness value evaluation, is the 
maximum of fitness value evaluations.

Although the TLBO algorithm is a simple and effec-
tive method that can solve many optimization problems,
it has some unreasonable ideas. TLBO, by nature, is a hill 
climbing method, and it cannot reflect the autonomy of 
individual learner. Ref. 21 reported that the performance
of TLBO is not better than other EAs. As V. K. Patel
pointed out that: “teaching factor of TLBO is relatively 
fixed, without considering the individual's self-learning
ability” 22. In other words, TLBO doesn’t conform to the
teaching and learning in real world. As we all known, the
learning, for a learner, should be divided into three types,
learning form the teacher, group learning and
self-learning. Therefore, we develop an autonomous
teaching and learning optimization algorithm provided 
that the real process of teaching and learning, and the 
individual learning autonomy are given full considera-
tion, namely ATLBO, which is methodologically differ-
ent from TLBO .

3 Description of ATLBO

During the actual teaching and learning process, the
teacher needs to innovate and to improve their teaching
level; learners perform a continuous learning process
including learning from the teacher, learning from anoth-
er learner within his/her group and self-learning so as to
raise their own grades. Moreover, as a learner, he/she can
take the initiative to learn with a strong or weak learning
desire.

As a result, we reconstruct framework of the AT-
LBO algorithm as follows. There are a number of groups
in the class; the learning process of a learner in a group
consists of three steps: individual firstly learns from the 
teacher, then learns from the optimal individual in the 

group, finally refines himself/herself. In addition, in order
to reflect the autonomy of individual, we put forward the
concept of learning desire whose magnitude can reflect
the intensity property of a learner’s autonomy. Here we 
also assume that the objective function is 

.

3.1 Learning from the teacher

In this phase, learners learn from the teacher (the optimal 
learner), i.e., learners narrow the distance with their
teacher with learning desire. In other words, learners can 
adjust the search direction and step length in the light of 
the intensity of their learning desires. Then the learning 
desire of can be written as

(4)

where and are respectively the maximum and 
minimum fitness values at the current time, is the dif-
ficulty factor , which indicates the difficulty to
learn from the teacher, and is a sufficient small num-
ber to avoid division-by-zero. Eq. (4) ensures that a high-
er fitness value will lead to a smaller learning desire,
thereby improving the grade of an individual within 
smaller ranges.

Then Eq (1) can be converted into

(5)

3.2 Group learning

During this process, the leaner interact with the optimal 
learner of his/her group, and narrows the distance from
the local optimal individual. Let be the optimal 
individual of group . The interaction of learner
and can be written as

(6)

where is a Gaussian random number with mean 
and standard deviation . If ,

is replaced by , otherwise is 
remained at time. Eq.(6) shows that the new grade of 
group learning is a random number between the known 
best grade within this group and the original grade. We
use this expression because it has been proved to be 
competitive for a great number of difficult numerical 
optimization problems23.
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3.3 Self-learning

The goal of self-learning is to increase the ability of the
exploitation of the ATLBO algorithm. Because the er-
godicity of chaos systems can help to improve the ex-
ploitation, we design the self-learning using chaos map-
ping based on the advantages of chaos. More importantly,
we have already started our research in chaos and 
achieved some results24,25,26,27. All of these studies are 
based on chaotic ant swarm. Chaotic ant has the chaotic 
behavior of a single ant and self-organizing ability of the 
whole ant colony8. Therefore, we devise the self-learning 
using chaos mapping of an ant. Chaos mapping of an ant8

is . Let , thus

(7)

when control parameter =3, the chaos system is chaotic 
state, as shown in Fig 1. We can see from Fig. 1 that the 
interval of is [0, 7.5]. The center line of is 
about 7.5/2. Let , then

(8)

where is a control parameter.
In order to make the interval [0, 7.5] cover the 

search interval , we transform Eq. (8) into Eq.
(9)

(9)

where is the current time, is the last time.
is the position of learner at the current time.

denotes chaotic attractor of learner move a 
half of the search interval toward the negative direction.
Here the control parameter . This design
method makes full use of the chaotic sensitivity to initial
state and chaotic ergodicity to jump out of the local re-
gion, thereby comprehensively searching the solution 
space.
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Fig.1. Eq.(8) is chaotic when = 3

To embody the study motivation, the self-learning 
desire is quantized as follows

(10)
where is the fitness value of learner , is the 
mean fitness value of all learners; is the initial value 
of self-learning. Eq.(10) shows that self-learning desire
will increase rapidly when is greater than , so there 
are more opportunities to improve their fitness value; on 
the contrary, self-learning desire will decrease dramati-
cally when is lower than , thereby protecting the
optimal solution. Therefore, the grade of self-learning is 
updated according to .

3.4 Dynamic study group

To improve the population diversity and to avoid falling
into a local optimum, ATLBO uses a strategy of dynamic
study group. We discuss three sub-problems in the fol-
lowing: the definition of a dynamic study group, how to
reorganize a group and the best time to reorganize the 
group.

In a class, learners often discuss some problems 
within a study group which is usually composed of adja-
cent learners. In order to simulate this kind of learning 
environment, we construct a two-dimensional grid as 
shown in Fig 2.

In the grid, each learner occupies a two-dimensional 
coordinate. For a learner, its study group is composed of
the front, back, left, right learners and itself. Because the 
study groups mutual overlay each other, the information 
can be spread to the whole class, and then by means of
the interaction among the learners to achieve the purpose 
of global optimization.
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Fig. 2. Two-dimensional grid 

Let be the site of learner , then the group of 
(11)

where ,

,

,

To improve the diversity of search, we require 
changing the learner’s position from one study group to 
another, that is, the position of a learner is changed from 
one site to another. The 2D mesh is fixed when a learner 
changes his/her position. For simplicity, we randomly 
exchange two rows or columns. For example, 

are learners of th row and th col-
umns. We can exchange two rows and 

when ALTBO needs, are random integer
on the interval , and . Of course, we 
can exchange two columns , by the 
same token, here are also integer on the interval 

and .
During the search process, if the fitness values do 

not change for two successive times, it may lead to de-
crease learners’ exploitation ability, especially in the an-
aphase of the evolutionary process. Therefore, once the 
aforementioned cases encountered in the evolutionary 
process, group adjusting strategy is started to improve the 
search ability.

3.5 Steps of ATLBO

The steps of our ATLBO algorithm can be summarized 
as follows.

Step 1: Initialize the parameters of ATLBO, such as 
the maximum of fitness value evaluations ( ), popu-
lation size( ), dimension of variables( ), difficulty 
factor( ), learning desire , self-learning desire 

and so forth. The initial value
is defined as follows:

         (12)
where and is the lower and upper boundaries of 
variables, respectively.

Step 2: Evaluate each learner and choose the 
best one to be the teacher with the objective function at 
current time. Get the learning desire from Eq.(4).

Step 3: Calculate , update 
all learners according to Eq.(5).

Step 4: For each learner, construct its group accord-
ing to Eq.(11), and execute the group learning with 
Eq.(6).

Step 5: Execute the self-learning according to sec-
tion 3.3, if < , accept of self-learning.

Step 6: Determine whether the groups are restruc-
tured according to subsection 3.4.

Step 7: If , terminate ALBO and 
output the best solution. Otherwise jump Step 2.

Similar to genetic algorithm (GA), ant colony opti-
mization (ACO), artificial bee colony algorithm (ABC)6,
ATLBO is a population based optimization. But the most 
important difference between relevant algorithms and 
ATLBO in that: (i) ATLBO is constructed based on a
learner's learning process with autonomy; (ii) the learn-
ers’ study motivations are taken account in the proposed
ATLBO; (iii) reconstructing the study group strategy is 
applied. Although our ATLBO algorithm is slightly more 
complicated than TLBO, it is easy to implement, moreo-
ver, it employs a novel design idea.

Besides the common parameters such as population 
size , dimension of variables etc., there are 
three control parameters of ATLBO: the difficulty factor 

, learning desire and self-learning desire . Ac-
cording to Eq. (4), we can see from that a lager may
guide ATLBO to explore a larger area, while a small 
may make ATLBO execute a more intensive exploitation. 
As for and , they can improve the best solutions 
and can increase the autonomy of each learner. Empiri-
cally, we recommend setting to 1.03, to 0.62, 

to 1. 
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4 Simulation experiments

To verify the performance of our ATLBO algorithm, we 
devise two types of experiments, one is for the global 
convergence of the proposed algorithm, and the other is 
for the effectiveness of our algorithm. For fairness, we 
compare ATLBO with several classic algorithm, such as
artificial bee colony algorithm (ABC)6, CLPSO 28 ,
TLBO14, ETLBO17. All algorithms run on a computer of
Intel Core i5 2.50GHz CPU, 4GB memory, Matlab 7.14.
In a two-dimensional grid of learning environment, the 
number of columns is 6, and the number of rows is 10.
The maximum and minimum weights of CLPSO are 0.9 
and 0.4 respectively, and the number of ETLBO's elite 
individual is set to 4. The code of ABC is from 
http://mf.erciyes.edu.tr/abc, and that of ETLBO is from 
https://sites.google.com/site/tlborao. In additions, our 
stop criterion is the number of fitness value evaluations
instead of the number of iterations, and the relevant pa-
rameters of other algorithms are in accordance with the 
corresponding papers.

4.1 Comparison of Convergence Speed

Convergence tests are firstly done as follows. For fair 
comparison, we use 18 benchmark functions which are 
come from Ref.29,30,31,32. The 18 benchmark functions 
are listed in table 1. In table 1, are multimodal 
functions, are unimodal functions, the remained 
functions are rotated models. The “Range” in 
table 1 is the interval of the variables, “ ” is the opti-
mal solution, “Acceptance” indicates the acceptable solu-
tions of different functions.

All algorithms are run 50 independently on 18 func-
tions with 30-dimension in accordance with related liter-
atures. We also take a measure of these functions’ con-
vergence in Table 1 by the mean fitness values. Due to 
space limitations, here are the optimization processes of 
five algorithms on 5 functions with 30 
dimensions as shown in Figures 3-7. In Figures 3-7, the 
vertical axis is the average fitness value of 50 times, and 
the horizontal axis is the number of fitness value evalua-
tions (FEs), and .

Table 1 The 18 benchmark functions

Function Formula Range Acceptance

(Weierstrass) [0.5,0.5] 0 1E-5

(Rastigin) [-5.12,5.12] 0 50

(Rosen-

brock)
[-30,30] 0 50

(Griewank) [-600,600] 0 1E-5

(Ackley)
[-32.768,

32.768]
0 1E-5

(Sum 

Square)
[-100,100] 0 1E-5

(Quadric) [-100,100] 0 1E-5

(Zakharov) [-10,10] 0 1E-5

(Schwefel’s

p2.22)
[-10,10] 0 1E-5

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

511



Fangzhen Ge et al. / An autonomous teaching-learning based optimization algorithm

(Sphere) [-100,100] 0 1E-2

(Rotated 

Quadric)
[-100,100] 0 1E-5

(Rotated 

Zakharov)
[-10,10] 0 1E-5

(Rotated 

Schwefel’s

p2.22)

[-10,10] 0 1E-5

(Rotated 

Rosenbrock)
[-2.048,2.048] 0 50

(Rotated 

Ackley)

[-32.768,32.768

]
0 1E-5

(Rotated 

Rastrigin)
[-5.12,5.12] 0 50

(Rotated 

Weierstrass)
[0.5,0.5] 0 1E-5

(Rotated 

Griewank)
[-600,600] 0 1E-5

Fig. 3. Convergence performance of the 5 different algorithms 
on 30 dimensional (Rastigin) function.

Fig. 4. Convergence performance of the 5 different algorithms 
on 30 dimensional (Rosenbrock) function.
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Fig. 5. Convergence performance of the 5 different algorithms 
on 30 dimensional (Griewank) function.

Fig. 6. Convergence performance of the 5 different algorithms 
on 30 dimensional (Ackley) function.

Fig. 7. Convergence performance of the 5 different algorithms 
on 30 dimensional (Sphere) function.

It can be seen from Figs. 3 to 7 that: (i) the proposed 
ATLBO algorithm shows a greater advantage over other 
four algorithms especially for Sphere, Griewank, Rosen-
brock and Schwefel functions; (ii) ATLBO has faster 
convergence, showing strong optimization ability for 
Sphere, Rosenbrock, Ackley and Schwefel functions.
These results show ATLBO are effective for the unimod-
al and multimodal functions.

4.2 comparison of solution accuracy

As we all known, the solution accuracy is a salient yard-
stick for an algorithm. Therefore, we carry out the accu-
racy tests by two sets of benchmark functions, the first set
is the 18 functions in table 1, and the other set is 30
benchmark functions of the CEC 2014 competition on 
single objective real-parameter numerical optimization33.

The CEC’14 benchmark suite is summarized in Table 2,
which includes various types of function optimization 
problems. Although the second set (CEC’14) is more 
complete and contains harder problems—shifted and ro-
tated functions than the first set functions, here we still 
give comparative results of the first set in order to facili-
tate to compare with the previous papers for readers. All 
these 30 functions’ search range are [-100,100]D. In order 
to distinguish the functions from the table 1, each func-
tion in table 2 will be recognized by the capital letter “F”.
More complete descriptions are in Ref. 33.

4.2.1 Solution accuracy tests using the 18 benchmark 
functions 

In these tests, we set the maximum number of fitness 
evaluations (FEs) to 20000 for every algorithm to ensure 
a sufficient comparison. Every algorithm has been run 50 
times on every test function with 30 dimensions to reduce 
the occurrence of statistical errors. The best, mean solu-
tion and standard deviation of the 50 trails are listed in 
Table 3. The best solutions of these algorithms are indi-
cated with boldface. 
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Table 2 The 30 CEC’14 test functions

Type ID Function

Unimodal F1 Rotated High Conditioned Elliptic Function 100

F2 Rotated Bent Cigar Function 200

F3 Rotated Discus Function 300

Multimodal F4 Shifted and Rotated Rosenbrock’s Function 400

F5 Shifted and Rotated Ackley’s Function 500

F6 Shifted and Rotated Weierstrass Function 600

F7 Shifted and Rotated Griewank’s Function 700

F8 Shifted Rastrigin’s Function 800

F9 Shifted and Rotated Rastrigin’s Function 900

F10 Shifted Schwefel’s Function 1000

F11 Shifted and Rotated Schwefel’s Function 1100

F12 Shifted and Rotated Katsuura Function 1200

F13 Shifted and Rotated HappyCat Function 1300

F14 Shifted and Rotated HGBat Function 1400

F15 Shifted and Rotated Expanded Griewank’s 

plusRosenbrock’s Function

1500

F16 Shifted and Rotated Expanded Scaffer’s F6

Function

1600

Hybrid F17 Hybrid Function 1 (N=3) 1700

F18 Hybrid Function 2 (N=3) 1800

F19 Hybrid Function 3 (N=4) 1900

F20 Hybrid Function 4 (N=4) 2000

F21 Hybrid Function 5 (N=5) 2100

F22 Hybrid Function 6 (N=5) 2200

Composition F23 Composition Function 1 (N=5) 2300

F24 Composition Function 2 (N=3) 2400

F25 Composition Function 3 (N=3) 2500

F26 Composition Function 4 (N=5) 2600

F27 Composition Function 5 (N=5) 2700

F28 Composition Function 6 (N=5) 2800

F29 Composition Function 7 (N=3) 2900

F30 Composition Function 8 (N=3) 3000
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Table 3 The best, mean solutions and standard deviation of the 50 trials obtained by various methods on 30 dimensional
functions.

Function ABC CLPSO TLBO ETLBO ATLBO

f1 Best 0.00E+00 8.65E-03 0.00E+00 0.00E+00 0.00E+00

Mean 9.18E-15 1.17E-02 0.00E+00 0.00E+00 0.00E+00

Std. 6.67E-15 9.74E-04 0.00E+00 0.00E+00 0.00E+00

f2 Best 578E-15 1.79E-01 6.85E+00 0.00E+00 0.00E+00

Mean 4.08E-12 3.14E-01 1.42E+01 2.34E+01 1.17E+01

Std. 1.25E-11 9.47E-02 5.23E+00 1.27E+01 9.81E+00

f3 Best 7.98E+00 2.37E+01 1.85E+01 2.12E+01 2.95E+00

Mean 1.43E+01 2.74E+01 1.96E+01 2.21E+01 7.02E+00

Std. 3.78E+00 4.51E+00 7.58E-01 6.45E-01 2.04E+00

f4 Best 0.00E+00 1.98E-04 0.00E+00 0.00E+00 0.00E+00

Mean 5.78E-16 4.22E-04 0.00E+00 0.00E+00 0.00E+00

Std. 7.98E-16 2.01E-04 0.00E+00 0.00E+00 0.00E+00

f5 Best 6.37E-13 2.55E-03 3.23E-15 3.18E-15 2.13E-16

Mean 1.42E-12 3.50E-03 3.45E-15 3.53E-15 2.05E-16

Std. 3.82E-13 8.12E-04 0.00E+00 0.00E+00 0.00E+00

f6 Best 4.45E-16 9.38E-05 0.00E+00 0.00E+00 0.00E+00

Mean 6.17E-16 1.78E-04 0.00E+00 0.00E+00 0.00E+00

Std. 1.13E-16 7.19E-05 0.00E+00 0.00E+00 0.00E+00

f7 Best 5.98E+03 4.73E+03 5.42E-84 7.21E-146 0.00E+00

Mean 8.07E+03 7.12E+03 4.76E-81 7.56E-144 0.00E+00

Std. 9.12E+02 1.59E+03 2.19E-80 2.18E-143 0.00E+00

f8 Best 3.92E+02 4.87E+01 1.58E-52 4.78E-147 0.00E+00

Mean 3.76E+02 8.45E+01 2.45E-51 5.61E-144 0.00E+00

Std. 6.94E+01 1.47E+01 3.49E-51 1.78E-142 0.00E+00

f9 Best 2.14E-14 3.12E-04 1.35E-184 2.14E-176 0.00E+00

Mean 3.75E-14 4.09E-04 3.94E-181 3.45E-175 0.00E+00

Std. 7.45E-15 1.63E-05 1.85E-181 2.78E-175 0.00E+00

f10 Best 2.83E-16 5.74E-06 0.00E+00 0.00E+00 0.00E+00

Mean 4.78E-16 1.81E-05 0.00E+00 0.00E+00 0.00E+00

Std. 1.24E-16 5.88E-06 0.00E+00 0.00E+00 0.00E+00

f11 Best 5.23E+03 4.37E+03 1.75E-86 2.34E-151 0.00E+00

Mean 7.46E+03 7.35E+03 1.45E-80 2.34E-140 0.00E+00

Std. 1.68E+03 1.78E+03 6.42E-80 5.34E-140 0.00E+00

f12 Best 3.45E+02 7.55E+01 2.01E-57 5.82E-127 0.00E+00

Mean 4.75E+02 9.40E+01 5.36E-52 1.93E-123 0.00E+00

Std. 7.06E+01 2.19E+01 1.23E-51 2.13E-123 0.00E+00
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f13 Best 1.23E-03 1.42E-01 4.19E-181 2.84E-175 0.00E+00

Mean 1.39E-02 2.27E-01 1.45E-178 3.94E-173 0.00E+00

Std. 1.32E-02 7.67E-02 7.21E-179 5.12E-173 0.00E+00

f14 Best 1.30E+01 2.19E+01 1.56E+01 1.24E+01 2.34E+00

Mean 2.77E+01 2.01E+01 3.54E+01 4.53E+01 2.81E+00

Std. 1.72E+01 7.21E-01 2.16E+01 2.13E+01 3.01E+00

f15 Best 6.32E-03 6.82E-02 7.44E-15 3.55E-15 3.55E-15

Mean 3.86E-01 2.05E-01 5.29E-01 3.55E-15 3.55E-15

Std. 5.21E-01 7.34E-02 6.91E-01 0.00E+00 0.00E+00

f16 Best 4.12E+01 3.76E+01 4.87E+00 0.00E+00 0.00E+00

Mean 5.81E+01 6.12E+01 2.13E+01 4.38E+01 2.61E+01

Std. 1.21E+01 1.36E+01 6.32E+00 1.64E+01 3.19E-01

f17 Best 5.18E+00 6.35E+00 0.00E+00 0.00E+00 0.00E+00

Mean 5.69E+00 7.56E+00 0.00E+00 0.00E+00 0.00E+00

Std. 2.34E+00 1.67E+00 0.00E+00 0.00E+00 0.00E+00

f18 Best 5.43E-09 1.25E-03 0.00E+00 0.00E+00 0.00E+00

Mean 4.52E-06 3.45E-03 0.00E+00 0.00E+00 0.00E+00

Std. 6.54E-06 5.64E-03 0.00E+00 0.00E+00 0.00E+00

Table 3 shows that ATLBO has advantage over the 
other approaches in terms of the best, mean solution and 
standard deviation on the unimodal functions 

. Except for functions , the proposed 
ATLBO algorithm has obtained some better solution. For 
function , the best solution of ATLBO are smaller than 
those of other methods, while the mean solution and 
standard deviation of ATLBO can’t match those of other 
methods. As for function , ATLBO outperforms the 
other algorithms in terms of the best and mean solution, 
but it is inferior to the other algorithms in terms of stand-
ard deviation. For rotated test functions , AT-
LBO also has a significant advantage except for functions 

. For functions , the performance of 
ATLBO has better than that of TLBO and ETLBO.

Table 3 demonstrates the ATLBO has best perfor-
mance, and the second is ETLBO. The optimal solutions 
of ATLBO are the same as the theoretical optimums for 
functions ,
For functions , ATLBO is worse than oth-
ers, but it has closely performance with the other algo-
rithms. These experimental results prove right the theo-
rem of ‘no free lunch’34, one algorithm cannot outper-
form all the others on every aspect.

For a though comparison, the t-test is adopted for 
statistical analysis. Table 4 presents the T values and the 
P values on every function of this two-tailed test with a 
significant level of 0.05 between ATLBO and another 
algorithm. The boldface shows that the performance of 
ATLBO is better than those of other algorithm in terms of 
T values and P values. The “Better”, “Same” and 
“Worse” indicate the number of functions that ATLBO 
performs significantly better than, almost the same as, 
and significantly worse than the compared algorithm, 
respectively. “Merits” represents the difference between 
the number of “Better” and the number of “Worse”.

Table 4 displays that the numbers of “Merits” of 
ABC and CLPSO are all 18, those of TLBO and ETLBO 
are 4 and 6, respectively. Moreover, the performance of 
ATLBO is the same as TLBO and ETLBO on 12 func-
tions. Overall, ATLBO almost can obtain the optimum on 
18 functions.
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Table 4 Comparisons of ATLBO and other algorithms on t-test on 30 dimensional functions.

Function ABC CLPSO TLBO ETLBO

f1 T 7.4117 64.6883 0.0000 0.0000

p 0.0000 0.0000 0.0000 0.0000

f2 T -6.4227 -66.2500 1.2110 33.9262

p 0.0000 0.0000 0.2308 00.0002

f3 T 9.1271 22.1720 31.1291 37.9560

p 0.0000 0.0000 0.0000 0.0000

f4 T 3.9005 11.3062 0.0000 0.0000

p 0.0003 0.0000 0.0000 0.0000

f5 T 20.0153 23.2119 0.0000 0.0000

p 0.0000 0.0000 0.0000 0.0000

f6 T 29.4040 13.3318 0.0000 0.0000

p 0.0000 0.0000 0.0000 0.0000

f7 T 47.6516 24.1147 1.1705 1.8675

p 0.0000 0.0000 0.2466 0.0669

f8 T 29.1761 300.9555 3.7804 0.1697

p 0.0000 0.0000 0.0004 0.8658

f9 T 27.1065 135.1247 0.0000 0.0000

p 0.0000 0.0000 0.0000 0.0000

f10 T 20.7589 16.5768 0.0000 0.0000

p 0.0000 0.0000 0.0000 0.0000

f11 T 23.9127 22.2365 1.2163 22.3598

p 0.0000 0.0000 0.2288 00.02217

f12 T 36.2316 23.1144 2.3467 4.8795

p 0.0000 0.0000 0.0224 0.0000

f13 T 5.6707 15.9378 0.0000 0.0000

p 0.0000 0.0000 0.0000 0.0000

f14 T 7.6762 30.0824 8.0474 10.6368

p 0.0000 0.0000 0.0000 0.0000

f15 T 3.9898 15.0403 4.1227 0.0000

p 0.0002 0.0000 0.0001 0.0000

f16 T 14.2368 13.8947 -44.0848 5.8109

p 0.0000 0.0000 0.0001 0.0000

f17 T 13.0947 24.3784 0.0000 0.0000

p 0.0000 0.0000 0.0000 0.0000

f18 T 3.7219 3.2941 0.0000 0.0000

p 0.0004 0.0017 0.0000 0.0000

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

517



Fangzhen Ge et al. / An autonomous teaching-learning based optimization algorithm

Best 18 18 5 6

Same 0 0 12 12

Worst 0 0 1 0

Merits 18 18 4 6

4.2.2 Solution accuracy tests using the 30 CEC’14 
benchmark functions

In these tests, we use the CEC’14 test suite because “they 
have several features such as novel basic problems, 
composing test problems by extracting features dimen-
sion-wise from several problems, graded level of linkag-
es, rotated trap problems, and so on” 33. To ensure a fair 
comparison, we set the maximum number of fitness 
evaluations (FEs) to 150,000 for each algorithm. Each 
algorithm has been executed 51 runs on each test func-
tions, as in Ref. 33. Our evaluation of every problem is 
the average of 51 runs.

The comparative results on unimodal, multimodal, 
hybrid and composition fucntions are presented respec-
tively in Table 5-8. “max” and “min” respectively refer to 
the maximum and minimum fitness values of 5 algo-
rithms on every function among the 51 runs. “median”
means the median among those of experimental fitness 
values. “std” denotes the standard deviation of an algo-
rithm on a function. The best results of these comparative 
algorithms on each function are shown in bold. We also 
list the statistic test results between ATLBO and other 
algorithms using two-sided Wilcoxon rank-sum test to 
check the significance of the difference in Table 9. The h 
values for every function are presented in Table 9. When 
h=1, it means that there is a significant difference be-
tween the algorithm at the significance level 0.05, and

h=-1 vice versa; when h=0, it implies there is no differ-
ence.

The comparative results on unimodal benchmark
functions are given in Table 5. Table 5 shows that AT-
LBO obtains the best median values and the smallest 
standard deviation on F1 and F2, and those on F3 are next 
to ETLBO, while ATLBO obtains the smallest standard 
deviation on F3. According to the statistic tests in Table 
9, the experimental results of the proposed ATLBO are 
significantly different from the other four methods on F1 
and F2, and different from the other three methods except 
for ETLBO on F3. It is obvious that ATLBO outperforms 
better than the other algorithms in spite of these rotated 
trap problems.

Table 6 presents the comparative results on multi-
modal functions . In Table 6, ATLBO can get 
the best median values on 9 functions. CLPSO ranks 
second, and obtains the best median values on six func-
tions, while ETLBO ranks third, obtains the best median 
values on three functions, TLBO only obtains the best 
values on one function. Especially, both CLPSO and 
ATLBO achieve the maximum performance on functions 

. Seen from Table 9, ATLBO has signifi-
cant differences from or equal to the other algorithms on 
functions

. While ATLBO has no statistical-
ly significant different from CLPSO on functions 

.

Table 5 Comparative results on unimodal benchmark functions.

Function ABC CLPSO TLBO ETLBO ATLBO

F1 max 2.56E+06 7.98E+07 5.42E+07 1.36E+07 1.21E+06

min 3.78E+06 5.77E+06 4.57E+06 1.59E+06 1.35E+06

median 1.43E+06 2.15E+07 8.36E+06 5.09E+06 6.31E+05

std 5.47E+05 1.68E+07 1.33E+07 2.72E+06 2.51E+05

F2 max 3.94E+04 8.05E+06 1.59E+04 3.12E+04 1.51E+03

min 5.98E+03 1.15E+06 3.51E+03 3.10E+02 2.01E+02

median 1.53E+04 3.84E+06 8.41E+03 9.10E+03 2.78E+02

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

518



Fangzhen Ge et al. / An autonomous teaching-learning based optimization algorithm

std 6.61E+03 1.61E+06 3.91E+03 6.10E+03 2.12E+02

F3 max 1.49E+04 4.97E+04 7.84E+04 3.45E+03 1.27E+03

min 3.49E+03 5.87E+02 1.96E+04 2.99E+02 3.08E+02

median 7.31E+03 6.95E+03 4.50E+04 3.13E+02 4.53E+02

std 2.72E+03 1.35E+04 1.12E+04 5.42E+02 1.85E+02

Table 6 Comparative results on multimodal benchmark functions.

Function ABC CLPSO TLBO ETLBO ATLBO

F4 max 5.38E+02 6.49E+02 8.52E+02 5.59E+04 5.39E+02

min 4.03E+02 4.21E+02 5.69E+02 2.16E+03 3.99E+02

median 4.99E+02 5.43E+02 6.97E+02 3.11E+03 4.01E+02

std 3.81E+01 3.45E+02 5.23E+01 1.81E+03 3.71E+01

F5 max 5.24E+02 5.20E+02 5.20E+02 5.21E+02 5.20E+02

min 5.22E+02 5.20E+02 5.23E+02 5.21E+02 5.20E+02

median 5.22E+02 5.20E+02 5.23E+02 5.21E+02 5.20E+02

std 4.01E-03 4.23E-03 6.51E-03 7.71E-03 6.97E-04

F6 max 6.13E+02 6.23E+02 6.35E+02 6.29E+02 5.95E+02

min 6.02E+02 6.10E+02 6.31E+02 6.21E+02 5.85E+02

median 6.06E+02 6.14E+02 6.27E+02 6.23E+02 5.90E+02

std 2.58E+00 4.31E+00 1.85E+00 1.82E+00 1.12E+00

F7 max 7.01E+02 7.01E+02 7.02E+02 7.00E+02 7.00E+02

min 7.01E+02 7.01E+02 7.02E+02 7.00E+02 7.00E+02

median 7.01E+02 7.01E+02 7.02E+02 7.00E+02 7.00E+02

std 1.23E-02 2.59E-02 9.63E-02 5.64E-02 1.20E-03

F8 max 8.69E+02 9.42E+02 8.17E+02 9.65E+02 8.23E+02

min 8.28E+02 8.92E+02 8.05E+02 9.12E+02 8.02E+02

median 8.45E+02 9.24E+02 8.12E+02 9.38E+02 8.15E+02

std 5.10E+01 3.10E+01 2.05E+01 1.32E+01 2.15E+00

F9 max 9.76E+02 9.78E+02 1.23E+03 1.21E+03 9.25E+02

min 9.32E+02 9.64E+02 1.03E+03 8.79E+02 9.01E+02

median 9.51E+02 9.72E+02 1.14E+03 1.01E+03 9.12E+02

std 1.24E+01 1.35E+01 1.75E+01 2.57E+01 1.15E+01

F10 max 3.58E+03 1.02E+03 5.34E+03 3.19E+03 2.69E+03

min 1.48E+03 1.02E+03 3.51E+03 1.29E+03 1.12E+03

median 2.67E+03 1.02E+03 4.64E+03 2.71E+03 1.47E+03

std 3.82E+02 6.80E+01 3.71E+02 4.23E+02 3.58E+02

F11 max 3.81E+03 4.49E+03 6.45E+03 4.32E+03 3.91E+03

min 1.47E+03 2.13E+03 3.81E+03 2.37E+03 2.72E+03

median 2.98E+03 3.12E+03 4.57E+03 8.56E+03 3.43E+03
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std 4.51E+02 5.09E+02 5.72E+02 5.18E+02 2.87E+02

F12 max 1.20E+03 1.20E+03 1.20E+03 1.20E+03 1.20E+03

min 1.21E+03 1.20E+03 1.21E+03 1.20E+03 1.20E+03

median 1.21E+03 1.20E+03 1.21E+03 1.20E+03 1.20E+03

std 1.51E-02 5.48E-02 6.57E-02 5.51E-02 1.13E-02

F13 max 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03

min 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03

median 1.30E+03 1.30E+03 1.30E+03 1.30E+03 1.30E+03

std 6.49E-02 5.59E-02 4.41E-02 3.42E-02 1.89E-02

F14 max 1.42E+03 1.40E+03 1.40E+03 1.40E+03 1.40E+03

min 1.42E+03 1.40E+03 1.42E+03 1.41E+03 1.40E+03

median 1.42E+03 1.40E+03 1.42E+03 1.41E+03 1.40E+03

std 1.21E-02 1.96E-02 4.23E-02 1.38E-02 1.21E-01

F15 max 1.51E+03 1.55E+03 1.51E+03 1.53E+03 1.50E+03

min 1.51E+03 1.51E+03 1.51E+03 1.51E+03 1.50E+03

median 1.51E+03 1.51E+03 1.51E+03 1.52E+03 1.50E+03

std 8.48E-01 4.86E+00 5.30E+00 3.26E+00 6.68E-01

F16 max 1.62E+03 1.63E+03 1.61E+03 1.61E+03 1.61E+03

min 1.62E+03 1.61E+03 1.61E+03 1.61E+03 1.61E+03

median 1.62E+03 1.61E+03 1.61E+03 1.61E+03 1.61E+03

std 6.17E-01 5.72E-01 3.45E-01 5.41E-01 2.23E-01

Comparisons of hybrid functions are presented in Ta-
ble 7. From Table 7, ATLBO obtains the best median 
values on five functions , and 
obtains the second best median value on , which is 
slightly less than that of ABC. Note that these functions 

are hybrid by different basic functions, which maybe 
cause some algorithms reducing their performance sig-
nificantly such as CLPSO, TLBO and ETLBO, on the 
contrary, ATLBO still keeps its competition.

Table 7 Comparative results on hybrid benchmark functions.

Function ABC CLPSO TLBO ETLBO ATLBO

F17 max 3.48E+05 2.29E+07 1.21E+06 1.12E+06 6.12E+04

min 5.41E+03 1.31E+06 1.83E+05 1.43E+04 6.72E+03

median 6.65E+04 3.12E+06 5.61E+05 1.52E+03 2.72E+04

std 6.83E+04 4.20E+06 2.25E+05 1.71E-01 1.24E+02

F18 max 1.79E+04 1.01E+05 4.21E+03 1.11E+06 2.71E+03

min 2.31E+03 6.81E+03 2.03E+03 1.45E+04 1.78E+03

median 4.42E+03 2.31E+03 2.14E+03 1.54E+05 2.02E+03

std 3.70E+03 1.81E+04 3.80E+02 1.59E+05 1.25E+02

F19 max 1.92E+03 1.97E+03 2.01E+03 2.02E+03 1.92E+03

min 1.89E+03 1.92E+03 1.92E+03 1.92E+03 1.90E+03
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median 1.95E+03 1.94E+03 2.01E+03 1.97E+03 1.91E+03

std 3.70E+00 2.79E+01 3.45E+01 3.32E+01 1.42E+00

F20 max 5.41E+03 8.64E+04 6.83E+04 5.98E+04 1.57E+04

min 2.31E+03 8.65E+03 2.34E+03 2.13E+04 2.15E+03

median 3.45E+03 2.73E+04 1.78E+04 3.65E+04 4.35E+03

std 7.02E+02 1.79E+04 1.42E+04 8.51E+03 3.19E+03

F21 max 8.97E+04 1.68E+06 3.12E+05 1.67E+05 1.78E+05

min 6.81E+03 6.71E+04 5.67E+04 1.02E+04 3.72E+03

median 3.36E+04 4.23E+05 1.82E+05 4.72E+04 2.93E+04

std 2.31E+04 3.36E+05 6.63E+04 4.31E+04 3.51E+04

F22 max 2.56E+03 3.30E+03 3.71E+03 3.77E+03 2.86E+03

min 2.24E+03 2.26E+03 2.71E+03 2.41E+03 2.23E+03

median 2.37E+03 2.72E+03 3.17E+03 3.10E+03 2.51E+03

std 7.41E+01 2.41E+02 2.48E+02 2.68E+02 1.45E+02

Table 8 presents the comparative results on composi-
tion functions . ATLBO obtains the best me-
dian values on . CLPSO obtains the 
best median value on , but it loses the first place in 
terms of the standard deviation, ABC ranks first on .

When we cast our eyes at Table 9, we can see that the 
relatively low performance of ATLBO on ,
which sets from that the composition group functions 
have a large number of local optima.

Table 8 Comparative results on composition benchmark functions.

Function ABC CLPSO TLBO ETLBO ATLBO

F23 max 2.63E+03 2.58E+03 2.66E+03 2.62E+03 2.62E+03

min 2.58E+03 2.58E+03 2.51E+03 2.62E+03 2.62E+03

median 2.61E+03 2.58E+03 2.59E+03 2.62E+03 2.62E+03

std 9.85E-02 1.22E+00 6.39E+01 2.63E+03 1.61E-01

F24 max 2.64E+03 2.66E +03 2.72E+03 2.62E+03 2.60E+03

min 2.61E+03 2.63E+03 2.63E+03 2.63E+03 2.60E+03

median 2.62E +03 2.65E+03 2.67E+03 6.92E+00 2.60E+03

std 1.09E +01 5.98E+03 1.26E+01 2.63E+03 1.67E-02

F25 max 2.69E+03 2.71E+03 2.72E+03 2.75E+03 2.74E+03

min 2.68E+03 2.71E+03 2.71E+03 2.71E+03 2.71E+03

median 2.69E+03 2.71E+03 2.71E+03 2.73E+03 2.73E+03

std 9.31E-01 3.01E+03 1.34E+00 6.31E+00 2.13E+00

F26 max 2.86E+03 2.80E+03 2.79E+03 2.76E+03 2.70E+03

min 2.70E+03 2.70E+03 2.79E+03 2.72E+03 2.70E+03

median 2.81E+03 2.70E+03 2.79E+03 2.74E+03 2.70E+03

std 5.62E+01 2.23E+01 6.43E-02 3.45E+00 5.12E-02

F27 max 3.62E+03 3.54E+03 4.23E+03 6.51E+03 3.50E+03
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min 3.12E+03 3.25E+03 3.15E+03 3.45E+03 3.10E+03

median 3.45E+03 3.41E+03 3.91E+03 4.95E+03 3.10E+03

std 3.42E+01 7.80E+01 3.61E+02 6.75E+02 4.85E+01

F28 max 3.79E+03 5.67E+03 6.92E+03 6.62E+03 5.41E+03

min 3.61E+03 3.62E+03 4.62E+03 4.69E+03 3.59E+03

median 3.70E+03 5.58E+03 5.12E+03 5.61E+03 4.70E+03

std 4.09E+01 8.56E+01 5.61E+02 4.59E+01 3.78E+02

F29 max 2.81E+04 8.94E+06 4.23E+07 2.86E+06 5.28E+03

min 5.47E+03 5.34E+03 5.75E+03 3.12E+03 3.45E+03

median 1.60E+04 6.34E+03 3.41E+04 3.14E+03 4.12E+03

std 5.26E+03 1.34E+05 7.86E+06 3.75E+05 3.74E+02

F30 max 1.73E+04 3.75E+04 1.23E+05 3.75E+04 7.68E+03

min 7.52E+03 7.12E+03 1.32E+04 8.37E+03 4.32E+03

median 8.92E+03 1.59E+03 1.52E+04 1.52E+04 5.61E+03

std 2.30E+03 6.09E+03 1.85E+04 6.75E+03 7.41E+02

Table 9 Comparisons between ATLBO and other algorithms using two-sided Wilcoxon rank-sum test with significance
level 0.05.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

ABC(h) 1 1 1 1 1 -1 1 1 -1 1 -1 0 0 0 1

CLPSO(h) 1 1 1 1 1 1 1 1 -1 -1 0 0 1 1 1

TLBO(h) 1 1 1 1 -1 1 0 0 1 1 1 0 1 1 0

ETLBO(h) 1 1 -1 1 1 1 1 1 1 1 0 0 1 1 1

F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

ABC(h) 0 1 1 0 -1 0 -1 1 -1 -1 1 0 -1 1 1

CLPSO(h) -1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

TLBO(h) 1 1 1 1 1 1 1 0 -1 -1 1 1 1 -1 1

ETLBO(h) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

From Table 4-9, we can draw a conclusion that AT-
LBO offers significant performance over the other five 
algorithms on CEC2014 benchmark suite, but sometimes 
ATLBO loses its advantages on a few test functions with 
too many local optima. 

Through the above analysis, the obtained results re-
veal that ATLBO exhibits the best performance on whole 
experiments but not always. In fact, no algorithm can be 
better than all other algorithms, i.e., every algorithm has 
its strength and weakness. Of course, we apply some 
suitable strategies so that our algorithm can avoid some 
defects35.

Compared with those algorithms highly ranked in the 
CEC2014 competition, ATLBO performs better. That is 
because that most of competitive algorithms have apply 
complicated mechanisms, such as mutation operator,
control parameter 36 , hybrid strategies, hyper-heuristic 
controllers, parameter fine-turning mechanism, etc..
However, our objection is to test the basic performance of 
ATLBO on the benchmark suite. The next researches 
improve the performance of ATLBO by introducing ap-
propriate strategies or integrating with effective operator 
from other algorithms.
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5 Conclusions

In this paper, we proposed an autonomous teach-
ing-learning based optimization (ATLBO) to solve single 
objective global optimization. This algorithm is recon-
structed according to the teaching and learning process,
learning from teacher, group learning and self-learning.
Combined with the teaching-learning based optimization, 
group learning and self-learning methods are introduced. 
Group learning increases the exploration of TLBO, and 
self-learning improves the exploitation of TLBO. In order 
to evaluate the performance of ATLBO, we adopt two 
sets of benchmark functions which cover a larger variety
of different optimization problem types. We compared 
ATLBO with the state-of-the-art optimization algorithm,
namely, ABC, CLPSO, TLBO and ETLBO. As shown in 
the simulation results, the solution search quality of the 
ATLBO is generally better than that of other algorithms.

Future research on ATLBO can be divided into two 
categories: algorithm research and real-world application. 
For the first, we will focus on designing more efficient
search strategy to improve the exploration and exploita-
tion of ATLBO, and give exploitation and exploration 
measure; for the second, we address some real-word ap-
plications using ATLBO effectively and efficiently.
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