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Abstract

Information fusion methods based on Dempster-Shafer evidence theory (DST) have been widely used in fault 
diagnosis. In DST-based methods, the monitoring information collected from sensors is modeled as multiple pieces 
of diagnosis evidence in the form of basic belief assignment (BBA), and Dempster’s rule is then used to combine 
these BBAs to obtain the fused BBA for diagnosis decision making. However, the belief structure with crisp single-
valued belief degrees in BBA may be too coarse to truthfully represent detailed fault information. Moreover, 
Dempster’s rule only uses a static combination process, which is unsuitable for dynamically fusing information 
collected at different time steps. In order to address these issues, the paper proposes a dynamic diagnosis method 
based on interval-valued evidential updating. First of all, the diagnosis evidence is constructed as an interval-valued 
belief structure (IBS), which provides a more informative scheme than BBA to model fault information. Secondly, 
the proposed evidential updating strategy can generate updated IBS as global diagnosis evidence by updating the 
previous evidence with the new incoming evidence recursively. Thirdly, the reliability and sensitivity indices are 
designed to evaluate and compare the performance of the proposed updating strategy with other commonly used 
strategies. Finally, the effectiveness of the proposed evidential updating strategy is demonstrated through some 
typical fault experiments of a machine rotor.

Keywords: Fault diagnosis, interval-valued belief structures, Dempster-Shafer evidence theory, evidence updating, 
alarm monitoring.

1. Introduction

Fault diagnosis depends on multi sensors to monitor 
whether the behavior of an industrial system is correct, 
which is a main way of alarm monitoring in an 
industrial alarm system. Information collected from 
multi-sensors have to be fused together because 
normally a single sensor may not be able to get 
sufficient information for fault diagnosis. In practical 
situation, data collected by most sensors are inherently 
uncertain, imprecise or even incomplete due to various 
factors, such as random environmental disturbances,
sensor instrument errors, etc1. Therefore, it is imperative 

to design a fusion mechanism for minimizing the effects 
of such imprecision and uncertainty on diagnosis 
decisions. Dempster-Shafer evidence theory (DST) is 
known to be capable of dealing with this kind of 
uncertain information fusion. DST can robustly deal 
with incomplete data and allows the representation of 
both imprecision and uncertainty2. It provides 
Dempster’s rule of combination to fuse multi-source 
information so as to reduce the effects of the uncertainty 
and yield more accurate diagnosis results. Therefore, 
DST has already been widely used in fault diagnosis of 
typical industrial systems under uncertain environment, 
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such as rotating machinery3-4, power electronics5-6,
control system7-8, sensor network 9 and so on.

Commonly, there are three interrelated steps for 
establishing a DST-based diagnosis system. The first 
step is to set up a frame of discernment (FoD) consisting 
of fault hypotheses. Different hypotheses in the FoD 
indicate different diagnosis goals. For instance, if we 
only want to detect whether a system is normal or 
abnormal, we may construct the FoD as ={F0, F} in 
which the system state is described to be either faulty F
or normal F0. In order to differentiate a specific fault 
from the others, the FoD can be expanded to ={F0,
F1,…, FN}, where Fi signifies the presence of the ith 
fault mode. If we further need to detailedly analyze the 
severity level of a specific fault, we may set 

={SL(slight), MO (moderate), SE(severe)}. The 
second step is to obtain a basic belief assignment (BBA) 
function, in which the belief degrees, i.e., belief masses, 
are used to measure the extent to which that on-line 
monitoring information supports each diagnosis 
hypothesis and the subsets of the hypotheses. Such a 
BBA can also be also named as a piece of diagnosis 
evidence. There are different ways for generating BBAs 
from different types of information and data collected 
by sensors or even extracted from experts’ experiences. 
The typical ways include fuzzy matching10, neural 
network 5, decision tree 5, artificial immune algorithm 4,
expert system 7 and so on. The final step is to choose 
appropriate combination rules to fuse these BBAs and 
make a diagnosis decision according to the fused 
results. Besides Dempster’s rule, some improved 
combination rules have also been given to handle 
conflicting diagnosis evidence 7,11.

Although these methodological contributions have 
stimulated the application of DST in the area of fault 
diagnosis, the current DST-based diagnosis mechanism 
has some inherent defects worthy of further analysis and 
discussion:

The belief structure with crisp single-valued belief 
degrees in BBA may be too coarse to truthfully 
represent detailed fault information. Therefore, 
Simple crisp belief structure may miss or distort 
useful fault information which may lead to 
incorrect diagnosis decision 12.
The fusion mechanism of Dempster’s and other 
improved rules are “symmetric” or “static” 13-14, and 
they are usually suitable for fusing multiple BBAs 
locally collected at the same time step. However, in 

order to support reliable decision-making, on-line 
diagnosis further requires aggregating the newly 
fused BBA at the current time step with the old 
results accumulated in the past dynamically. 
Obviously, the relationship between the new and 
old results is dissymmetric, so the previous rules 
may be no longer applicable. 
Correct detection rate and false alarms rate are 
commonly used indices for evaluating the 
performance of a diagnosis algorithm 5 ,but this 
kind of “hard” indices rarely reflects how “close” 
the fused BBA is to the true situation. Particularly, 
while taking both symmetric and dissymmetric 
fusing processes into consideration, we need to 
design other comprehensive performance indices 
satisfying soft and dynamic requirements.

The first point above is concerned with the 
representation of uncertainty. In recent years, interval-
valued belief structures (IBSs) have attracted 
considerable attention for its effectiveness of modeling 
and combining uncertain information by using interval 
form of belief masses15-17. Compared with single-valued 
BBA, IBS can describe fault information in a more 
elaborate way and caters for human’s general 
understandings to uncertainty. Ref.12 presented a fuzzy 
feature extraction and matching method to generate the 
IBSs for fault diagnosis from multi-source data, and 
then fused them using the optimal combination rule for 
interval evidence proposed in Ref.15. Using the same 
set of data, Ref.12 also generated BBAs and fused them. 
A number of comparative studies on a machine rotor 
system proved that IBS captures more useful fault 
information from uncertain data than BBA and can 
enhance accuracy of DST-based diagnosis system.
The second point is concerned with the dynamic 
updating of diagnosis knowledge. The available 
diagnosis information can be classified into two parts. 
One is the previous knowledge base that has been 
constructed from a vast amount of evidence 
accumulated at the past steps, and the other is the 
diagnosis evidence gathered at the current time step. 
Generally speaking, the former may contain more 
comprehensive diagnosis information than the latter, but 
in a dynamically changing environment the new 
incoming evidence may reflect the current state of the 
system more accurately. Thus we should introduce an 
updating process to update the previous knowledge base 
with the new knowledge according to the human’s 
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common-sense reasoning mechanism and utilize the 
knowledge from both parts for making a comprehensive 
diagnosis decision. The diagnosis decision according to 
the updated knowledge should be more credible than 
that derived from either of the two parts. As the 
contributions of two parts to the updated knowledge are 
different or dissymmetric, some updating strategies 
different from symmetric combination rules need to be 
introduced for combining the two parts effectively.
Some scholars have devoted their efforts to theoretical 
research of the updating strategies in different ways. 
Ref.18 and Ref.19 presented Jeffrey’s rule of 
conditioning and transferable belief model respectively. 
Ref.14 re-interpreted Jeffrey’s rule and gave a Jeffrey-
like rule for updating basic belief assignment function. 
Ref.20 gave the linear updating rule to combine the new 
BBA with the previous BBA. It was concluded in 
Ref.13 that “updating is a subtle operation and there is 
no single method, no single ‘good’ rule. The choice of 
the appropriate rule must always be given due 
consideration.” The same is true for dynamic diagnosis, 
and the above theoretical methods are rarely completely 
applicable. For example, the updated results gave by the 
Jeffrey-like rule are excessively determined by the 
current diagnosis evidence 1. The linear updating rule is 
effective, but how to set the linear combination weights 
of evidence is an open question 1.
The third point is about the performance evaluation of a 
diagnosis algorithm. The diagnosis decision making of a 
DST/IBSs-based diagnosis system is based on some 
principles of maximum belief degree, maximum 
plausibility, maximum of pignistic probability, etc21.
For instance, suppose there are two fused BBA denoted 
as m ,I and m ,II coming from algorithm I and algorithm 
II respectively. If m ,I(F1)=0.6, m ,I(F2)=0.4, m ,II(F1)=
0.9, m ,II(F2)=0.1, then, according to the principles of 
maximum belief degree, both of them can give the 
“hard” judgment that fault F1 happens. However, it is 
obvious that algorithm II is more credible because 
m ,II(F1) is closer to the definite solution “m(F1)=1” 
than m ,I(F1). Once this “distance” to the solution is 
quantified, the progress that an algorithm makes 
becomes observable as it converges on the solution22. In 
particular, when developing a dynamic updating process 
for diagnosis evidence, we have to synthetically 
consider the degree and speed of the convergence. 
While much research is being carried out to develop 
new fusion algorithms for fault diagnosis, limited 

research has been conducted to design indices for 
evaluating their static and dynamic performance.
In order to address the three concerns outlined above, 
this paper presents a new linear updating strategy of 
IBSs for on-line diagnosis, and also designs 
corresponding performance indices to assess and 
compare different updating methods on a commonly 
used diagnosis problem. Firstly, the Euclidean distance 
of evidence is extended to the framework of IBSs. 
Secondly, a new linear updating rule of IBSs is 
proposed to recursively generate the current updated 
IBS by updating the previous IBS with the new 
incoming IBS. In the updating process, similarity 
between the two IBSs is produced from the proposed 
distance and used to calculate the linear combination 
weights. A diagnosis decision is then made using the 
updated diagnosis evidence. Thirdly, based on the 
similarity, the static reliability index (SRI) and dynamic 
sensitivity index (DSI) are designed to measure the 
convergence degree and speed of the updating diagnosis 
algorithms respectively. 
The rest of this paper is organized as follows. Section 2 
reviews the relevant concepts of DST and IBSs. Section 
3 introduces the extended Euclidean distance between 
two IBSs. Section 4 presents the new linear updating 
strategy of IBSs for on-line fault diagnosis. Section 5 
designs the static reliability index (SRI) and dynamic 
sensitivity index (DSI). Section 6 reports that a few 
comparative experiments of dynamic fault diagnosis in 
a machine rotor system show the capacity of SRI and 
DSI and the applicability of the proposed linear 
updating strategy for diagnosing faulty states of the 
rotating machinery. The conclusions are presented in 
section 7.

2. Review of relevant concepts

2.1. Basic of DST

be a hypothesis, an object, or a fault in our case. We 

the set consisting of all the subsets 
.

A function m: 2 [0,1] is called a mass function if it 
satisfies the following two conditions: ( ) 0m and 

2
( ) 1

A
m A . This function is also named as basic 

belief assignment (BBA) or belief structure. A subset A
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with a non-null mass is viewed as a focal element. 
Commonly, if an information source can provide a mass 

evidence, abbreviated to evidence.
The belief function (Bel) and Plausibility measure (Pl)
can be defined as follows:

e ( ) ( ),
B A

B l A m B A

( ) ( ),
B A

Pl A m B A

Bel measures the confidence granted to A and all subset 
of A, and Pl measures the confidence that A cannot be 
refused.
If m1, m2 are two BBAs induced from two independent 
information sources, a combined BBA can be obtained 
by using Dempster’s combination rule

1 2

1 2

( ) ( )
,

( ) 1 ( ) ( )

0,

B C A

B C

m B m C
A and A

m A m B m C

A

(1)

Note that the Dempster’s combination rule is 
meaningful only when 1 2( ) ( ) 1

B C
m B m C , i.e., m1 

and m2 are not completely conflicting. This rule can be 
used to aggregate uncertain, imprecise or incomplete 
information coming from different sources.
Let m
BetPm 0,1] is defined as23

,

1 ( )( )
1 ( )m

A A

m ABetP
A m

                (2)

where |A| is the cardinality of the subset A and m( )<1. 
When an initial BBA gives m( )=0, ( ) /(1 ( ))m A m is 
reduced to m(A). This definition means that m(A) should 
be equally distributed among the elements of A for all 
A , when there is not additional information to be 

provided. This transformation from m to BetPm is called 
as Pignistic transformation. It is obvious that the 
Pignistic probability can be regarded as a classical 
probability measure for decision-making using the 
standard Bayesian decision theory. A detailed 
discussion on this concept can be found in Refs.5,23.

2.2. Basic of IBS

In an IBS, belief masses are no longer described by 
crisp numbers, but lie within certain intervals. It is 
constrained as follows.

Definition 115 Let A1,…,AN be N ai
-

,ai
+] be N intervals with 0 ai

- ai
+ 1, i=1,2,…,N, an 

interval-valued belief structure (IBS) is defined as a set 
of BBAs such that the following conditions hold:

(1) ( ) ,i i ia m A a where, 0 1, 1,...,i ia a i N

(2) 1
1N

ii
a and 1

1N
ii

a

(3) 1( ) 0, { ,..., }Nm H H A A

According to the above definition, each subset Ai such 
that ai

+>0 is called a focal element of an IBS. If 
( )i i ia m A a , an IBS is reduced to a BBA. Hence 

IBSs generalizes the concept of BBA. If an IBS satisfies

1
1N

ii
a or 1

1N
ii

a , then it is empty and invalid. 
Invalid IBS cannot be interpreted as belief structure and 
thus need to be revised or adjusted. 
Definition 2 15, If the ai

- and ai
+ of a valid IBS m satisfy 

respectively

1
( ) 1N

j i ij
a a a                             (3)

1
( ) 1N

j i ij
a a a                             (4)

where i,j=1,2,…N, then m is said to be normalized. 
An original IBS may be only valid, but not 

normalized, so Ref.24 gave a normalization formula as

-
1, 1,

[ ,1 ] ( ) [ ,1 ]N N
i j i i jj j i j j i

max a a m A min a a (5)

Table 1 The normalization of valid IBS

{ 1} { 2} { 3}
m1 [0.5,0.8] [0.2,0.35] [0.0,0.05] [0.2,0.4]
m2 [0.5,0.6] [0.2,0.3] [0.0,0.05] [0.2,0.3]

A valid IBS can be normalized by using the above 
inequality. Table 1 gives an example to illustrate the 
normalization process. Here, m1 is a valid IBS because 
it satisfies the conditions in Definition 1, but it is not 
normalized according to Definition 2. Hence, Eq.(5) is 
used to normalize m1 so as to obtain the valid and 
normalized IBS m2 by cutting some infeasible 
subintervals of m1. In the following, we assume that an 
IBS is valid and normalized, unless it is stated 
explicitly.

After BBA is extended to IBS, the following 
important work is to combine two or multiple IBSs. 
Definition 315 Let m1 and m2 be two IBSs with the 
intervals of belief masses [ai

-,ai
+] (ai

- m1(Ai) ai
+,
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i=1,2,…,N1) and [bj
-,bj

+] (bj
- m2(Aj) bj

+, j=1,2,…,N2)
respectively. Their combination, denoted as m1 m2, is 
also an IBS defined by

1 2
1 2 1 2

0
[ ]( )

[( ) ( ), ( ) ( )]
m m

C
C

m m C m m C C
(6)

where (m1 m2) (C) and (m1 m2) (C) are the minimum 
and maximum of the following pair of optimization 
problems respectively:

1 2

1 2
1 2

1 1 11

2 2 21

( ) ( )
max/ min [ ]( )

1 ( ) ( )

. . ( ) 1 ( ( ) ; 1, 2,..., )

( ) 1 ( ( ) ; 1, 2,..., )

i j

i j

i jA A C

i jA A

N
i i i ii

N
j j j jj

m A m A
C

m A m A

s t m A a m A a i N

m A b m A b j N

m m

(7)

For instance, Table 2 gives two IBSs 1m , 2m and 
1 2m m . Obviously, like Dempster combination rule, 

the combination rule of IBSs can also reduce 
uncertainty and converge belief mass to the focal 
element simultaneously supported by m1 and m2.
Referring to Ref.15, the combination of two IBSs in 
Definition 3 can also be extended to the situation of 
multiple IBSs.

Table 2 The fused IBS by combination rule

{ 1} { 2} { 3} 1, 2, 3}

1m [0.6,0.7] [0.05,0.15] [0.0,0.01] [0.2,0.3]

2m [0.55,0.65] [0.05,0.15] [0.0,0.01] [0.25,0.35]

1 2m m [0.78,0.89] [0.03,0.13] [0.0,0.01] [0.06,0.12]

Actually, if any m(Ai) in an IBS m satisfies the 

constraint 1
( ) 1N

ii
m A , then m is the crisp BBA of 

this IBS. So, the main idea of the combination rule in 
Eq.(7) can be interpreted as: the crisp BBAs selected 
from the two IBSs are combined by using the classical 
Dempster combination rule respectively. Thus, the fused 
IBS can be obtained from maximizing/minimizing the 
crisp fused BBAs. Each of the above pair of models 
(max/min) simultaneously considers the combination 
and normalization of two IBSs and optimizes them 
together rather than separately. The reason for doing so 
is to capture the true belief mass intervals of the 
combined focal elements15. Compared with existing 
combination and normalization approaches24-25, the 
effectiveness and efficiency of Wang’s approach have 
been demonstrated through some typical examples in 
Ref.15. Furthermore, according to the definition of 
interval representation presented in Ref.26, the function  

1 2[ ]( )Cm m in Eq.(6) can be regarded as an interval 

representation of the real function m(A) in Eq.(1). In this 
sense, the crisp BBAs-based optimization strategy given 
in Eq.(7) is actually only an alternative under 
normalization constraints for calculating the interval 
representation function of m(A). Hence, there may be 
other available methods to obtain 1 2[ ]( )Cm m . More 
theoretical discussion and inspiration can be found in 
Ref.26.

3. The Euclidean distance between IBSs

Before presenting the Euclidean distance of two IBSs, 
we need to clarify the geometrical interpretation for 
IBSs.
Definition 427 An interval number X in is defined as 
the set of real numbers such that X=[x-,x+]={x : x-

x x+}. X is degenerated iff x-=x+. Each degenerated 
interval number [x-=x, x+=x] can be treated as the real 
number x.
Definition 527 Denote the set of all close intervals X in 

as Int( ) (the subset of 2 ). Vector V=(X1, X2,…,
Xn)T (n ) is defined as an interval-valued vector in 
(Int( ))n built of n elements Xi=[xi

-,xi
+]={ xi : xi

-

xi xi
+}.

Vector V is an extension by replacing elements being 
crisp numbers with elements being intervals in a vector. 
Each classic vector is a special case of an interval-
valued vector where its each element is a degenerated 
interval. 
According to Definition 4 and Definition 5, we obtain:
Definition 6 Let m be an IBS with the intervals of 

belief masses [ai
-,ai

+] (ai
- m(Ai) ai

+, i=1,2,…,2 ), thus, 

m is defined as an interval-valued vector in a multi-

dimensional space 1 2= ( ) ( ) ... ( )NInt Int Int ,

N=2 , such that ( )iInt is the space of intervals of 

belief masses of iA and the element [ai
-,ai

+] in 

( )iInt satisfies the valid and normalized requirements 

in Definition 1 and Definition 2 respectively. 

For e 1, 2}, an IBS is given by 
1({ }) 0.2,0.4m , 2({ }) 0.4,0.7m , 1 2({ , } 0, .) 0 3m

A1={ }, A2={ 1},
A3={ 2}, A4={ 1, 2}, thus this IBS is an interval-valued 
vector m=([0,0], [0.2,0.4], [0.4,0.7], [0,0.3])T in space

1 2 3 4
= ( ) ( ) ( ) ( )A A A AInt Int Int Int .
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k| k=1,2,…,n}, where n

Following the spirit of optimization in Definition 3, we 
can define the extended Pignistic probability function of 
m as

( ) [ ( ), ( )]k k kIBetP BetP BetPm m m (8)

( )m kBetP and ( )m kBetP are the minimum and 
maximum of the following pair of optimization 
problems respectively:

,

1

( )1/ ( ) , ( ) 1
1 ( )

. . ( ) 1, ( ) , 1, 2,...,
i k i

i
m k

A A i

N
i i i ii

m A
Max Min BetP m

A m

s t m A a m A b i N
(9)

Actually, the extended Pignistic transformation projects 
the mass intervals of subsets of into a new orthogonal 
space

1 2
= ( ) ( ) ... ( )

n
Int Int Int .

In the orthogonal space , we use normalized 
Euclidean distance to measure the dissimilarity between 
the interval-valued vectors 

1
IBetPm and 

2
IBetPm .

Definition 7 Suppose m1, m2 are two IBSs on , and 
their corresponding Pignistic probability functions are 

1
IBetPm and 

2
IBetPm respectively. The extended 

Euclidean distance between IBetPs of two IBSs can be 
defined as 

1 2

1 2 1 2

2 2

1

( , )

1 ( ( ) ( )) ( ( ) ( ))
4

n

k k k k
k

d IBetP IBetP

BetP BetP BetP BetP

m m

m m m m

(10)

where the factor of 1/4 is to normalize d and guarantee 
that 0 1d ,

1 1 1 1 11 1([ ( ), ( )],,...,[ ( ), ( )])n nIBetP BetP BetP BetP BetPm m m m m

2 2 2 2 21 1([ ( ), ( )],,...,[ ( ), ( )])n nIBetP BetP BetP BetP BetPm m m m m

Obviously, the larger 
1 2

( , )d IBetP IBetPm m is, the more 
different m1 and m2 are, and vice versa, so d can be used 
to indirectly measure the dissimilarity between m1 and 
m2. We will rigorously check that d is indeed a metric 
distance in Lemma 1. 

Lemma 1 d is a metric distance on , then is a 
metric space.
Proof. See Appendix A.

4. The linear updating of IBS for dynamic fault 
diagnosis

Essentially, Dempster’s rule and other symmetric 
combination rules can only provide static fused results, 
as they are just used to fuse several pieces of diagnosis 
evidence appearing at the same time step. As a result, 
the diagnosis decisions based on the fused results are 
also static. However, the running states of the 
equipment being monitored usually changes 
dynamically. Therefore, there are two main variations 
should be considered in diagnosis1 :1) Even if an 
equipment works in a normal state, intermittent or 
abrupt external disturbances are sometimes so strong 
that the static fusion methods may temporarily make 
false judgments. Actually, these disturbances never lead 
to the internal faults of the equipment; In this case, a 
perfect fusion method should always make the correct 
(i.e., no fault) judgments; 2) the equipment may 
undergo a gradual change from the normal status to a 
certain fault, or may abruptly jump from the normal 
status to a certain fault. In this case, a perfect fusion 
method should make prompt and stable responses to the 
changes. 

In order to deal with dynamic diagnosis, next we 
introduce the linear updating rule of evidence presented 
in Ref.20 and further extend it to IBSs. The updated IBS 
recursively generated by the extended rule can integrate 
the current static fused IBSs with the previous updated 
IBSs so as to make a global and stable judgment. 

4.1. The linear updating rule of interval-valued 
structures 

In Ref.28, Fagin et al. defined the notions of conditional 
belief and plausibility functions. For any two focal 
elements ,A B , the conditional belief and 
plausibility functions are defined respectively as 

( )( | )
( ) ( )

( )( | )
( ) ( )

Bel A BBel B A
Bel A B Pl A B

Pl A BPl B A
Pl A B Bel A B

        (11)

Based on Bel(B|A) and Pl(B|A), Ref.20 deduced 
conditional BBA on the assumption B A

:

:: ( )

( )
( | ) ( | )

( ) ( )
C C B

C C BE E B

m C
m B A m C A

Pl A m E
(12)
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where
_

( ) { : s.t . , }B E E D C D A C B A

and when A B , ( | ) 0m B A . Especially, for all
B A , s.t. ( ) ( )m B Bel B , then Eq.(12) is reduced to 

: ( )

( ) ( )( | )
( ) ( ) ( ) ( )

E E B

m B m Bm B A
Pl A m E m B Pl A B

(13)

Example 1 This example is given to show how to 
calculate the conditional BBA. The belief mass 

distribution of the original BBA m is 1({ }) 0.1m ,

2({ }) 0.3m , 3({ }) 0.4m , 2 3({ , }) 0.2m .
Suppose there is an incoming piece of evidence with 
focal element 2 3{ , }A .When B is taken respectively 
as 1{ } , 2{ } , 3{ } and 2 3{ , } , the corresponding 
conditional Bel(B|A), Pl(B|A) and m(B|A) given the 
conditioning proposition A can be calculated by 
Eqs.(12) and (13) respectively, as shown in Table 3.

Table 3 The calculations of Bel(B|A),Pl(B|A) and m(B|A)

B Bel(B) Pl(B) m(B) Bel(B|A) Pl(B|A) m(B|A)
{ 1} 0.1 0.1 0.1 0 0 0
{ 2} 0.3 0.5 0.3 0.3/0.9 0.5/0.9 0.3/0.9
{ 3} 0.4 0.6 0.4 0.4/0.9 0.6/0.9 0.4/0.9

{ 2, 3} 0.9 0.9 0.2 1 1 0.2/0.9

It can be seen from the above example that the belief 
masses of those propositions included in the 
complement of the conditioning proposition A are being 
annulled, on the other hand, the belief masses of the 
remaining propositions related to A are being re-
distributed by the conditioning operation. In Ref.20, it is 
pointed out that “Unlike the direct calculation of the 
belief using the complete BoE, these measures explicitly 
depend on the specific propositions in A that condition 
the propositions in B”. Therefore, it implies that when 
one attempts to make decisions by using the conditional 
BBA, the conditioning proposition A derived from the 
incoming evidence should have the maximal mass, 
definitely m(A) =1, that is to say, the new evidence 
completely supports the proposition A, which can be 
confirmed in the example of a distributed decision-
making network illustrated in Ref.20.

Furthermore, Ref.20 defined the linear updating rule 
of evidence, i.e. a linear combination of the original 
BBA and the incoming conditional BBA, as follow:

( ) ( ) ( | )A A Am B m B m B A                 (14)

where m(B) is the available or original basic mass of 
belief to 2B , m(B|A) quantifies the degree that an 
incoming piece of evidence with the definite BBA as  
“m(A)=1” supports or affects the focal element B. mA(B)
is the updated mass of B conditional to A. The linear 
combination weights A A can be interpreted as 
measures indicating the flexibility or inertia of the 
original evidence to updating when presented with the 

incoming conditioning proposition A. Some basic 
strategies for selecting A A were introduced in 
Ref.20:
(i) The choice A A ={1,0} is called the infinite 
inertia based (IIB) updating strategy. In this case, the 
original evidence has the complete inflexibility towards 
changes. It could be that, for example, the original 
evidence is derived from a vast collection of reliable 
data, but the incoming evidence is completely 
unreliable, which leads to a high inertia, etc;
(ii) The choice A A ={0, 1} is called the zero inertia 
based (ZIB) updating strategy. In this case, the original 
evidence has the complete flexibility towards changes.
This situation arises when the original evidence is 
derived from little or no credible knowledge, but the 
incoming evidence is completely reliable, etc;
(iii) The choice A A ={T/(T+1),1/(T+1)} is called 
the proportional inertia based (PIB) updating strategy, 
where T refers to the number of “pieces” of evidence 
that the original evidence is based upon. In this case, 
already gathered evidence and the incoming evidence 
have equal inertia.

In practical fault diagnosis, the diagnosis evidence 
is commonly gathered at each time step. The updated 
result is recursively calculated by Eq.(14) at each time 
step, which is related to the new incoming evidence and 
the previous evidence. As the quality and reliability of 
evidence may change over time with the variability of 
equipment running status, inertia of evidence should not 
be static. However the above three methods for 
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choosing A A are static and therefore not suitable 
for dynamic diagnosis. 
Following the spirit of optimization in Definition 3, we 
present the extended linear updating rule on the 
framework of IBSs as shown in Definition 8.
Definition 8. The extended linear updating rule of 
IBSs 

Let m1 and m2 be two IBSs with the intervals of 
belief masses [ai

-,ai
+] (ai

- m1(Bi) ai
+, i=1,2,…,N1) and 

[bj
-,bj

+] (bj
- m2(Aj) bj

+, j=1,2,…,N2) respectively. 
X1={Bi| i=1,2,…,N1} and X2 ={Aj| j=1,2,…,N2} are the 
sets of the focal elements of m1 and m2 respectively. 
Assume that m1 and m2 are the previous and incoming 
IBSs respectively. The extended linear updating rule of 
IBSs is defined as 

1 2
1 2 1 2

0
( )

[( ) ( ), ( ) ( )]

C
C

m m C m m C C
m m (15)

where 1 2( ) ( )m m C and 1 2( ) ( )m m C are the 
minimum and maximum of the following pair of 
optimization problems respectively:

1

2

1 2 1

1
1 1

1 1( )

1 1 11

2 21

max/ min [ ]( ) ( ) ( | )

( )
( ) ( | )

( ) ( )

. . ( ) 1 ( ( ) ; 1,2,..., )

( ) 1 ( ( ) ; 1,2,...,

i

i

i

A A

iB C
A A iB C

iB C

N
i i i ii

N
j j j jj

C m C m C A

m B
m C m B A

Pl A m B

s t m B a m B a i N

m A b m A b j N

m m

2 )

(16)

where,
_

( )={ : s.t . , ,}C E E D G D A G C A
. The criterion of choosing A is that the midpoint of 
interval m2(A) is larger than that of any other focal 
element.

Because the above basic strategies for selecting 
A A are not suitable for dynamic diagnosis fault, in 

the following section, we propose some new methods to 
adjust the linear combination weights using the 
evidence distance and similarity between two IBSs.

4.2. Diagnosis procedure based  on the linear 
updating rule of IBSs

In this section, we present the dynamic diagnosis 
procedures based on the proposed linear updating rule 
as shown in Fig.1.

Fig.1 The diagnosis procedure based on the linear updating rule of IBSs

The whole procedure consists of 4 steps. Step 1 is 
to acquire n local pieces of diagnosis evidence at each 
step, denoted as mp,t, p=1,2,…,n, t=1,2,…,T. The 
intervals of belief masses in mp,t present the belief 
degrees that on-line monitoring information, given by 
the pth source at the tth step , supports each fault mode 
and the subset of fault modes in the frame of 
discernment mp,t can be given by the pattern 
matching methods12 or diagnosis experts17. Step 2 is to 
fuse n local pieces of diagnosis evidence. Since m1,t,
m2,t,…, mn,t are simultaneously collected at the tth step, 
so the symmetric or static combination rule in 
Definition 3 is used to fuse them. The function of 
combination rule is to reduce the uncertainty of local 
diagnosis evidence such that the fused IBS m ,t is more 
certain and precise than any local IBS. 

In the following updating step, m ,t is regarded as 
the incoming diagnosis evidence. The extended linear 
updating rule in Definition 8 is used to update the 
previous updated diagnosis evidence m1:t-1 with m ,t .As 
a result, the current global evidence m1:t can be 
recursively generated at each step, which contains the 
whole diagnosis information from the 1st step to the 
current step. At the 1st step, m1:t is initialized as m ,1, as 
we have not prior information to update. The last step is 
to make a diagnosis decision at the each step based on 
the global diagnosis evidence m1:t. There are two 
popular criterions which must be complied with in 
diagnosis decision: (1) for the determined fault 
proposition, the left and right endpoints of its belief 
mass interval are greater than those of any other fault 
propositions respectively; (2) The right endpoint of 
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m( ) (complete ignorance) must be smaller than a 
certain threshold. It is set as 0.3 experientially.

4.3. The new methods for selecting linear 
combination weights 

In the above step 3, we have to determine the linear 
combination weight t t at each step when using the 
extended linear updating rule. In this section, we present 
two available strategies based on the similarity measure 
between two IBSs. 
In Dempster-Shafer evidence theory, the evidence 
distance is the main way to quantify the dissimilarity 
between two belief structures (i.e.,BBAs or IBSs)29, so 
the concepts of distance and similarity are linked in an 
inverse way. That is to say, the lesser the distance 
between two IBSs, the greater their similarity22.
Therefore, the similarity measure Sim(m1 ,m2) between 
m1 and m2 

obtained from the distance measure given in Definition 
7 as 

1 21 2Sim( , ) ( , )f d IBetP IBetPm mm m (17)

where f:[0,1] [0,1] is a strictly monotone decreasing 
function. In order to implement the desired 
characteristics of the similarity, we use the sigmoid 
function:

1 2

1 2
1Sim( , )

1 exp( (0.5 ( , ))a d IBetP IBetPm m

m m (18)

where a is a parameter for adjusting the influence of the 
difference between m1 and m2 on the degree of 
similarity. It satisfies the properties of Sim(m1,m1)=1 
(normality), Sim(m1,m2)= Sim(m2,m1) (symmetry), and 
Sim(m1,m1)> Sim(m1,m2) for all m1 m2, as similarity 
relationship introduced by Ref.30.The relationship 
between d and Sim built by sigmoid function is shown 
in Fig. 2 when the parameter a takes different values. It 
should be noted that other funcitons with the similar 
characteristics to the sigmoid function (i.e., symmetric, 
monotonically decreasing and having a finite value 
range) can also be used to construct the degree of 
similaity.

It can be seen from the Fig.2 that Sim=0.5 when d
=0.5, their similarity rapidly trends towards 0 when d
increases from 0.5 to 1, their similarity rapidly trends 
towards 1 when d decreases from 0.5 to 0. In the 
existing definitions of similarity measure, the function f

is usually endowed with the linear form, for example f
=1-d 31. However, compared with the linear function, 
the sigmoid function can polarizes the similarity 
relationship between two IBSs, which is more 
beneficial to fault classification problem. Degree of 
polarization can be changed by adjusting a.
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Fig.2 The relationship between dIBS and Sim with different a

If there are N IBSs on , as m1, m2,..., mN, then the 
degree that mi is supported by the other N-1 IBSs can be 
given as31

1

Sup( ) Sim( , )
N

i i j
j
j i

m mm                   (19)

The credibility degree of mi is defined as 31

1

Crd( )
Sup( )

Sup( )
i

i N
ii

m
m

m
                    (20)

Obviously, 
1
Crd( ) 1mN

ii
, thus, the credibility degree 

is actually a weight showing the relative importance of 
the collected evidence.

Actually, from the extended linear updating rule in 
Eqs.(15) and (16), it can be seen that the current updated 
evidence is the weighted sum of the historical updated 
evidence m1:t-1 and the current diagnosis evidence m ,t.
The corresponding weights t t determine the 
combining proportions of these two pieces of evidence 
respectively. Suppose the updated IBSs m1:t-2 and m1:t-1

at the (t-2)th and the (t-1)th steps have been recursively 
obtained respectively and the incoming fused IBS m ,t

at the tth step and the next fused IBS m ,t+1 at the (t+1)th

step have also been calculated respectively from step 2 
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in Fig.1. We present two available strategies for getting 
t t .

The first is called the look-back based (LBB) 
updating strategy using similarity between m1:t-2 , m1:t-1

and mt. Firstly, we calculate similarities between them 
by Eq. (18)

1: 2 1: 1

1: 2 1: 1
1Sim( , )

1 exp( (0.5 ( , ))
t t

t t
IBetPa d IBetP IBetPm m

m m (21)

1: 2 ,

1: 2 ,
1Sim( , )

1 exp( (0.5 ( , ))
t t

t t
IBetPa d IBetP IBetPm m

m m (22)

1: 1 ,

1: 1 ,
1Sim( , )

1 exp( (0.5 ( , ))
t t

t t
IBetPa d IBetP IBetPm m

m m (23)

Secondly, we calculate the credibility degrees of m1:t-2 ,
m1:t-1 and m ,t by Eq. (20)

1: 2
1: 2

1: 2 1: 1 ,
Crd( )

Sup( )
Sup( ) Sup( ) Sup( )

t
t

t t t

mm
m m m

(24)

1: 1
1: 1

1: 2 1: 1 ,
Crd( )

Sup( )
Sup( ) Sup( ) Sup( )

t
t

t t t

mm
m m m

(25)

,
,

1: 2 1: 1 ,
Crd( )

Sup( )
Sup( ) Sup( ) Sup( )

t
t

t t t

mm
m m m

(26)

where Sup(m1:t-2), Sup(m1:t-1) and Sup(m ,t) are 
calculated by Eq. (19)

According to the credibility degrees, we can set the 
linear combination weight at the t th step as 

t=Crd(m1:t-2)+Crd(m1:t-1)                      (27)

t =Crd(m ,t)                              (28)

Obviously, the LBB assigns a higher weight t to the 
historical diagnosis evidence m1:t-1 than t to the current 
diagnosis evidence m ,t. Meanwhile, t t are always 
adjusted dynamically with the changes of similarities 
between m1:t-2 , m1:t-1 and m ,t. The LBB is derived from 
the kind of experts’ cognition that the historical 
diagnosis information is more reliable than the current 
diagnosis information. 
The second is called the look-ahead based (LAB) 
updating strategy using similarity between m1:t-1 , m ,t

and m ,t+1. Repeating the above process, we can obtain 
Crd(m1:t-1), Crd(m ,t) and Crd(m ,t+1), and then set the 
linear combination weight at the t th step as

1: 1 , 1

, 1: 1 , 1 , , 1

1: 1 , , 1

Crd( ) Crd( )
Crd( ), Sim( , ) Sim( , )
Crd( ) Crd( ) Crd( ),

t t t t

t t t t t

t t t t t otherwise

,

,

m m
m m m m m
m m m

(29)

The LAB follows the other kind of experts’ cognition 
that one has to look ahead and behind before taking 
actions. It introduces the future diagnosis information 
mt+1 to updating by the smoothing factor Crd(m ,t+1), 
which can be used to adjust t t dynamically 
according to the changes of similarities between m1:t-1,
m ,t and m ,t+1. More specifically, Sim(m1:t-1,m ,t+1)> 
Sim(m ,t,m ,t+1) means that the belief mass distribution 
of m ,t is distinctly different from that of m1:t-1 and 
m ,t+1. Since there is commonly a reciprocal causation 
relation among running states of equipment at adjacent 
time steps, so this conflict between m1:t-1 and m ,t is 
likely caused by the uncertain disturbances at the t th

step. Therefore, m1:t-1 is more reliable than m ,t ,
Crd(m ,t+1) is assigned to t such that the former has 
bigger combining proportion than the latter. Moreover, 
since m1:t-1 includes all of the historical information by 
iterative updating process, so although Sim(m1:t-

1,m ,t+1)=Sim(m ,t,m ,t+1), Crd(m ,t+1) is still assign to 
t. On the other hand, Sim(m1:t-1,m ,t+1)

<Sim(m ,t,m ,t+1) means that running states of 
equipment have significant change, the new state 
continues for adjacent two steps. In this case, 
Crd(m ,t+1) is assign to t so as to reduce the inertia of 
the historical information.
As a result, the LBB and LAB have the different scope 
of application. In the following typical fault 
experiments, their functions and performance will be 
compared and analyzed in detail. 

5. The static reliability and dynamic sensitivity 
indices for diagnosis

In order to assess the performance of updating diagnosis 
algorithms, we design the static reliability index (SRI) 
and dynamic sensitivity index (DSI). 
Let us denote the FoD as ={F0, F1,…, FN}. Suppose 
that the length of a diagnosis period is T time steps and 
the equipment being monitored goes through totally M
states from 

1TF to
MTF ,

iTF (i=1,2,…M) in this period. 
SRI can be defined as 
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(30)

where ( )=[1,1]m
iTF denotes the true solution with the 

form of belief interval, Ti is the number of steps that the 
equipment keeps in the ith state. 1/Ti is normalized 
factor, so SRI [0,1]. SRI describes the degree that the 
updated m1:t converges to ( )m

iTF at the whole diagnosis 
period. The bigger the SRI, the higher the static 
reliability of the updating algorithm.
Correspondingly, the DSI can be defined as 

1 1 2 1

1 1 1

1 1 2 2

2 1 1

1DSI
M

M

T T T T T
M M

t t t t t t
t t T t T TM

( 31)

1/M is a normalized factor such that DSI [ 1,1] .
DSI=0 means that the updated m1:t has not the ability to 
track ( )m

iTF ; DSI>0 means m1:t converges to the correct 

solution, DSI<0 means m1:t converges to the incorrect 
solution and the bigger the absolute value of DSI, the 
faster the speed of updating algorithm converging to 
correct/incorrect solution. i

t describes the change of 
similarity at each step given by 

1: 1: 1Sim , ( ) Sim , ( )
i i

i
t t T t TF Fm m m m (32)

i
t is fading factor of i

t given by 

-1

1

1 1
1

= 1 2
i
t

i
jj

i
t

i M
t T

                 (33)

It emphasizes that the contribution of i
t to DSI will 

attenuate with time. In the following typical fault 
experiments, we will interpret and analyze the functions 
of DSI and RSI for assessing static and dynamic 
performance of the linear updating algorithms with 
different strategies for selecting linear combination 
weights.

DC power and 
Speed controller

Laptop

HG8902
Date collection box

Vibration
displacement sensor

Rotating
speed sensor

Vibration
acceleration sensor

DC Motor
Motor
bracket

Fig.3 ZHS-2 machine rotor system

6. Experiments

6.1. Experiment settings

In this paper, we choose the ZHS-2 machine rotor 
system as shown in Fig.3 to test the proposed linear 
updating algorithms with the different strategies of 
selecting linear combination weights t t The 
typical faults seeded in the system are motor bracket 
loosening (F1), rotor misalignment (F2) and rotor 

unbalance (F3) 1,12. As one goal of fault diagnosis, we 
also add F0 as the normal state of the system. Therefore, 

{F0,
F1, F2, F3}. 
A vibration displacement sensor and a vibration 
acceleration sensor are installed on the bracket of rotor 
respectively in order to collect vibration signals in both 
vertical and horizontal directions. The collected 
vibration signals are inputted into HG-8902 data 
collector, and then processed by signal conditioning 
circuits. Finally, the processed signals are inputted into 
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a laptop. The fault features can be extracted from these 
signals by HG-8902 data analysis software under the 
environment of Labview. The amplitudes of 
fundamental, double, triple vibration acceleration 
frequencies (denoted as f×1~ f×3 respectively for short) 
and average amplitude of vibration displacement 
(denoted as da for short) are selected as fault feature 
parameters 1,12 .

6.2. Experiment results

We conduct four typical fault experiments usually 
happened in real world, on which, the proposed 

LBB(look-back based) and LAB(look-ahead based) 
strategies for selecting t t are compared with the 
basic strategies IIB(infinite inertia based), ZIB(zero 
inertia based) and PIB (proportional inertia based). 
Moreover, in these experiments, we also use the 
Dempster’s combination rule of IBSs (DCR) in 
Definition 3 to obtain the updated results, namely, 
m1:t=m ,1 m ,2 m ,t. From the comparison 
between DCR and the liner updating rule, it can be seen 
that static/symmetric DCR may be no longer suitable 
for evidence updating, especially when system states 
change over time.

Table 4 The incoming diagnosis evidence (IDS) m ,t

t m ,t{F0} m ,t{F1} m ,t{F2} m ,t{F3} m ,t ( )
1 [0.6792 0.8103] [0.1023 0.2344] [0.0000 0.0001] [0.0004 0.0052] [0.0639 0.1136]
2 [0.6935 0.7922] [0.0861 0.1846] [0.0000 0.0005] [0.0003 0.0046] [0.0968 0.1487]
3 [0.7312 0.8230] [0.0747 0.1619] [0.0000 0.0002] [0.0002 0.0029] [0.0827 0.1296]
4 [0.7437 0.8186] [0.0564 0.1256] [0.0000 0.0006] [0.0003 0.0046] [0.1048 0.1509]
5 [0.7237 0.7990] [0.0616 0.1314] [0.0000 0.0006] [0.0002 0.0034] [0.1182 0.1674]
6 [0.6595 0.7609] [0.1001 0.2033] [0.0000 0.0005] [0.0002 0.0031] [0.1112 0.1685]
7 [0.6930 0.8029] [0.0876 0.1977] [0.0000 0.0004] [0.0005 0.0066] [0.0843 0.1350]
8 [0.7548 0.8317] [0.0571 0.1271] [0.0000 0.0002] [0.0003 0.0039] [0.0928 0.1376]
9 [0.7947 0.8713] [0.0456 0.1153] [0.0000 0.0002] [0.0006 0.0073] [0.0668 0.1038]
10 [0.6559 0.7439] [0.0879 0.1768] [0.0000 0.0014] [0.0002 0.0030] [0.1395 0.1977]

Experiment 1: The rotor system always stably keeps in 
normal state at the tth step, t=1,2,…,10, the time interval 
between two steps 16t s .
According to the diagnosis procedure in Fig.1, at each 
time step, the method in Ref.12 is used to get the four 
local IBSs respectively from the monitoring data of f×1,
f×1, f×3 and da, and then, the static combination rule in 
Definition 3 is used to fuse the local IBSs to obtain the 
incoming diagnosis evidence (IDE) m ,t as shown in 
Table 4. Fig.4 shows the updated results obtained 
recursively using the linear updating rule with LBB, 
LAB, IIB, ZIB, PIB and DCR. Here, m ,t({F0}), 
m ,t({F1}), m ,t({F2}) and m ,t({F3}) are also shown in 
Fig 4 except m ,t ( ), because m ,t ( ) usually becomes 
relatively small by optimal combination such that it 
rarely influences the following decision making. For 
example, the interval value of belief masses of m8

illustrated in Fig.4.
Table 5 lists the static reliability index (SRI) and 
dynamic sensitivity index (DSI) of the updated results 
in descending order. In our experiments, the parameter a
of similarity measure is set as 8.

It can be seen that from Table 5 that the performance 
indices of the other updating algorithms except the IIB, 
are all better than the IDE’s. That is to say, although the 
diagnosis decisions made from all the methods are 
correct (F0 happens), the dynamic updating procedure 
can provide more reliable diagnosis results than the 
static fusing procedure. In the IIB, t t ={1,0}, it 
means that m1:t = m1:t-1 according to the extended linear 
updating rule in Eqs. (15) and (16). Since m1:1= m ,1,
the updated result at each step is always taken as m ,1,
therefore, the IIB is quite insensitive to the change of 
the incoming diagnosis evidence. In the PIB, when t=1, 

t t otherwise, t t ={(t-1)/t,1/t}. In the 
ZIB, t t ={0,1}, so its m1:t is completely determined 
by the m ,t, and since m ,t({F0}) is always larger than
m ,t({F1}), m ,t({F2}) ,m ,t({F3}) and m ,t( ), 
according to the extended linear updating rule, 
m1:t({F0}) can immediately converge to [1,1] at the 2nd

step and is unchanged until the last step. Therefore, in 
this experiment, the ZIB have the best performance on 
reliability and sensitivity. As m ,t always supports F0, so 
the DCR also makes belief masses converge to F0.
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Although the LAB and LBB do not provide better 
results than the ZIB, both of them are available in 
accordance with the decision criterions in Fig.1.
Experiment 2: The rotor system encounters abrupt 
external disturbances at different time steps, and then 
returns to its normal working condition when the 
disturbances disappear. There are three detailed cases. 

Case 1: The system only encounters the 
disturbance at the 6th step. It causes the false fault 
“motor bracket loosening (F1)”. 

Case 2: The system continuously encounters the 
disturbances at the 6th and 7th steps. They cause the false 
faults “motor bracket loosening (F1)” and “rotor 
misalignment (F2)” respectively.

Case 3: The system intermittently encounters the 
disturbances at the 6th and 8th steps respectively. They 
cause the false faults “motor bracket loosening (F1)” 
and “rotor misalignment (F2)” respectively.

The updated results in three cases are shown in 
Fig.5, Fig.6 and Fig.7 respectively. An ideal diagnosis 
system should be immune to the disturbances. It can be 
concluded from these three figures that, the disturbances 
are so strong that the incoming diagnosis evidence 

(IDE) incorrectly support false faults. The disturbances 
even cause that the DSIs of IDE are negative. For 
example, Table 6 lists the changes of similarity ( i

t )
and the corresponding fading factors ( i

t ) at 10 steps in 
case 2. Here, the system goes through only one state

0=TF F .
From Table 6, we can get DSI=-0.0135, SRI=0.7231 
according to Eqs. (31) and (30). In the same way, we 
can calculate the SRI and DSI of each method in three 
cases as shown in Table 7, Table 8 and Table 9
respectively.

Table 5 The ordering of SRIs and DSIs of different methods in 
experiment 1

No SRI Method DSI Method
1 0.9739 ZIB 0.0814 ZIB
2 0.9719 LAB 0.0735 LAB
3 0.9711 DCR 0.0702 DCR
4 0.9677 LBB 0.0653 LBB
5 0.9659 PIB 0.0644 PIB
6 0.9196 IDE 0.0156 IDE
7 0.9006 IIB 0 IIB

Fig.4 The updated IBSs of LBB, LAB, IIB, ZIB, PIB and DCR in experiment 1
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Table 6 The similarity changes of IDE in case 2

FT t Sim i
t

i
t

F0

1 0.8586 - -
2 0.8990 0.0404 1
3 0.9288 0.0298 1/2
4 0.7819 -0.1469 1/3
5 0.7688 -0.0131 1/4
6 0.0324 -0.7364 1/5
7 0.1976 0.1653 1/6
8 0.9152 0.7175 1/7
9 0.9290 0.0138 1/8

10 0.9195 -0.0095 1/9

Table 7 The ordering of SRIs and DSIs of different methods in 
case 1 of experiment 2

No SRI Method DSI Method
1 0.9626 LAB 0.0898 LBB
2 0.9612 LBB 0.0827 LAB
3 0.9410 PIB 0.0824 PIB
4 0.8746 ZIB 0.0784 ZIB
5 0.8714 IIB 0.0009 DCR
6 0.7982 IDE 0 IIB
7 0.7025 DCR -0.0182 IDE

Table 8 The ordering of SRIs and DSIs of different methods in 
case 2 of experiment 2

No SRI Method DSI Method
1 0.9463 LBB 0.1041 LAB
2 0.9326 LAB 0.0974 LBB
3 0.9175 PIB 0.0862 PIB
4 0.8586 IIB 0.0684 ZIB
5 0.7769 ZIB 0 IIB
6 0.7231 IDE -0.0135 IDE
7 0.5536 DCR -0.0582 DCR

Table 9 The ordering of SRIs and DSIs of different methods in 
case 3 of experiment 2

No SRI Method DSI Method
1 0.9457 LAB 0.2013 LAB
2 0.9377 LBB 0.1828 LBB
3 0.9090 PIB 0.1713 PIB
4 0.7673 ZIB 0.1695 ZIB
5 0.7631 IIB 0.0877 IDE
6 0.7056 IDE 0.0711 DCR
7 0.7017 DCR 0 IIB

It can be seen from these figures and tables that the 
evidence updating strategies in LAB, LBB, PIB and IIB 
all make the correct judgment according to the decision 
criterions. Obviously, the static and dynamic 
performance of the LAB and LBB are superior to that of 
the other methods. When the disturbances happen, the 
judgments given by the ZIB are always utterly wrong, 
because it adopts the extreme strategy to support the 
incoming evidence and ignore the inertia of historical 
evidence. On account of the conflicts between the 
incoming diagnosis evidence, since the 6th step, the 
interval widths of belief masses given by the DCR 
become too large to make decisions. So, in these cases, 
the DCR is no longer applicable. 
Experiment 3: The rotor system goes through the 
intermediate stage between normal and fault. More 
specifically, the system is normal from the 1st step to the 
5rd step, from the 6th step to the 7th step, the running 
status of the system gradually degrades to “motor 
bracket loosening (F1)”, and then, F1 really happens at 
remaining three steps.
Fig.8 shows the updated results and Table 10 lists the 
corresponding performance indices. Contrary to what 
we have observed in the above experiments, the ZIB, in 
this experiment, returns to the best performance just as 
illustrated in experiment 1. But, distinctly, in the face of 
the different changes of the system states, the 
performance of the ZIB fluctuates and becomes 
unstable. The DCR is still inapplicable because of the 
same reason as in experiment 2. The IIB only relies on 
the historical evidence, and completely ignores the 
change of the system states from F0 to F1. In the PIB, 

t t ={t/(t+1),1/(t+1)}, when t increases, t tends to 
0, so the share of the incoming evidence in the updated 
result will be smaller and smaller. It leads to the slow 
speed of converging to the new state F1 and bad 
decisions. On the contrary, the LAB still keeps good 
behaviors. The LBB can be interpreted as the tradeoff 
between the LAB and PIB.
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Fig.5 The updated IBSs of LBB, LAB, IIB, ZIB, PIB and DCR in case 1 of experiment 2
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Fig.6 The updated IBSs of LBB, LAB, IIB, ZIB, PIB and DCR in case 2 of experiment 2
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Fig.7 The updated IBSs of LBB, LAB, IIB, ZIB, PIB and DCR in case 3 of experiment 2
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Fig.8 The updated IBSs of LBB, LAB, IIB, ZIB, PIB and DCR in experiment 3

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

411



X. Xu et al. / Interval-valued Evidential Updating

Table 10 The ordering of SRIs and DSIs of different methods 
in experiment 3

No SRI Method DSI Method
1 0.9609 ZIB 0.5874 ZIB
2 0.9492 LAB 0.5623 LAB
3 0.7836 LBB 0.3069 LBB
4 0.7215 IDE 0.1971 PIB
5 0.6264 PIB 0.1169 IDE
6 0.5324 DCR 0.1076 DCR
7 0.4837 IIB 0 IIB

Table 11 The ordering of SRIs and DSIs of different methods 
in experiment 4

No SRI Method DSI Method
1 0.95331 ZIB 0.62555 ZIB
2 0.93455 LAB 0.58412 LAB
3 0.74582 LBB 0.30966 LBB
4 0.73537 IDE 0.30723 IDE
5 0.62101 PIB 0.23366 PIB
6 0.51656 DCR 0.15625 DCR
7 0.47972 IIB 0 IIB

Experiment 4: The rotor system is normal from the 1st

step to the 5th step, but the fault “motor bracket 
loosening (F1)” suddenly happens at the 6th step and 
goes on until the 10th step. 
Fig.9 shows the updated results and Table 11 lists the 
corresponding performance indices. The performance of 

each method is similar with that in experiment 3. 
Obviously, compared with other methods, the 
performance of the LAB keeps stable.
Furthermore, we give the average value of performance 
indices of every method in three experiments as shown 
in Table 12.
It can be seen from this table that the LAB have the best 
comprehensive performance. Although the dynamic 
sensitivity of the ZIB is the same with that of the LAB, 
the absolutely wrong judgments that it makes in 
experiment 2 lead to the low static reliability. The IIB 
and DCR are almost inapplicable to dynamic diagnosis 
because they rarely adapt to the different changes of 
system states. In summary, the proposed LAB and LBB 
can deal with the typical changes of system states. 
Specifically speaking, in the initial operation stages, the 
monitored system is commonly stable and healthy. In 
this case, the LBB can be used to avoid some false-
alarms caused by the intermittent or abrupt external 
disturbances as shown in experiment 2. With the 
increasing of the running time, if the reliability of 
system deteriorates, the LAB can respond to the 
disturbances and the abrupt or gradual faults rapidly and 
accurately shown in the last three experiments.
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Fig.9 The updated IBSs of LBB, LAB, IIB, ZIB, PIB and DCR in experiment 4
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Table 12 The ordering of average values of SRI and DSI in 
four experiments

No Mean(SRI) Method Mean(DSI) Method
1 0.9494 LAB 0.2684 ZIB
2 0.8904 LBB 0.2680 LAB
3 0.8845 ZIB 0.1753 LBB
4 0.8301 PIB 0.1392 PIB
5 0.7672 IDE 0.0826 IDE
6 0.7262 IIB 0.0580 DCR
7 0.6630 DCR 0 IIB

7. Conclusion

In this paper, a novel idea of evidence updating is 
introduced into dynamic/on-line fault diagnosis. Based 
on interval-valued belief structures, the new updating 
strategies for dynamic fault diagnosis are presented. The 
main contributions of the paper include: (1) The 
classical linear updating rule are extended to the 
framework of IBSs, which can be used to recursively 
fuse the “dissymmetric” and “dynamic” diagnosis 
evidence over time; (2) The LAB and LBB method can 
adaptively adjust the linear combination weights 
according to the similarity relationship between the 
incoming diagnosis evidence and the previous diagnosis 
evidence; (3)The static reliability and the dynamic 
sensitivity indices are designed to evaluate the 
performance of an updating strategy. (4) Finally, the 
typical fault experiments of machine rotor show the 
effectiveness of the proposed updating strategies.
The presented methods could be further investigated in 
several ways. First of all, the distance between two 
interval-valued structures is a basic tool for assessing 
the performance of IBSs-based classification 
algorithms. From the perspective of interval 
mathematics or interval computations32-33, the distance 
between two interval-valued structures is actually the 
distance between two interval-valued vectors, in this 
case, the value of distance should be also an interval 
value, not be a point value as given in Definition 7 such 
that IBS can manifest its advantage of impreciseness 
control over BBA. Therefore, we can further consider 
the other alternative distances with interval values by 
using some interval metrics as given in Refs.32-33;
Second, when prior diagnosis information is available, 
one can introduce on-line learning algorithm to optimize 
the parameter a in the similarity measure such that the 
updating procedure adapts to the changes of system 
state. Third, the evidence updating strategy should be 

easily applicable to other fields such as dynamic target 
recognition and expert systems but it needs to be 
validated by experimental studies or real world 
applications.
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Appendix A.

Proof of Lemma 1
Proof. Let m1=([a1

-,a1
+],[a2

-,a2
+],…[aN

-,aN
+]), m2=([b1

-

,b1
+],[b2

-,b2
+],…[bN

-,bN
+]), m3= ([c1

-,c1
+], [c2

-,c2
+],…[cN

-

,cN
+]) be three interval-valued vectors in , also be 

use of Eqs. (8) and (9), their corresponding Pignistic 
probability functions can be calculated as 

1 1 1 2 2([ , ],[ , ],...,[ , ])n nIBetP x x x x x xm

2 1 1 2 2([ , ],[ , ],...,[ , ])n nIBetP y y y y y ym

3 1 1 2 2([ , ],[ , ],...,[ , ])n nIBetP z z z z z zm

Then,
1

IBetPm ,
2

IBetPm and 
3

IBetPm are three interval-

valued vectors in space . We must check that d in 
Definition 7 satisfies four axioms for ( , )IBetPd to be a 
metric space for any

1 2 3
,IBetP IBetP IBetP,m m m :

M1: Nonegativity: 
1 2

( , ) 0d IBetP IBetPm m ;
M2: Nondegeneracy: 

1 2 1 2
( , )=0 =d IBetP IBetP IBetP IBetPm m m m ;

M3: Symmetry: 
1 2 2 1

( )= ( )d IBetP IBetP d IBetP IBetP, ,m m m m ;
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M4:Triangle inequality: 
1 1 3 32 2( ) ( ) ( )d IBetP IBetP d IBetP IBetP d IBetP IBetP, , ,m m m m m m ,

3
IBetPm .

Since 

1 2

2 2

1

1( , ) ( ) ( )
4

n

k k k k
k

d IBetP IBetP x y x ym m is the 

square root of the sum of the non-negative numbers 
2( )k kx y and 2( )k kx y , it certainly satisfies

1 2
( , ) 0d IBetP IBetPm m . Further, 

1 2
( , )=0d IBetP IBetPm m is 

equivalent to 2( ) =0k kx y and 2( ) =0k kx y for each k,
which means =k kx y and =k kx y for each k, i.e.,

1 2
=IBetP IBetPm m . This proves axiom M1 and M2.

Axiom M3 is obvious as 2 2( ) =( )k k k kx y y x and 
2 2( ) =( )k k k kx y y x for all k, so that 

1 2

2 1

2 2

1

2 2

1

1( , ) ( ) ( )
4

1= ( ) ( )
4

= ( , )

n

k k k k
k

n

k k k k
k

d IBetP IBetP x y x y

y x y x

d IBetP IBetP

m m

m m

Finally, let’s prove axiom M 4, 
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where the second part is the Cauchy-Schwartz 
inequality. By substituting the results for
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so that 
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as required. As a result, d is a metric distance on
, then is a metric space.
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