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Abstract

In this paper, we define hesitant fuzzy partitions (H-fuzzy partitions) to consider the results of standard
fuzzy clustering family (e.g. fuzzy c-means and intuitionistic fuzzy c-means). We define a method to con-
struct H-fuzzy partitions from a set of fuzzy clusters obtained from several executions of fuzzy clustering
algorithms with various initialization of their parameters. Our purpose is to consider some local optimal
solutions to find a global optimal solution also letting the user to consider various reliable membership
values and cluster centers to evaluate her/his problem using different cluster validity indices.

Keywords: Fuzzy partition, I-fuzzy partition, Hesitant fuzzy set, Hesitant fuzzy partition.

1. Introduction

Data clustering is the process of discovering nat-

ural groupings or clusters within multidimensional

data based on some similarity or dissimilarity mea-

sure 1. Clustering algorithms have been studied for

decades. Many clustering algorithms have been de-

veloped until now, but none of them is proper for all

purposes. Some clustering algorithms are suitable

for dealing with data of certain types, and some are

suitable for handling data with special distribution

structures. Many real data have complex distribu-
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tions with noise and isolated points and, they are in

high dimensional spaces. So there is a continuous

demand for researching different kinds of clustering

methods 2. In order to obtain better clustering results

in real-world applications, some researchers try their

best to provide new efficient and effective clustering

algorithms.

Most clustering algorithms are sensitive to the

selection of initial parameters. For instance the clus-

tering results of fuzzy c-means with various kernels

and initial cluster centers selection methods are di-

verse. The choice of a clustering algorithm depends

on the type of data available and the particular pur-

pose 3. Thus, for a data set without any prior knowl-

edge, we have difficulties on selecting the cluster-

ing algorithm, the kernel and the initial cluster cen-

ters. In order not to miss the proper clusters, we can

consider the application of different clustering algo-

rithms. We use hesitant fuzzy set to consider more

than one fuzzy clustering result. In this study we

consider more than one fuzzy clustering algorithm at

the same time to avoid losing relevant information.

To this end we apply fuzzy clustering algorithms us-

ing various initial parameters and executions and the

results are modeled by a hesitant fuzzy partition (H-

fuzzy partition).

The concept of Hesitant Fuzzy Sets (HFSs) has

been introduced 4,5 to model the uncertainty that

often appears when it is necessary to establish the

membership degree of an element and there are

some possible values that make us to hesitate about

which one would be the right one. Recently, many

researchers have studied this concept who have pro-

posed diverse extensions (dual hesitant fuzzy set 6,

generalized hesitant fuzzy set 7), different types of

operators to compute with this type of information,

applications on clustering, decision-making, infor-

mation fusion, etc 8,9.

In this study, we apply hesitant fuzzy sets in a

clustering context, and use them to consider and ag-

gregate some clustering results. We also define a

new set of cluster centers and set of membership val-

ues that are used in various cluster validity indices

in different situation. To this end the reminder of

this paper is organized as follows. Section 2 reviews

some related concepts. Section 3 presents a defini-

tion of H-fuzzy partition and an example. Conclu-

sions and future work are presented in section 4.

2. Preliminaries

In this section, we present some basic concepts re-

lated to fuzzy partitions, intuitionistic fuzzy parti-

tions (I-fuzzy partition) and hesitant fuzzy sets to

define H-fuzzy partitions in the next section.

2.1. Fuzzy Partitions

Most fuzzy clustering methods and in particular

fuzzy c-means and related algorithms, construct a

fuzzy partition of a given dataset that follows the

next definition.

Definition 1. 10 Let X be a reference set. Then, a

set of membership functions M = {μ1, · · · ,μn} on

X is a fuzzy partition of X if for all x ∈ X it holds

∑n
i=1 μi(x) = 1.

Note that not all fuzzy clustering algorithms lead

to membership functions of this form e.g., possi-

bilistic clustering 11,12 does not require that mem-

berships add to one. Among the various fuzzy clus-

tering techniques, the most widely used ones include

fuzzy c-means (FCM) 13 and their variants.

2.1.1. Fuzzy c-means

Fuzzy C-means (FCM) was introduced by Bezdek et

al. in 13. It is an unsupervised algorithm for fuzzy

clustering that attracted scientists attention. The al-

gorithm works to minimize an objective function

that is defined as:

JFCM(U,V,X) =
N

∑
i=1

C

∑
j=1

μm
i j d

2(xi,v j), (1)

subject to the constraints μi j ∈ [0,1] and ∑C
j=1 μi j =

1 for all xi ∈ X . In the above equation, X =
{x1, · · · ,xi, · · · ,xN} is a matrix of input objects, N is

the number of objects and C is the number of clus-

ters. V = {v1, · · · ,v j · · · ,vC} is the set of centers of

clusters and UN×C = {μi j} is a fuzzy membership

function matrix. The element μi j represents the de-

gree of belongingness of the ith object to the jth
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cluster. m is the fuzzy index that governs the in-

fluence of membership grades (m is any real number

greater than 1, in general, m is set to 2 and d2(xi,v j)
is squared norm distance, which is used for measur-

ing the dissimilarity between xi and v j:

d2(xi,v j) = ‖xi − v j‖
2. (2)

The FCM is usually solved as follows. The algorithm

begins by initializing the centers vectors randomly.

Then an iterative process is applied including two

steps. First μi j are computed using the following

equation:

μi j =
1

∑C
k=1(

d2(xi,v j)

d2(xi,vk)
)

2
m−1

∀i = 1, · · · ,N. (3)

Next, the centers are updated using

v j =
∑N

i=1(μi j)
mxi

∑N
i=1(μi j)m

j = 1, · · · ,C, 1 < m < N.

(4)

Then the iterative process is repeated with new

memberships and centers until | vt+1
j − vt

j |< ε and

| μ t+1
i j − μ t

i j |< ε for all i and j. Here ε is a small

value (ε is a termination criterion between 0 and 1)

and t denotes the iteration. Although, the FCM al-

gorithm is efficient, it is very sensitive to the selec-

tion of initial values and requires long convergence

time in the case of large datasets. To overcome these

drawbacks, many clustering algorithms have been

introduced recently. Some 14,15 focus on the ob-

jective function optimization and others 16,17 apply

other clustering method to determine initial centers

instead of random centers. Also using various ker-

nels in FCM leads to different clustering.

2.2. I-Fuzzy Partitions

Intuitionistic fuzzy sets were introduced by

Atanassov in 1983 18. It takes into account the mem-

bership degree as well as the non-membership de-

gree. In an ordinary fuzzy set, the non-membership

degree is the complement of the membership degree,

but in intuitionistic fuzzy set the non-membership

degree is less than or equal to the complement of the

membership degree due to the hesitation degree.

Definition 2. 19 An Atanassov intuitionis-

tic fuzzy set (AIFS) A in X is defined by A =
{〈x,μA(x),νA(x)〉 | x ∈ X} where μA : X → [0,1] and

νA : X → [0,1] with 0 � μA(x)+νA(x)� 1. For each

x, μA(x) and νA(x) represent the degree of member-

ship and degree of non-membership of the element

x ∈ X to the AIFS A, respectively.

Definition 3. 10 For each IFS A =
{〈x,μA(x),νA(x)〉 | x ∈ X}, the I-fuzzy index for

x ∈ X is defined by πA(x) = 1−μA(x)−νA(x). Ref.

9 generalizes the fuzzy partitions using AIFSs in the

following definition. Note that there is an alternative

definition of I-fuzzy partition in

Definition 4. Let X be a reference set. Then, a set

of AIFSs A = {A1, · · · ,Am} where Ai = 〈μi,πi〉 is an

I-fuzzy partition if

(i) ∑m
i=1 μi(x) = 1 for all x ∈ X ,

(ii) for all x ∈ X , there is at most one i such that

νi(x) = 0 (there is at most one IFS such that

μA(x)+πA(x) = 1 for all x).

The first condition in the previous definition means

that the μi are required to define a standard fuzzy

partition, i.e., memberships μi add to one for all

objects x. In addition, as Ai are required to be an

IFS, πi stands for the I-fuzzy index for each ele-

ment x (and each partition element Ai). Therefore,

μi(x)+πi(x) � 1. The second condition constraints

the Ai so that this inequality is only satisfied as

equality for one at most Ai, i.e., for each x there is

only one (or none) Ai such that μi(x)+πi(x) = 1 10.

Proposition 1. 10 I-fuzzy partitions generalize fuzzy

partitions.

2.3. Hesitant Fuzzy Sets

The membership degree of a HFS is represented by

several possible values in [0,1]. The definition is as

follows:

Definition 5. 4 Let X be a fixed set, then a hesitant

fuzzy set (HFS) on X in terms of a function h is such

that when applied to X returns a subset of [0,1], i.e.,

h : X → P([0,1]).
We use the term typical HFS 20 when the subsets

h(x) are finite. Furthermore, given a set of fuzzy
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sets, a HFS can be defined in accordance with the

union of their memberships as follow :

Definition 6. 4 Let M = {μ1,μ2, . . . ,μn} be a set of

n membership functions and x ∈ X . The HFS associ-

ated to M, hM is defined as:

hM(x) =
⋃

μ∈M{μ(x)} .

Xia and Xu 21 called h(x) a hesitant fuzzy element

(HFE). A hesitant fuzzy element (HFE) is a set of

values in [0,1], and a HFS is a set of HFEs, for each

x ∈ X .

Definition 7. 4 Given a HFE, h, we define the in-

tuitionistic fuzzy value (IFV) Aenv(h) as the en-

velope of h, where Aenv(h) can be represented as

(h−,1 − h+), with h− = inf{γ |γ ∈ h} and h+ =
sup{γ |γ ∈ h}. Based on the relationship between

the HFEs and IFVs, Xu and Xia in 23 defined some

new operations on the HFEs. Let h, h1 and h2 be

HFEs and λ be a real number then,

• hλ = ∪γ∈h{γλ} ,

• λh = ∪γ∈h{1− (1− γ)λ},

• h1 ⊕h2 = ∪γ1∈h1,γ2∈h2
{γ1 + γ2 − γ1γ2} ,

• h1 ⊗h2 = ∪γ1∈h1,γ2∈h2
{γ1γ2},

• hc = ∪γ∈h{1− γ},

• h1 ∪h2 = ∪γ1∈h1,γ2∈h2
max{γ1,γ2} ,

• h1 ∩h2 = ∩γ1∈h1,γ2∈h2
min{γ1,γ2}.

Here, we recall some concepts involved in hesitant

fuzzy sets which will be used in the present work.

They are aggregation operators and correlation co-

efficients.

2.3.1. Aggregation Operators

Xia and Xu presented in 21 some aggregation opera-

tors, such as hesitant fuzzy weighted averaging and

hesitant fuzzy weighted geometric which are defined

as follows. These two operators are a a generaliza-

tion of the intuitionistic fuzzy weighted averaging

(IFWA) operator. Note that there is discussion on

the usability of this operator, see Ref. 22. Never-

theless in our context these two operators seems to

be appropriate. Other aggregation operators for HFS

can be found in 9.

Definition 8. 21 Let H be a hesitant fuzzy set and

hi (i = 1, · · · ,n) be a collection of HFEs, hi ∈ H , the

hesitant fuzzy weighted averaging (HFWA) operator

is a mapping Hn → H such that

HFWA(h1, · · · ,hn) =⊕n
i=1(wihi)

=
⋃

γ1∈h1,··· ,γn∈hn

{
1−

n

∏
i=1

(1− γi)
wi
}
.

(5)

where w = (w1, · · · ,wn)
T is a weighting vector

with wi ∈ [0,1] and ∑n
i=1 wi = 1. In case of w =

(1/n, · · · ,1/n)T , then the (HFWA) operator reduces

to the hesitant fuzzy averaging (HFA) operator:

HFA(h1, · · · ,hn) =⊕n
i=1(

1

n
hi)

=
⋃

γ1∈h1,··· ,γn∈hn

{
1−

n

∏
i=1

(1− γi)
1
n }.

(6)

Definition 9. Let hi(i = 1, · · · ,n) be a collection of

HFEs, w = (w1, · · · ,wn)
T be a weighting vector of

them, (i.e., wi ∈ [0,1] and ∑n
i=1 wi = 1). A gener-

alized hesitant fuzzy weighted geometric (GHFWG)

operator is a mapping Hn → H , and

GHFWAλ (h1, ...,hn) =
(
⊕n

i=1 (wihi)
λ
) 1

λ

=
⋃

γ1∈h1,γ2∈h2,...,γn∈hn

⎧⎨⎩1−

(
1−

n

∏
i=1

(
1− γλ

i

)wi

)1/λ
⎫⎬⎭ .

(7)

2.3.2. Correlation Coefficient

We say that we have correlation when we have a (lin-

ear) relationship between two variables. It is an im-

portant concept in data analysis. Because of this,

different correlation coefficients have been defined

to different types of information (see 9 for details on

its application to HFSs). Chen et al. 24 defined the

informational energy for HFSs and a related correla-

tion between HFSs. We review them below.

Definition 10. 24 Let H be a typical HFS (i.e.,

with a finite number of membership degrees) on
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X = {x1, · · · ,xn}, the informational energy of the

HFS H , is defined as follows,

EHFS(H) =
n

∑
i=1

(
1

l(hM(xi))

lxi

∑
j=1

h2
Mσ ( j)(xi)), (8)

where hM(xi) is a HFE and hMσ ( j)(xi) are the jth

largest values of hM(xi) and l(hM(xi)) is the number

of values in hM(xi).

Definition 11. 24 Let H1 and H2 be two typical HFSs

on X = {x1, · · · ,xn}, the correlation between H1 and

H2 is defined by,

CHFS(H1,H2) =
n

∑
i=1

(
1

lxi

lxi

∑
j=1

h1
Mσ ( j)(xi)h

2
Mσ ( j)(xi)),

(9)

where lxi
= max{l(h1

M(xi)), l(h
2
M(xi))} and h1

M(xi),
h2

M(xi) are a HFE for H1, H2, respectively. Let H1,

H2 be two HFSs, the correlation satisfies:

• CHFS(H1,H1) = EHFS(H1);

• CHFS(H1,H2) =CHFS(H2,H1).

By using Defs. (11) and (10) the following correla-

tion coefficient is obtained.

Definition 12. Let H1, H2 be two typical HFSs on

X = {x1, · · · ,xn} the correlation coefficient between

H1 and H2, is,

ρHFS(H1,H2)=
CHFS(H1,H2)

[CHFS(H1,H1)]1/2[CHFS(H2,H2)]1/2
.

(10)

3. H-fuzzy partition

In this section we introduce a definition for hesitant

fuzzy partitions. This definition is for typical hesi-

tant fuzzy sets as we assume that the value of mem-

bership degrees is finite.

Definition 13. Let X = {x1, · · · ,xn} be a reference

set. Let H∗ be a HFS on X H∗ = {〈x, ĥ j〉 | j =
1,2, · · · ,m}, where m is the number of clusters and

ĥ j = {μk
j | k = 1,2, · · · ,κ} are hesitant fuzzy ele-

ments. That is ĥ j is a finite set such that ĥ j ⊆ [0,1]

and κ is the number of membership degrees in ĥ j

(i. e., the cardinality of ĥ j is κ . We can use κ j for

j = 1,2, · · · ,m. However for the sake of simplicity

we use κ j = κ for all j). Then H∗ is a hesitant fuzzy

partition (H-fuzzy partition) if

∑m
j=1 ∑κ

k=1 μk
j (x)

κm
� 1 ∀x ∈ X , 0 � μk

j (x)� 1.

(11)

We also consider a more general case in which

the set ĥ j is infinite. This is a generalization of the

former definition and we use it later to prove that

this definition generalizes the one for I-fuzzy parti-

tions discussed above (see Def. (4)).

Definition 14. Let X = {x1, · · · ,xn} be a reference

set. Then a set of HFE H = {ĥ1, · · · , ĥm}, where ĥ j

is an infinite set, is a hesitant fuzzy partition if the

following holds (note that the following inequality

is a reformulation of Eq. (11)):

m

∑
j=1

∫ 1
0 yμ j(x)(y)dy

m
∫ 1

0 μ j(x)(y)dy
� 1 ∀x ∈ X , (12)

where μ j(x) is the characteristic function of the set

ĥ j(x). We underline that this definition is not only

valid for hesitant fuzzy set but also for type-2 fuzzy

sets as μ j(x) can be a fuzzy set. Note that if ĥ j(x)
is a single value then we have type-1 fuzzy sets, if

ĥ j(x) is finite set we have typical hesitant fuzzy sets,

and when ĥ j(x) is a fuzzy set we have type-2 fuzzy

sets. In this case the membership degree of x to clus-

ter j is given by the membership function μ j(x)(y)
for y ∈ [0,1] instead of having μ j(x) a single value.

Proposition 2. H-fuzzy partitions generalize I-fuzzy

partitions.

Proof. In order to prove this proposition, we need

to see that any I-fuzzy partition is also a H-fuzzy

partition. That is, conditions in Def. 4 imply the

conditions in Def. 13 (if we consider typical HFS)

or Def. 14 (if we consider HFS with infinite mem-

bership degrees). Because of that, we have to prove

that for all x ∈ X when we have that Def. (4) holds,

it also holds Eq. (11) or (12) (depending on whether

we understand the I-fuzzy partition as a discrete or a
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continuous set). Without loss of generality we con-

sider a given x ∈ X , from the I-fuzzy partition (Def.

(4)). Then A is the set of I-fuzzy sets for x that sat-

isfies the conditions of the I-fuzzy partition. That is,

A = {A1, · · · ,Am} with Ai = 〈μi,πi〉 and x satisfies

(i) and (ii) in Def . (4). Based on 4 the envelope of

hesitant fuzzy set is an intuitionistic fuzzy set. So,

for each Ai = 〈μi,πi〉, we have h+i = 1−(1−μi −πi)
and h−i = μi. We consider two models to embed an

IFS into HFS.

(i) We model Ai as a finite hesitant fuzzy set

hi = {μi,1 − μi − πi}. Then we prove that

hi = {μi,1−μi −πi} satisfies Def. (13). Note

that in this case κ = 2, and therefore for all hi

we have μi + (1− μi − πi) � 1 so, it is clear

that
∑m

i=1 1−πi

2m
� 1.

(ii) We model Ai in terms of an interval, we have

that Ai = 〈μi,πi〉 corresponds to the interval

[μi,1 − μi − πi]. Therefore, we define hi =
χ[μi,1−μi−πi] where χ is a characteristic func-

tion. It is clear that∫ 1
0 yχ[μi,1−μi−πi](y)dy∫ 1
0 χ[μi,1−μi−πi](y)dy

� 1,

therefore

∑m
i=0

∫ 1
0 yχ[μi,1−μi−πi](y)dy

m
∫ 1

0 χ[μi,1−μi−πi](y)dy
� 1.

3.1. Construction of H-Fuzzy Partitions

In this section we study how to construct H-fuzzy

partitions. Let us consider r fuzzy clustering algo-

rithms (FCM, IFCM, etc.). Then we consider K dif-

ferent executions, one for each application. For ex-

ample in FCM, we can consider different initial clus-

ter center selection methods, kernels and values of

parameter m. The application of r fuzzy clustering

algorithms with K different parameters to a data set

X = {x1, · · · ,xn} results into r×K fuzzy partitions.

We show below how to build the H-fuzzy partition

from a set of fuzzy partitions. We will use the fol-

lowing notation. Let hi j denote the set of member-

ship values obtained by the ith clustering algorithm

for jth cluster. That is assuming that we have

hi j = {μk
i j | 0 � μk

i j � 1, k = 1, · · · ,K} ∀x ∈ X ,
(13)

where i = 1, · · · ,r, j = 1, · · · ,m and K is the num-

ber of membership degrees obtained by each cluster-

ing algorithm (e.g. from k different points of view).

Note that it is not necessary to set the same values

of K for all clustering algorithms. So we can use Ki

for i = 1,2, · · · ,r. However for the sake of simplic-

ity we use Ki = K for all i. We arrange the clustering

results of r clustering algorithms as a set of hesitant

fuzzy sets:

Hi = {hi1,hi2, · · · ,him} i = 1, · · · ,r. (14)

Also, we have a set of cluster centers for each clus-

tering algorithm, as follows:

Vi j = {vk
i j| k= 1, · · · ,K}i= 1, · · · ,r; j = 1, · · · ,m;∀x∈X .

(15)

where vk
i j is the cluster center vector obtained by the

ith clustering algorithm for the jth cluster with the

kth parametrization, i = 1, · · · ,r and j = 1,2, · · · ,m.

We define a new set of cluster centers for each clus-

tering algorithm as follows:

V i = {v∗i j| j = 1, · · · ,m}, i = 1, · · · ,r;

v∗i j =
∑K

k=1 vk
i j

K
. (16)

Definition 15. We define the H-fuzzy partition, H∗,

inferred from the sets Hi and V i as the one obtained

from the application of the next steps.

(i) Cluster alignment. Find a correct alignment

between the clusters. To do so, we com-

pute the correlation coefficient between every

pair of hil ,hp j for p, i = 1,2, · · · ,r and l, j =
1,2, · · · ,m using Eq. (10) and applying the fol-

lowing rule:

• If ρHFS(hiL,hpJ) = max(ρHFS(hi,l ,hp j))
then the Lth cluster of the ith clustering al-

gorithm corresponds to the Jth cluster of

the pth clustering algorithm. That is for

p, ii�=p = 1,2, · · · ,r and l, jl �= j = 1,2, · · · ,m.
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In this way the pairs of clusters of two cluster-

ing algorithms are associated.

(ii) Membership determination for each clus-

ter. Use an average operator (e.g. Eqs. (6)

or (7)) on the membership values of associated

clusters to compute the mean membership de-

gree for the jth cluster. That is, for each cluster

compute:

ĥ j =HFA(h1 j, · · · ,hr j)=⊕r
i=1(

1

r
)hi j ∀x∈X .

(17)

(iii) Definition of H-fuzzy partition. Define a hes-

itant fuzzy set of clusters for each x ∈ X , H∗ as

follow:

H∗ = {〈x, ĥ j〉| j = 1,2, · · · ,m}. (18)

Note that H∗ is a H-fuzzy partition. In addi-

tion note that we have a set of cluster centers

for each cluster as follows:

Vj = {v∗i j|i = 1,2, · · · ,r} j = 1,2, · · · ,m.
(19)

This definition lets the user represent various mem-

bership degrees and cluster centers and postpone the

decision of which of them is preferable selecting

later the validity index that is more suitable for var-

ious problem. In the example that follows we use

Fscore, but other validity indices exist and could be

used for this purpose, as well.

Proposition 3. The above definition builds a H-

fuzzy partition.

Proof. Let H∗ = {〈x, ĥ j〉| j = 1,2, · · · ,m} be a set

of hesitant fuzzy sets constructed with the definition

above and ĥ j obtained using Eq. (17). In this case

the cardinality of ĥ j is at most Kr where each of its

element is in [0,1]. Therefore, it is clear that the

value of κ in Eq. (11) is Kr. Thus

∑m
i=1 ∑Kr

k=1 μk
i (x)

Krm
� 1 ∀x ∈ X , 0 � μk

i (x) � 1.

We illustrate the construction presented in Def.

(15) with an artificial example.

Fig. 1. The Iris14 data set.

Example 1. We have tested our approach with

data from the IRIS data set 25. This dataset has 150

records and 4 numerical variables. Each record is

classified into one of three classes, which are Iris Se-

tosa, Iris Versicolour, and Iris Virginica. To illustrate

our method, we have used a subset of 22 records all

from class Iris Setosa, and we have only considered

two variables (first and fourth variable of the dataset)

called it Iris14. We have used this small dataset as we

can display easily the results graphically. The data

is shown in Figure 1.

This dataset has been clustered using two cluster-

ing algorithms: FCM (with m=1.5) and FCM (with

m=2.3), r = 2. Each clustering algorithm has been

applied with 9 different parameterizations. We con-

sider 3 kernels (cosine distance, Euclidean distance

and Mahalanobis distance) and 3 cluster center ini-

tialization methods (random, cumulative approach
26 and subtractive clustering 27).

To demonstrate the process of construction of a

H-fuzzy partition, we show in Table 1 the obtained

results of the point x = (5,0.3) of cluster 2 from the

given data set. We select x = (5,0.3) for illustra-

tion because this is a point just between two cluster

centers. If we select e.g. x = (4.25,0.1), it is easily

clustered into correct cluster. We have two hesitant

fuzzy sets H1, H2 and two sets of cluster centers (one

for each cluster). In the following steps we construct

the H-fuzzy partition:

• Cluster alignment. To do so, we compute

the correlation coefficient between every pair of
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hil ,hp j for p, i = 1,2 and l, j = 1,2,3 using Eq.

(10). Then the derived correlation matrix is:

ρ =

⎛⎝1.4848 1.4847 1.4847

1.4332 1.4335 1.4334

1.4332 1.4335 1.4336

⎞⎠ , (20)

based on ρ matrix in this example the pairs

(h11,h21), (h12,h22) and (h13,h23) are associated.

• Membership determination for each cluster.

Use the average operator in Eq.(7) on the mem-

bership values of associated clusters to compute

the mean member ship degree for the jth cluster.

That is, for each cluster j, j = 1,2,3, compute:

ĥ j = HFA(h1 j,h2 j) = (
1

2
)h1 j ⊕h2 j ∀x ∈ X .

(21)

In this example for considering all information we

assume that ĥ j is a multi set. So the number of

membership values is κ = 81.

• Definition of H-fuzzy partition. Define a hesi-

tant fuzzy set of clusters for each x ∈ X , H∗ as

follow:

H∗ = {〈x, ĥ j〉| j = 1,2,3}. (22)

H∗ is a H-fuzzy partition. Also, we have a set of

cluster centers for each cluster as follows:

V1 = {(4.8037,0.2163),(5.0193,0.2617)},

V2 = {(4.9357,0.3235),(5.0086,0.2883)},

V3 = {(5.4721,0.299),(5.1838,0.289)}. (23)

In order to evaluate the quality of the final re-

sulting clusters in this H-fuzzy partition, we use the

accuracy measure, Fscore. This measurement eval-

uates the similarity of a clustering to ground truth

information of classes 28. Let m be the number of in-

dividual classes. Then, the total Fscore will be com-

puted as the weighted sum of these classes Fscore

according to their size. The Fscore can be calcu-

lated using Eq. (24), in which Xq is a class with the

size of nr and F(Cr) is the Fscore of the class Xq.

Fscore =
m

∑
r=1

nr

N
F(Cr) (24)

Table 2. The results of first experiments.

Fscore of

Dataset H-fuzzy partition FCM (m=1.5) FCM (m=2.3)

Iris14 1 0.8933 0.8933

IRIS 0.9264 0.8933 0.8933

For each class Xq, F(Cr) finds a cluster Si that
agrees with Xq better than to the other clusters.
F(Cr) is calculated using equation (25), where PSi

is the precision (the number of objects in the cluster
Si belonging to the class Xq, divided by the number
of objects in the cluster Si) and RSi

is the recall (the
number of objects in the cluster Si belonging to the
class Xq, divided by number of objects in the class
Xq).

F(Cr) = maxSi

{ 2Psi
Rsi

Psi
+Rsi

}
(25)

The obtained Fscore of two executions of FCM

(with m = 1.5 and m = 2.3) and H-fuzzy partition

on the two dimensional data set and IRIS data set

are illustrated in Table (2).

Table 1. The clustering values for x = (5,0.3).

x = (5,0.3)

H1(5,0.3):FCM (m = 1.5)

h11 = {0.9641,0.9640,0.0251,0.0250,0.0250,0.0248,0.0131,0.0130,0.0130} v∗11 = (4.8037,0.2163)

h12 = {0.9640,0.9637,0.9636,0.0248,0.0248,0.0130,0.0129,0.0129} v∗12 = (4.9357,0.3235)

h13 = {0.9640,0.9637,0.9636,0.9635,0.0248,0.0248,0.0130,0.0129,0.0129}. v∗13 = (5.4721,0.299)

H2(5,0.3):FCM (m = 2.3)

h21 = {0.9614,0.9613,0.9607,0.0256,0.0255,0.0255,0.0135,0.0135,0.0135}, v∗21 = (5.0193,0.2617)

h22 = {0.96086,0.96083,0.9607,0.0256,0.0251,0.0251,0.0136,0.0134,0.0134}, v∗22 = (5.0086,0.2883)

h23 = {0.960863,0.96083,0.96074,0.02565,0.02514,0.01360,0.01342,0.01341}. v∗23 = (5.1838,0.289)
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4. Conclusion and Future Works

In this paper, we have introduced a definition for

H-fuzzy partitions and proposed a method to define

them from fuzzy ones. The definition generalizes I-

fuzzy partitions and lets the user apply the reliable

membership values and cluster centers for new ele-

ment in various cluster validity indices. In this paper

we consider Fscore to evaluate the obtained H-fuzzy

partition.
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