
Received 17 April 2015

Accepted 27 December 2015

An algorithm evaluation for discovering classification rules with gene
expression programming

Alain Guerrero-Enamorado 1 , Carlos Morell 2 , Amin Y. Noaman 3 , Sebastián Ventura 4

1 Universidad de las Ciencias Informáticas (UCI),
Habana, Cuba,

E-mail: alaing@uci.cu
2 Universidad Central de Las Villas (UCLV),

Villa Clara, Cuba,
E-mail: cmorellp@uclv.edu.cu

3 King Abdulaziz University,
Jeddah, Saudi Arabia

E-mail: anoaman@kau.edu.sa
4 University of Córdoba (UCO),

Córdoba, Spain
King Abdulaziz University,

Jeddah, Saudi Arabia
E-mail: sventura@uco.es

Abstract

In recent years, evolutionary algorithms have been used for classification tasks. However, only a lim-
ited number of comparisons exist between classification genetic rule-based systems and gene expression
programming rule-based systems. In this paper, a new algorithm for classification using gene expression
programming is proposed to accomplish this task, which was compared with several classical state-of-
the-art rule-based classifiers. The proposed classifier uses a Michigan approach; the evolutionary process
with elitism is guided by a token competition that improves the exploration of fitness surface. Individ-
uals that cover instances, covered previously by others individuals, are penalized. The fitness function
is constructed by the multiplying three factors: sensibility, specificity and simplicity. The classifier was
constructed as a decision list, sorted by the positive predictive value. The most numerous class was used
as the default class. Until now, only numerical attributes are allowed and a mono objective algorithm
that combines the three fitness factors is implemented. Experiments with twenty benchmark data sets
have shown that our approach is significantly better in validation accuracy than some genetic rule-based
state-of-the-art algorithms (i.e., SLAVE, HIDER, Tan, Falco, Bojarczuk and CORE) and not significantly
worse than other better algorithms (i.e., GASSIST, LOGIT-BOOST and UCS).

Keywords: Genetic programming, Gene expression programming, Classification rules, Discriminant func-
tions

International Journal of Computational Intelligence Systems, Vol. 9, No. 2 (2016) 263-280

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

263

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

1. Introduction

From the outset, data mining has acquired great in-

terest. Some lines of research focus on develop-

ing algorithms for knowledge extraction from huge

databases. Within this rich field, the design of an al-

gorithm for discovering classification rules is one of

such lines and is the subject of this work. For several

years, many noteworthy approaches have been used

to confront this task: decision trees1, support vector

machines2 and probabilistic classifiers3 are some of

them.

The development of evolutive algorithms for

classification tasks have recently become of great in-

terest, with two fundamental paradigms: genetic al-

gorithms (GAs)4 and genetic programming (GP)5,

as alternatives to search efficiently over complex

search spaces.

Some examples of how they are applicable in

classification tasks can be verified in4,6,7,8,9. These

evolutive algorithms classically follow the princi-

ples of “natural selection” and “survival of the

fittest” over several generations where operators of

mutation and crossover are applied in the popula-

tion of individuals. Usually, the major disadvantage

of genetic classifiers is the intensive consumption

of computational resources. Nevertheless, in many

real-life cases, where off-line learning is possible,

computational consumption may be not a problem.

Gene expression programming10 is a technique

that combines the advantages of genetic algorithms

and genetic programming, while it avoids some of

the disadvantages of both. In gene expression pro-

gramming (GEP) the chromosomes are fixed length

linear symbolic strings (genotype) that code com-

puter programs in the form of expression trees of dif-

ferent shapes and sizes (phenotype). In that way, the

evolution process is more efficient over this kind of

genotype code, while the expressive power of trees

is maintained in the phenotype.

In addition, from the perspective of the evo-

lutionary algorithms, there exist two major ways

to define individuals and how they conform the

final solution; the first, one rule per individual

(Michigan7,11) and the second, one rule-set per in-

dividual (Pittsburg12,13). In the former, an individ-

ual encodes a single rule for which the solution is

built with one or several individuals. In the sec-

ond case, an individual is a complete rule set of the

problem for which the solution is the best individ-

ual. There are a number of mixed perspectives that

combine the above approaches; some examples are

Iterative Rule Learning14 and Genetic Cooperative-

Competitive Learning15,16. In recent years, evolu-

tionary algorithms (EAs) have been used in clas-

sification tasks. The extensive and comprehensive

scientific work on state-of-the-art and comparative

studies on genetic rule-based systems (GRBS) by

Fernandez et al.17 and Orriols et al.18 is a clear ev-

idence of how useful these kinds of algorithms are.

However, there are only few comparisons between

GRBS and gene expression programming rule-based

systems (GEPRBS) that support the competitiveness

of the latter. Therefore, this paper proposes:

• A new algorithm (details in Section 4) for discov-

ering classification rules with GEP Michigan ap-

proach. The classifier is constructed as a decision

list, sorted by the positive predictive value (PPV).

The most numerous class is used as the default

class. To avoid over-fitting, a threshold method

was employed.

• Evaluation versus nine GRBS algorithms referred

by the specialized literature to assess the compet-

itiveness of the algorithm. The way in which our

approach significantly improved accuracy com-

pared to other very useful algorithms is shown.

Furthermore, an approach that provides an oppor-

tunity to improve the reached results in terms of

the number of rules in the learned model is pre-

sented. In this manner, the competitiveness of the

GEP approach for discovering classification rules

is empirically demonstrated.

• An algorithm with positive elements of the Tan

et al.19 and Zhou et al.20 algorithms as starting

points, avoiding some features which complicate

implementation (In the following they will be

identified by the first author name). A covering-

strategy (token competition) similar to that used

by Tan was employed. It is a powerful idea in-

spired in the artificial immune system where a

memory vector is utilized to produce multiple

rules as well as to remove redundant ones. More-

over, the fitness function proposed by Tan is im-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

264

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

proved by adding a third factor, thus prioritizing

simpleness in the rules discovery process. The

GEP encoding used by Zhou’s individuals was im-

plemented, but following exactly the Ferreira10,21

recommendations and definitions. The proposed

algorithm function set uses a reduced and the

smallest subset of the Zhou’s function set. A fixed

arity of 2 was established in order to simplify the

implementation of discriminant functions that en-

codes the individuals in the expression tree form.

The rest of this paper is organized as follows: In

Section 2, GEP technology is explained in detail.

In Section 3, discriminant functions for classifying

a subset of input attributes are described. Besides,

we explain how a one-vs-all approach was used to

decompose the multi-class problem in several bi-

nary classification problems. Section 4 presents the

proposed multi-class GEP algorithm. Several fea-

tures such as function set, terminal set, fitness cal-

culation, token competition and algorithm pseudo-

code are described in that section. The experimen-

tal results achieved by nine GRBS and MCGEP on

twenty benchmark real-world data sets are detailed

in Section 5. Finally, Section 6 offers conclusions

about the strength and weakness of the proposed al-

gorithm and some directions for future work.

2. Gene Expression Programming

In this paper, GEP10,21 is used as a way of represent-

ing individuals, based on GAs and GP. The funda-

mental difference between these paradigms lies in

the nature of individuals: in GA, symbolic fixed-

length strings (chromosomes) are used; in GP, indi-

viduals are entities of varying size and shape (trees)

and in GEP, individuals are also trees but are en-

coded in a very simple way as symbolic strings of

fixed length. Thus individuals have a simple geno-

typic representation in form of strings and the phe-

notype is an expression tree (ET) formed by func-

tions in its non-terminal nodes and input values or

constants in its terminal nodes. Furthermore, in GEP

a way is proposed of transforming the string gene

representation in trees such that any valid string gen-

erates a syntactically correct tree. In this paper, the

phenotype also represents a discriminant function

that is used to build a piece of the classifier.

In GEP, genotype may comprise several genes,

each one divided into two parts: head and tail. The

head of the gene will have a priori a chosen size for

each problem and may contain terminal and non-

terminal elements. The tail size, which may only

contain non-terminal elements, will be determined

by the equation t = h ∗ (n− 1) + 1, where t is the

tail size, h is the head size and n is the maximum

arity (number of arguments) in the non-terminal set.

This expression ensures that in the worst case, there

will be sufficient terminals to complete the ET. GEP

ensures that any change at genotypic level gener-

ates a valid tree at the phenotypic level. Valid tree

generation is a problem that may arise and should

be treated in GP. Moreover, performing the evolu-

tionary process at the genotype level in a fixed-size

string such as in genetic algorithms is more effi-

cient than doing so on a tree like in GP; these two

are some of the fundamental advantages present in

GEP21.

2.1. Initial population

The generation of the initial population in GEP is

a simple process. It is only necessary to ensure that

the head is generated with terminal and non-terminal

elements and the tail only with terminal elements,

in all cases chosen randomly from the element set

(union of terminal and function set).

2.2. Genetic operators

In GEP, there are several genetic operators available

to guide the evolutionary process, which can be cat-

egorized into: mutation, crossover and transposition

operators. Sometimes particular GEP transposition

operators are included within the mutation category,

and other specific GEP operators listed below are in-

cluded in the crossover category.

2.2.1. Mutation operator

As a modifying operator of great intrinsic power,

the mutation operator is the most efficient21. In

GEP, mutations are allowed to occur anywhere in

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

265

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

the chromosome. However, the structural organiza-

tion of chromosomes must be preserved. Therefore:

• in the head, any symbol can change into another

(from function or terminal set),

• in the tail, terminals can only change into termi-

nals (from terminal set).

2.2.2. Transposition of insertion sequence (IS)
elements

It starts by randomly selecting a sequence of ele-

ments to transpose. This sequence is inserted at a

random position at the head of the gene that is being

modified, except the beginning of the head as inser-

tion point to avoid generating individuals with only

one terminal21.

2.2.3. Root transposition of insertion sequence
(RIS) elements

It starts by selecting a sequence of elements to trans-

pose randomly but with the constraint that starts with

a function. A point on the head is randomly chosen

for a preselected gene and from this point onwards,

the gene is scanned until a function is found. This

function becomes the first position of the RIS ele-

ment. If no function is found, the operator makes

no changes. In this way, the RIS operator randomly

chooses a chromosome, a gene to be modified and

the beginning and end of the RIS sequence. After

this, the sequence is inserted into the head of the se-

lected gene21.

2.2.4. One-point recombination

Two parent chromosomes are placed at the same

level and cut from the same point (see Figure 1);

then the pieces resulting from each parent are ex-

changed to generate offspring. The cutoff point is

chosen anywhere in the chromosome21.

Figure 1: One-point recombination.

2.2.5. Two-point recombination

Similar to above but instead of a single cut-off point,

two cut-off points are selected from each parent

chromosome, which defines a sequence that is ex-

changed between parents to produce offspring (see

Figure 2). With this operator, new blocks are gener-

ated, so it is more disruptive than the previous oper-

ator. It is recommended in21 not to use recombina-

tion operators for one and two points alone because

they can generate premature convergence. However

by combining them with mutation and transposition

operators, thorough exploration of the feature space

is achieved.

Figure 2: Two-point recombination.

3. Classification with discriminant functions

Discriminant functions are one of the schemes used

in data mining for classification9. In a discriminant

function, a subset of the attributes of a pattern is

taken for classifying; the output is computed as a

value that is the result of evaluating the function at

these input attributes. Then, this value must be com-

pared with a threshold (normally 0) to associate it

with the corresponding initial pattern classification22

(see equation 1) where X is the input feature vector.

i f (f (X)> 0) then X ∈Class (1)

This classifier will consist of a list of discrim-

inant functions where each function associates an

output class. In the case of two classes, the classifier

would be as in equation 2.

i f (f (X)> 0) then X ∈Class1

else X ∈Class2 (2)

In this case, the function f (X) split the characteristic

space into two areas, as shown in Figure 3.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

266

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

Figure 3: Characteristic space splitting by a discrim-

inant function.

The multi-class problem can be resolved by us-

ing a one-vs-all approach23, where the n-class prob-

lem is transformed into n two-class problems. In

this approach, the instances of each class are taken

as positive instances and the rest as negative in-

stances. On the other hand, a way to build the clas-

sifier would be to find a single discriminant function

for each class. However, it has the disadvantage that

in the real-world problems the features spaces are

usually much more complex than Figure 3, given

that one function is generally not able to classify

all instances of a determined class properly. Thus,

we need to find more than one function for each

class: the proposed algorithm searches for discrim-

inant functions to achieve a certain predefined level

of coverage over all instances for each class; new

functions are added to the solution only when they

cover instances not covered by previous functions.

Once the discovery process of discriminant func-

tions concludes, a decision list is generated, with the

best functions at the top of the list. When a new

instance is presented to this classifier to predict its

class, the first function of the list is evaluated. If

it returns a positive value, the class associated with

this discriminant function is established. If it returns

a non-positive value, then the evaluation passes on

to the next discriminant function, and so on24. If

no discriminant function returns a positive value, the

most numerous class in the training set is returned as

the default class, as shown in equation 3.

i f (f11(X)> 0) then X ∈Class1

elsi f (f12(X)> 0) then X ∈Class1

...

elsi f (f21(X)> 0) then X ∈Class2

elsi f (f22(X)> 0) then X ∈Class2

...

elsi f (fc1(X)> 0) then X ∈Classc

elsi f (fc2(X)> 0) then X ∈Classc

...

else X ∈ Def ault−Class (3)

Where fi j represents the j-th discriminant function

that predicts the i-th class.

4. Multi-class with gene expression
programming algorithm (MCGEP)

This classifier is based on a version of the steady-

state algorithm with elitism defined in25 and it is

a modified version of the inspiring algorithm pro-

posed in19. In this algorithm, a list of non-redundant

individuals is generated with respect to covered in-

stances of the training collection, this process is re-

peated for each class. To achieve that, a token com-

petition is performed, similar to one proposed by

Wong and Leung in26.

The fitness of each individual is calculated by

multiplying its previous fitness value with the rate

between winning tokens and possible-to-win tokens.

A token is an instance of the training collection.

Covered instances are removed from the competi-

tion. Thus, redundant individuals obtain a low fit-

ness score (zero if they cover the same instances

covered by others previous individuals in the pop-

ulation). An individual with good initial fitness but

with a low rate of new (not covered by others) won-

tokens may finish the competition with low fitness,

even with zero fitness, in the worst case. Before each

competition, individuals token-winners are sorted

according to their fitness.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

267

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

4.1. Function set and terminal set

In MCGEP only basic arithmetic functions have

been used to build the discriminant functions that

form the final classifier as a decision list; the func-

tion set was formed by operations: * (multiplica-

tion), / (division), + (addition) and - (subtraction);

in all cases these functions were established with ar-

ity equal to 2. For the moment, the algorithm has

only been developed for numerical data sets; the in-

tention is to make an implementation that works on

numerical and non-numerical data sets for greater

generality. So the terminals are the attributes of a

data set or the constants that were initially defined

in the algorithm configuration file. Each individual

encodes one rule, representing a discriminant func-

tion and having a class as a consequent. The conse-

quent represents the current class in each run of the

algorithm, so the algorithm runs as many times as

the number of existing classes.

4.2. Fitness function

This function (see equation 4) evaluates the fitness

of each individual (rule or discriminant function) to

be applied to the collection of training; this metric

is similar to that used by Bojarczuk et al. in27 for

a classification rule discovery system with genetic

programming.

f itness = tp
(tp+w1∗ fn)

∗ tn
(tn+w2∗ fp)

∗
∗ maxSize−0.2∗phenotSize−0.8

(maxSize−1) (4)

where tp, tn, fn and fp represent true positives,

true negatives, false negatives and false positives re-

spectively from the confusion matrix obtained by

evaluating an individual in the training set; w1 and

w2 are configuration parameters that controls the im-

portance given to false positives and false negatives

respectively; this is achieved by setting the function

to different contexts. The first factor in the fitness

function is also known as sensitivity, the second as

specificity. When multiplied, it has also been sug-

gested in28, that both factors be used in classifica-

tion independently of the paradigm of the algorithm;

these factors also have been widely used to measure

performance in the domain of medicine29. Both fac-

tors were weighted by w1 and w2 like in19. When w1

decreases and w2 increases, the accuracy of the algo-

rithm increases but generates a tendency to overfit-

ting, caused by the increment of the number of rules

needed to cover all instances. Tan et al. in19 rec-

ommended values between 0.2 and 1.0 for w1 and

between 1.0 and 20 for w2.

The third factor is a measure of the simplicity

of an individual. This is included because the pro-

posed algorithm does not necessarily produce sim-

ple individuals. Although they are limited by the

maximum size defined by the GEP chromosome

which is maxSize = 2 ∗ (headsize)+ 1. The variable

phenotSize in the equation 4 is the length (number

of terminal and non-terminal elements) of the ex-

pression tree coded in the phenotype of an individ-

ual; this factor reaches its maximum unitary value

when a phenotype is as simplest as possible (pheno-

type length equal to one). This factor was designed

as a negative slope line and decreases to a mini-

mum of 0.8 when length equals the maximum phe-

notype represented by the value: maxSize. Thus, the

most complex individuals are penalized, although

not forced to disappear, during the evolutionary pro-

cess and fitness surface exploration almost obeys

the parsimony principle: “the simplest is the best”.

Thus, fitness function is defined (see equation 4) by

multiplying the three factors and then taking values

between 0 and 1.

4.3. General characteristics of MCGEP
algorithm

To implement the MCGEP algorithm, we re-

viewed two excellent algorithms for rule discover-

ing, namely Tan et al.19 and Zhou et al.20. In the

Tan algorithm, individuals were encoded like in ge-

netic programming. In Zhou, a GEP variant with

a validity test was used. Finally, in MCGEP algo-

rithm, we coded individuals exactly the same way

as Ferreira10,21 defined them in his work, since it is

a much simpler scheme. In the Tan algorithm, the

well-known method ramped-half-and-half was used

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

268

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

Table 1: Comparative table.

Features Tan 200219 Zhou 200320 MCGEP

Individual coding GP GEP (with validity test) GEP

Initialization method Ramped-half-and-half Completely random Random, but conserving

head and tail structure

Function set AND, NOT *, +, -, /, sqrt, if-then *, +, -, /

Terminal set All combinations of

attribute-value (nominal)

Numeric and nominal bi-

narization

Numeric

Constants set - Constant list Constant list

Kind of rules Classifications rules Discriminant Functions Discriminant Functions

Kind of classifier Decision list Decision list Decision list

Method to avoid overfit-

ting

Support threshold MDL Support threshold

Fitness function F = Sen∗Esp F = ConsistGain ∗
Complet

F = Sen∗Esp∗Sim

Diversity control Token Competition - Token Competition

to generate the initial population. In Zhou, the initial

population was generated completely randomly.

In MCGEP, we chose the criterion of random

generation but kept the head and tail structure, thus

avoiding the introduction of new parameters (and

adjusting to Ferreira’s definitions). In Tan, only log-

ical operations AND and NOT (normal disjunctive

form) were used as function set. In Zhou arithmetic

(*, +, -, /, sqrt) and logical (if x > 0 then y else z) op-

erations were used as function set. Again, we used

simplicity as the criterion for the MCGEP function

set and only used four basic operators (*, +, -, /),

all of them with arity = 2. For Tan, only nominal

attributes were allowed, since all combinations of

attribute-value were used as the terminal set. Zhou

worked with numeric attributes (nominal binariza-

tion). For MCGEP, we used the same Zhou scheme

(numerical or nominal binarization when needed).

In all cases, the classifier was constructed as a

decision list. The Tan method used a threshold

to avoid over-fitting. However in Zhou, the MDL

(Minimal Description Length) principle was used,

with a value W = 0.5. In our case, although we

found Zhou’s approach with MDL very interesting,

we used the threshold method, which is far simpler

and provides very good results (scant over-fitting).

On the other hand, as Bacardit30 poses in chapter 8

of his report, the W parameter setting becomes very

sensitive product selection pressure of genetic algo-

rithms. Making for high values a collapse of the final

classifier into one with a single rule; for small val-

ues of the parameter, the classifier fails to eliminate

over-fitting. Later, Bacardit states that it is no sim-

ple task to automatically adjust this parameter, so its

inclusion in our algorithm is left for future imple-

mentations.

The Tan algorithm used a fitness function with

the product of sensitivity and specificity. In Zhou,

the product of rule consistency by completeness gain

ratio (covered entities) was used. In our case, we

modulated the products of sensitivity and specificity

with a third factor (which prioritizes the simplicity

of the rules). To control diversity, Tan used a token

competition. In Zhou, the instances covered are pro-

gressively removed from the data set. In our case,

we used the method that Tan employs in his algo-

rithm to adjust the fitness of individuals, depending

of the new instances covered. In this way, the algo-

rithm tends to eliminate redundancy, while the more

general rules are prioritized.

Table 1 shows a comparison of the basic charac-

teristics of MCGEP and the two fundamental works

that inspired its development: Tan and Zhou.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

269

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

4.4. Pseudo-code algorithm description

As shown in the line 4 of the pseudo-code (Algo-

rithm 1), the evolutionary process begins by gen-

erating the initial population bset(0). This initial

population evolves for several generations until the

stop condition is reached -in our algorithm, that

means until the maximum number of generations

gmax is achieved (this parameter is defined in the

algorithm configuration file) or an individual with

f itness ≈ 1 obtained. In each generation, indi-

viduals are evaluated according to the performance

function defined in 4.2 (see equation 4). Then a

small elite percentage population is chosen, which

is defined in the configuration file by the param-

eter elitistperc and saved in (cset) (see line 8 of

pseudo-code). A selection of parents is performed

on the remaining population, with two of tourna-

ment size, tournsize = 2 (see line 10); to select the

parents (pset), the GEP genetic operators detailed in

section 2.2 were applied one by one (see lines 11

to 15); thereafter, the offspring obtained (in rset)
were evaluated (see line 16). Subsequently, a re-

production process where some individuals from the

original bset population are randomly chosen with a

low probability defined in the configuration file as

copyprob = 0.1 and bound to the previously obtained

elite population (cset) (see line 17); finally individ-

uals: cset, eset and rset are joined in a unique pop-

ulation cset (initially eset is empty), as can be seen

in lines 18 and 19. Then, a TokenCompetition on

cset population is executed (see line 20), the com-

petition returns a vector of rules that are then stored

in eset which is a potential classifier for the current

class, the eset rules were obtained from individuals

who had a reason (CoveredTokens/TotalTokens)>
thresholdsupport , then eset population is re-evaluated

to prepare for the next generation (see line 21), in the

line 22, the population is adjusted back to the orig-

inal size defined by popsize. The whole process is

repeated generation after generation from line 6 un-

til it reaches the maximum number of generations,

or an individual achieves a fitness very close to 1.0.

If any of the above stop conditions is reached, all

the elements of eset are added to the classifier and

the algorithm starts with the next class, repeating the

whole process from line 3 onwards.

Algorithm 1: MCGEP, pseudo-code.

Result: Classifier of Sorted Rules

1 classi f ierRules.CLEAR();
2 actualclass← 0 ;

3 repeat
4 Generate initial population bset(0) ;

5 gcount ← 0 ;

6 while ((gcount < gmax) AND (f itness < 1))
do

7 evaluate(bset);
8 cset = selectBetters(bset,elitistperc);
9 rset =

selectBetters(bset,1− elitistperc);
10 pset =

parentTournSel(rset, tournsize = 2);
11 rset =

GEPSimpleMutt(pset,mutprob);
12 rset =

GEPISTranspMutt(rset,mutprob);
13 rset =

GEPRISTranspMutt(rset,mutprob);
14 rset =

GEPOnePointRecomb(rset,recprob);
15 rset =

GEPTwoPointRecomb(rset,recprob);
16 evaluate(rset);
17 cset.ADD(copy(bset,copyprob));
18 cset.ADD(rset);
19 cset.ADD(eset);
20 eset = TokenCompetition(cset);
21 evaluate(eset);
22 bset = selectBetters(cset, popsize);
23 gcount ++;

24 classi f ierRules.ADD(eset.getRules());
25 actualclass ++;

26 eset.CLEAR();
27 until (actualclass � cantclass);
28 Sort(classi f ierRules);

The class used for fitness calculation is assigned

in each algorithm iteration as a rule consequent,

assuming as positive instances those belonging to

that class and as negative those belonging to other

classes. The algorithm is repeated as many times as

the number of existing classes in the training set. All

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

270

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

the rules coded in eset individuals are added to clas-

sifier in each cycle. The list eset is reset each time;

see line 26. At the end of the process, we sort all

rules in the classifier according to the PPV value. In

each sorting cycle, we add the PPV-best rule to the

end of a list of rules and remove all the matching in-

stances from the training set. We repeat this process

until the training set is empty or no more rules for

sorting (we initially used an empty list of rules and

the full training set to calculate the first PPV-best

rule). PPV is computed as PPV = tp/(tp + fp).

5. Empirical evaluation

This section presents the experimental methodology

followed to evaluate the algorithms presented. The

accuracy and the size of the models evolved by all

algorithms involved in this work is compared. The

competence of the MCGEP is compared with nine

widely-known GP techniques for discovering classi-

fication rules that represent a large variety of learn-

ing paradigms. The methods used in the comparison

are:

1. UCS31: genetic rule-based Michigan-style al-

gorithm derived from XCS32 but specialized

for supervised learning tasks. Evolves a best

action map more efficiently than XCS com-

plete action maps.

2. GASSIST30: inherits from the GABIL

algorithm33 and it is one of the most com-

petitive current Pittsburgh-style systems. It is

a genetic rule-based system that evolves in-

dividuals consisting of an ordered, variable-

length rule set.

3. HIDER34: genetic rule-based algorithm that

represents knowledge in a similar fashion to

GASSIST as a hierarchical set of rules which

take the form of a decision list. The main dif-

ference of HIDER is that it uses natural cod-
ing35 to represent each rule. It uses an itera-

tive rule learning approach.

4. SLAVE36: genetic fuzzy-rule-based classifier

that implements iterative rule learning with

the search space reduction objective.

5. Fuzzy LOGIT-BOOST37: a boosting method

similar to AdaBoost38 that uses a greedy ver-

sion of generalized backfitting39 to build an

additive model. LOGIT-BOOST was ex-

tended to induce fuzzy classifiers, resulting in

Fuzzy LOGIT-BOOST.

6. CORE40: in the co-evolutionary algorithm for

rules discovery, each individual codifies a rule

and the whole rule set is evolved simultane-

ously. Thus, rules should cooperate with each

other to produce an optimal rule set jointly,

and at the same time, the rule set is reduced

by a token competition.

7. Bojarczuk27: a hybrid Pittsburgh/Michigan

approach, where an individual can contain

multiple classification rules that predict the

same class. An individual is in disjunctive

normal form (DNF). An individual consists

of a logical disjunction of rule antecedents,

where each rule antecedent is a logical con-

junction of conditions (attributevalue pairs).

This is a genetic programming rule-based sys-

tem.

8. Falco41: Michigan-style genetic algorithm

able to extract classification rules. Each rule

is constituted by a logical combination of pre-

dicting attributes. It is a grammar guided ge-

netic programming based system.

9. Tan19: extends the tree representation of ge-

netic programming to evolve multiple com-

prehensible IF-THEN classification rules in a

Michigan-style. It employs a covering algo-

rithm (token competition) inspired by the arti-

ficial immune system, where a memory vector

is utilized to produce multiple rules, as well

as to remove redundant rules. It is a grammar

guided genetic programming-based system.

A more detailed explanation of each of the first six

algorithms above can be found condensed in an ex-

cellent review18.

The following subsection, provides details of

the real-world problems chosen for the experiments,

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

271

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

the experimental tools and configurations parame-

ters for each one, the experimental results and the

statistical analysis applied to compare the results ob-

tained.

5.1. Training sets

To evaluate the behavior of our classifier, twenty

real-world data sets were chosen from KEEL∗42 and

UCI†43 repositories.

Table 2: Data set characteristics.
Id. Data set Instances Attrib. Class

aus Australian 690 14 2

bal Balance 625 4 3

bup Bupa 345 6 2

cle Cleveland 297 13 5

con Contraceptive 1473 9 3

der Dermatology 358 34 6

eco Ecoli 336 7 8

gla Glass 214 9 7

hea Heart-s 270 13 2

iri Iris 150 4 3

pim Pima 768 8 2

son Sonar 208 60 2

tex Texture 5500 40 11

thy Thyroid 7200 21 3

wdb Wdbc 569 30 2

win Wine 178 13 3

wis Wisconsin 683 9 2

wpb Wpbc 194 32 2

yea Yeast 1484 8 10

zoo Zoo 101 17 7

UCI is a well-known repository and KEEL is

an open source Java software tool which empow-

ers the user to assess the behavior of evolutionary

learning and Soft Computing based techniques. In

particular, KEEL-dataset includes the data set par-

titions in the KEEL format classified as: regres-

sion, clustering, multi-instance, imbalanced classi-

fication, multi-label classification and so on. To ex-

ecute the experiments, the following data sets were

used: Australian, Balance, Bupa, Cleveland, Con-

traceptive, Dermatology, Ecoli, Glass, Heart, Iris,

Pima, Sonar, Texture, Thyroid, Wdbc, Wine, Wis-

consin, Wpbc, Yeast and Zoo. In our experimen-

tal assessment, all examples with missing values

were removed from the data sets. In total, we have

eight binary problems, five three-class problems and

seven problems between 5 and 11 class. A summary

of the characteristics of these data sets can be seen

in the Table 2.

5.2. Experimental tools

We used the JCLEC‡ framework described in44; it

is a software system for Evolutionary Computation

(EC) research, developed in Java programming lan-

guage.

Table 3: MCGEP sumary parameters.

Parameter Value

Population Size (population-size) 500

Max of Generations (max-of-generations) 100

Tournament selector (tournament-size) 2

Copy probability (copy-prob) 0.1

Elite probability (elitist-prob) 0.1

Support (support) 0.01

Parameters (w1 ; w2) (1 ; 2)

GEPSimpleMutator (mut-prob) 0.15

GEPISTranspositionMutator (mut-prob) 0.10

GEPRISTranspositionMutator (mut-prob) 0.10

GEPOnePointRecombinator (rec-prob) 0.40

GEPTwoPointsRecombinator (rec-prob) 0.40

It provides a high-level software framework to

perform any kind of Evolutionary Algorithm (EA),

providing support for genetic algorithms (binary,

integer and real encoding), genetic programming

(Koza’s style, strongly typed, and grammar based)

and evolutionary programming. It has a module

for classification, where the MCGEP algorithm de-

scribed in Section 4 was implemented, GEP genetic

∗ http://www.keel.es/
† http://archive.ics.uci.edu/ml/
‡ http://jclec.sourceforge.net/

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

272

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

operators of JCLEC were used. The evaluator was

implemented in JCLEC with the fitness function de-

scribed in section 4.2. Furthermore, to perform the

simulations, a cluster with Multi-Core 12 x 2.4 GHz

processors, 23.58 GB of RAM and Linux 2.6.32 as

the operating system were used. The parameters

used in the algorithm are summarized in Table 3.

They were kept constant during the experiments. In

our experiments, we used the chromosome size and

constants list dependent on the characteristics of the

problem. The list of constants is chosen depending

on the range of attribute values (only in glass, heart-

s, pima, wdbc and wine). The configuration files for

MCGEP and complementary material of the experi-

mental study can be consulted at the link§.

Table 4: MCGEP problem configuration.

Dataset Headsize Const. List

Australian 140 1;0.5

Balance 25 1;0.5

Bupa 40 1;0.5

Cleveland 130 1;0.5

Contraceptive 90 1;0.5

Dermatology 340 1;0.5

Ecoli 70 1;0.5

Glass 100 1;0.5;5;50

Heart-s 150 1;0.5;5;50

Iris 40 1;0.5

Pima 60 1;0.5;10;400

Sonar 65 1;0.5

Texture 400 1;0.5

Thyroid 180 1;0.5

Wdbc 300 1;0.5;50;500

Wine 130 1;0.5;50;500

Wisconsin 90 1;0.5

Wpbc 80 1;0.5

Yeast 80 1;0.5

Zoo 170 1;0.5

How the size of the head in GEP is defined, re-

mains an open issue10,45, so we adjusted this param-

eter through trial and error starting with values close

to ten times the number of attributes of each data

set. To achieve repeatability of the experiments, we

show the configurations of each problem in Tables

3 and 4. The source codes and optimum configura-

tions for UCS, GASSIST, HIDER, SLAVE, LOGIT-

BOOST and CORE were based in KEEL46, its orig-

inal authors and in the useful review paper18. We

used the JCLEC implementation of the Bojarczuk,

Falco and Tan algorithms, with the configurations

recommended by the original authors19,27,41 respec-

tively.

5.3. Experimental results

We evaluated the performance of the models evolved

by each learning system with the test accuracy met-

ric (proportion of correct classifications over previ-

ously unseen examples) and number of rules of the

models obtained in each case. We used a ten-fold

cross validation procedure with 5 different random

seeds over each data set. The average results for

each collection are shown in Table 5, for accuracy

and in Table 6 for number of rules. The last row

in Tables 5 and 6 shows the average rank for each

algorithm.

5.4. Statistical analysis

We followed the recommendations pointed out by

Demšar47 to perform the statistical analysis of the

results. As he suggests, we used non-parametric sta-

tistical tests to compare the accuracies and sizes of

the models built by the different learning systems.

To compare multiple learning methods, we first ap-

plied a multi-comparison statistical procedure to test

the null hypothesis that all learning algorithms ob-

tain the same results on average. Specifically, we

used Friedman’s test. The Friedman test rejected the

null hypothesis, so post-hoc Bonferroni-Dunn tests

were applied.

According to the results obtained (see Tables 5

and 6) we statistically analyzed the results to detect

significant differences between the accuracy and the

size of the models evolved by the different learning

methods.

The multi-comparison Friedman’s test rejected

the null hypotheses that (i) all the systems per-

formed the same on average with p = 4.37×10−11,

§ http://www.uco.es/grupos/kdis/kdiswiki/MCGEP/

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

273

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

Table 5: Algorithm accuracy and rank over data sets.
Data set MCGEP UCS GAS-

SIST

HIDER SLAVE LOGIT-

BOOST

CORE Bojarc-

zuk

Falco Tan

aus 85.57(2) 84.12(6) 86.43(1) 81.65(8) 70.29(10) 83.59(7) 78.67(9) 85.51(3.5) 85.51(3.5) 84.58(5)

bal 97.76(1) 74.65(5) 78.88(3) 69.73(7) 75.58(4) 89.75(2) 65.39(8) 55.34(10) 58.80(9) 71.68(6)

bup 69.34(1) 65.12(3) 61.86(5) 63.33(4) 58.21(8) 69.28(2) 57.98(9) 55.76(10) 58.98(6) 58.23(7)

cle 54.43(3) 53.03(8) 56.19(1) 53.17(6) 53.63(5) 53.88(4) 53.00(9) 50.28(10) 53.06(7) 55.34(2)

con 52.05(4) 48.19(7) 54.58(1) 52.52(3) 43.82(9) 53.38(2) 44.23(8) 49.04(5) 42.53(10) 48.47(6)

der 94.95(2) 90.57(5) 95.96(1) 88.54(6) 90.74(4) 31.03(10) 31.75(9) 85.63(7) 73.87(8) 93.32(3)

eco 72.11(7) 79.30(3) 77.23(4) 75.74(5) 83.95(2) 84.54(1) 66.57(9) 65.49(10) 70.31(8) 72.22(6)

gla 67.33(3) 72.66(1) 66.82(4) 62.63(5) 59.91(6) 69.14(2) 50.56(9) 50.37(10) 54.63(8) 57.98(7)

hea 81.70(1) 77.78(5) 79.78(2) 75.19(7) 78.59(3) 78.22(4) 68.44(10) 70.00(9) 70.74(8) 76.81(6)

iri 96.53(1) 94.80(7) 96.40(2) 96.00(4.5) 95.33(6) 96.00(4.5) 94.53(8.5) 91.60(10) 94.53(8.5) 96.13(3)

pim 74.05(3) 71.78(9) 73.88(4) 74.29(2) 73.84(5) 75.40(1) 72.56(7) 71.44(10) 73.48(6) 72.07(8)

son 74.38(2) 66.84(7) 76.10(1) 50.78(10) 70.98(5) 54.88(8) 53.38(9) 72.00(4) 73.26(3) 68.49(6)

tex 81.03(4) 93.77(1) 62.88(6) 84.87(2) 82.37(3) 58.95(7) 09.09(10) 52.46(8) 43.63(9) 67.31(5)

thy 94.85(1) 92.29(8) 94.79(2) 93.96(3) 93.03(5) 93.56(4) 92.58(7) 77.92(10) 92.84(6) 88.76(9)

wdb 94.55(2) 94.73(1) 93.78(4) 85.17(9) 91.38(6) 93.85(3) 65.59(10) 89.07(7) 89.04(8) 93.05(5)

win 95.03(3) 96.16(2) 93.90(4) 79.98(10) 92.80(5) 97.07(1) 84.58(7) 83.18(8) 80.58(9) 91.44(6)

wis 96.55(1) 96.36(2) 95.59(4) 96.23(3) 95.57(5) 91.04(10) 93.23(7) 92.66(8) 91.71(9) 95.33(6)

wpb 73.63(3) 71.45(5) 70.61(6) 64.43(8) 72.83(4) 69.79(7) 76.32(1) 58.07(10) 75.73(2) 62.12(9)

yea 52.33(5) 55.38(3) 55.21(4) 55.79(2) 49.06(6) 58.86(1) 35.86(9) 42.49(7) 35.00(10) 36.60(8)

zoo 95.62(3) 94.71(5) 92.84(7) 95.67(2) 96.50(1) 45.58(10) 88.07(8) 93.29(6) 83.98(9) 95.00(4)

Rank 2.60 4.65 3.30 5.33 5.10 4.53 8.18 8.13 7.35 5.85

Table 6: Number of rules in models obtained over data sets.
Data set MCGEP UCS GAS-

SIST

HIDER SLAVE LOGIT-

BOOST

CORE Bojarc-

zuk

Falco Tan

aus 10.44 6355.30 7.36 13.96 7.72 50.00 6.68 2.00 2.00 13.62

bal 8.58 5406.76 8.84 5.00 22.64 50.00 4.44 4.44 3.00 18.94

bup 13.06 6074.14 7.60 6.52 5.94 50.00 3.96 2.04 2.00 18.60

cle 19.84 6366.20 6.88 23.58 37.40 50.00 6.56 5.56 5.00 25.48

con 24.92 6397.38 7.90 13.84 46.66 50.00 6.12 3.02 3.00 32.36

der 11.60 6162.16 6.66 10.74 10.96 50.00 1.00 6.72 6.00 11.60

eco 19.32 6154.64 6.04 12.54 13.06 50.00 6.40 9.64 8.00 25.22

gla 17.22 6294.60 5.34 25.00 15.74 50.00 6.24 7.84 7.02 20.98

hea 9.60 6300.64 6.52 9.08 7.60 50.00 7.68 2.00 2.00 15.50

iri 5.18 3184.18 4.08 4.00 3.00 50.00 3.28 3.96 3.00 6.04

pim 12.62 6359.64 8.26 12.28 10.04 50.00 4.86 2.00 2.76 19.10

son 13.04 6384.58 5.24 179.00 7.98 50.00 1.00 2.00 2.00 16.04

tex 25.96 6400.00 11.12 89.74 35.14 50.00 1.00 15.86 11.02 35.62

thy 7.40 6399.74 5.70 3.16 6.76 50.00 2.14 3.46 3.00 9.66

wdb 6.74 6351.00 5.24 99.20 5.32 50.00 2.56 2.00 2.00 9.20

win 7.46 6326.84 4.24 30.82 3.96 50.00 3.76 3.00 3.00 9.20

wis 4.56 5743.26 4.18 3.10 6.08 50.00 6.40 2.00 2.00 6.88

wpb 12.34 6359.62 5.26 131.46 9.90 50.00 1.38 2.00 2.00 18.42

yea 45.62 6397.56 7.06 48.88 23.68 50.00 5.46 12.08 10.00 51.66

zoo 7.54 5822.30 7.10 7.60 7.30 50.00 7.74 9.08 7.00 8.40

Rank 6.08 10.00 3.75 6.25 5.28 8.75 2.73 2.90 1.80 7.48

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

274

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

(ii) the number of rules in the models was equiv-

alent on average with p = 7.28× 10−11. After-

wards, we applied the post-hoc Bonferroni-Dunn

test using KEEL tools to detect (i) which learning

algorithm performed equivalently to the best-ranked

method (MCGEP) according to the test accuracy

metric; (ii) which methods evolved models whose

number of rules were equivalent to the best ranked

method (Falco) according to the model size. Us-

ing α = 0.10 in equation 5 with k, number of al-

gorithms, qα = 2.539 and N, number of data sets, a

critical difference of 2.4309 is obtained.

CD = qα

√
k(k+1)

6N
(5)

Figure 4 shows the results of this Bonferroni-

Dunn test, comparing all systems in terms of both

accuracy and the number of rules in the model. The

major advantage of this test is that it seems to be

easier to visualize, because it uses the same critical

difference for all comparisons47.

Figure 4: Critical difference comparison of accuracy

and number of rules.

To check the results, we also applied the Holm’s

step-up and step-down procedure sequentially to test

the hypotheses ordered by their significance. The

last one is more powerful than the previous Bon-

ferroni Dunn single-step and it makes no additional

assumptions about the hypotheses tested47. As can

be seen in Table 7, accuracy via Holm’s test with

α = 0.05 detect the same significant differences be-

tween MCGEP and SLAVE, HIDER, Tan, Falco,

Bojarczuk and CORE as Bonferroni-Dunn. Holm’s

at α = 0.05 does not detect significant differences

among MCGEP and GASSIST, LOGIT-BOOST and

UCS.

In general, as the Bonferroni-Dunn test shows,

the GASSIST method is the most balanced of all the

alternative methods analyzed in this work. It also

highlights the need to improve the MCGEP method

proposed by this paper in regard to the size of the

generated models. In the accuracy metric, MCGEP

outperformed GASSIST, although the difference is

not significant from the point of view of the statis-

tical tests applied (Holm tests, α = 0.05). Taking

both criteria (accuracy and model size) at the same

time Tan, HIDER and SLAVE are the worst algo-

rithms -see Figure 4. Falco, Bojarzuck and CORE

behave well on the size of the generated models,

however, they have a mediocre performance in ac-

curacy. UCS and LOGIT-BOOST perform very well

in terms of accuracy; in contrast, their performance

is worse when attempting to obtain compact models.

As stated above, in statistical terms, when accu-

racy alone is taken into account, no significant dif-

ferences were found between MCGEP, GASSIST,

LOGIT-BOOST and UCS, although we can make

some judgments about the performance of the algo-

rithms in some application scenarios, for example,

with variations in the number of classes and in the

number of attributes in data sets. Nevertheless, it

does not seem necessary to evaluate the variations

in the number of instances of data sets.

The comparison was based on information from

the individual ranking presented in Table 5. We

divided the algorithms into three new ranks, High,

Middle (Mid.) and Low. To do so, we attempted

to make an equitable division by leaving the same

number of ranks in each division and leaving the

remaining elements in the Mid. division. For the

number of classes, we make the division whenever

possible in such a way that it had the same number

of data sets in each division; we obtained the follow-

ing data sets cases: (2) binary; (3-5) between 3 and 5

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

275

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

Table 7: Holm / Hochberg Table for α = 0.05

i algorithm z = (R0−Ri)/SE p Holm/Hochberg/Hommel

9 CORE 5.8229 5.7836E-9 0.0056

8 Bojarczuk 5.7707 7.8955E-9 0.0063

7 Falco 4.9612 7.0054E-7 0.0071

6 Tan 3.3945 6.8750E-4 0.0083

5 HIDER 2.8462 0.0044 0.0100

4 SLAVE 2.6112 0.0090 0.0125

3 UCS 2.1412 0.0323 0.0167

2 LOGIT-BOOST 2.0106 0.0444 0.0250

1 GASSIST 0.7311 0.4647 0.0500

/// MCGEP Control algorithm /// ///

classes and (6-11) between 6 and 11 classes. For the

number of attributes, we applied the same process

but also trying to maximize the distances between

one range and other. Attribute ranges (4-9), (13-21)

and (30-60) were derived from these divisions and

individual ranking taken from Table 5. Tables 8 and

9 have been created to provide better visualization

of the count for classes and attributes respectively.

As shown in Table 8, MCGEP algorithm

achieves a high level (first three places in the rank-

ing) in 16 of the 20 data sets. In the binary data sets,

it achieves the best performance, since it is ranked

among the top three in all of them. In the twenty

data sets evaluated, this algorithm has no Low per-

formances. In half of the data sets between 7 and

10 classes, its performance is High, while it also

achieves Mid. performance in the other half.

The GASSIST algorithm (second in the overall-

ranking) achieves High performance in almost half

of the data sets, however in the binary data sets,

its performance is basically Mid. It attains the per-

formance of MCGEP in data sets between 3 and 7

classes.Like the previous algorithm, GASSIST also

has no Low performance in data sets. The perfor-

mance of the LOGIT-BOOST algorithm is High in

almost half of the data sets, however in the binary

and in some many-classes (meaning in our work be-

tween 7 and 11 classes) data sets, have a Low per-

formance. Finally, UCS excels over the other four

algorithms in many-classes data sets. In this many-

classes data sets, its performance was between Mid.

and High.

Table 8: Class distribution count in rank achieved

by each algorithm. (2) means binary data sets, (3-

5) means 3 to 5 class data sets. (6-11) means 6 to

11 class data sets. Algorithm rank High (1-3) mean

algorithms that reach a high rank 1, 2 or 3, and so

on.

Algorithm rank MCGEP

Low (8-10) 0 0 0

Mid. (4-7) 0 1 3

High (1-3) 8 5 3

Number of class �→ (2) (3-5) (6-11)

Algorithm rank GASSIST

Low (8-10) 0 0 0

Mid. (4-7) 5 1 5

High (1-3) 3 5 1

Number of class �→ (2) (3-5) (6-11)

Algorithm rank LOGIT-BOOST

Low 8-10 2 0 2

Mid. 4-7 3 3 1

High 1-3 3 3 3

Number of class �→ (2) (3-5) (6-11)

Algorithm rank UCS

Low 8-10 1 2 0

Mid. 4-7 4 3 2

High 1-3 3 1 4

Number of class �→ (2) (3-5) (6-11)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

276

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

When a similar analysis is performed but this

time considering the distribution of attributes (see

Table 9), we note that MCGEP excels in data sets

of many-attributes (read for this work between 30

and 60 attributes). In four of the five data sets, it

achieves High performance and in the fifth a Mid.

performance.

Table 9: Attribute distribution counts in rank

achieved by each algorithm. (4-9) means data sets

with 4 to 9 attributes, (13-21) means data sets with

13 to 21 attributes. (30-60) means data sets with 30

to 60 attributes. Algorithm rank High (1-3) means

algorithms that reach a high rank 1, 2 or 3, and so

on.

Algorithm rank MCGEP

Low (8-10) 0 0 0

Mid. (4-7) 3 0 1

High (1-3) 6 6 4

Number of class �→ (4-9) (13-21) (30-60)

Algorithm rank GASSIST

Low (8-10) 0 0 0

Mid. (4-7) 6 2 3

High (1-3) 3 4 2

Number of class �→ (4-9) (13-21) (30-60)

Algorithm rank LOGIT-BOOST

Low 8-10 1 1 2

Mid. 4-7 1 4 2

High 1-3 7 1 1

Number of class �→ (4-9) (13-21) (30-60)

Algorithm rank UCS

Low 8-10 1 2 0

Mid. 4-7 3 3 3

High 1-3 5 1 2

Number of class �→ (4-9) (13-21) (30-60)

In contrast, the LOGIT-BOOST algorithm has

the worst performance in data sets with many-

attributes. In the case of MCGEP, its performance

is High for attributes between 13 and 21, and often

it has High performance with few-attributes (4 to 9).

The LOGIT-BOOST algorithm only slightly excels

in the case of few-attributes, where most of the time

it is the algorithm with High performance.

In summary, the MCGEP algorithm can be said

to have good performance in data sets with a variable

number of attributes. In consonance with the adjust-

ments made to headsize parameter, this indicates that

we used a correct heuristic to adjust this parameter

(headsize ≈ 10 ∗ attributesnumber). Nevertheless, we

noted a slight reduction in the performance of this

algorithm with many-classes data sets, this may be

due mainly to the one-vs-all (OVA) approach used.

It is well-known that imbalanced training data sets

are produced when instances from a single class are

compared to all other instances48. MCGEP is not

completely ready to deal with this undesirable ef-

fect. For that reason, two future lines of work have

been identified. The first, an implementation of the

one-vs-one (OVO) approach and the second, to pro-

vide in-built support for this imbalance issue.

XCS and GASSIST were stated in the review17

as being “the two most outstanding learners in the

GBML history”. On the other hand, Orriols-Puig et

al.18 presented UCS (the evolution of XCS) as the

learning algorithm that resulted in the most accu-

rate models on average. Also Orriols-Puig et al.18

conclude that GASSIST yielded competitive results

in terms of accuracy. We found GASSIST, LOGIT-

BOOST and UCS to provide very similar results in

their behavior during our assessment of MCGEP.

Therefore we feel it is not fitting to make pairwise

comparisons when we only tested whether a newly

proposed method is better than existing ones47.

6. Conclusions and further work

In this paper, we tested and statistically validated

the competitiveness of an algorithm for discover-

ing classification rules with gene expression pro-

gramming (MCGEP) in particular in terms of the

accuracy metric. It was built by taking elements

from several other inspiring works described in cur-

rent literature. The product of sensibility, speci-

ficity and simplicity was taken from27 as a func-

tion of fitness, while Token Competition and the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

277

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

vision of creating vectors with candidate solutions

came from19. The vector of candidate solutions

was used to drive the evolutionary process by re-

calling the best rules from the previous generation

to the next generation, like the human immunol-

ogy system remembers previous pathological condi-

tions. The gene expression programming paradigm

proposed by Ferreira in10 with the adjustments de-

scribed in detail in21 was used in the coding of in-

dividuals, which ensures intrinsic efficiency in the

evolutionary process. Twenty data sets (numerics

or binarized-nominals) were adopted from KEEL

and UCI projects. To validate the competitiveness

of MCGEP, a comparison was made against nine

well known algorithms. The experimental results

achieved on twenty benchmark real-world data sets

detailed in section 6 show that our approach is sig-

nificantly better with respect to the accuracy metric

than some state-of-the-art genetic rule-based algo-

rithms (i.e., SLAVE, HIDER, Tan, Falco, Bojarczuk

and CORE) and not significantly worse than other

better algorithms (i.e., GASSIST, LOGIT-BOOST

and UCS). Thus, the competitiveness of the GEP ap-

proach for discovering classification rules was em-

pirically demonstrated. On the other hand, GAS-

SIST was the most balanced method of all the oth-

ers assessed in this work. Throughout this study,

we have identified the strengths but also the weak-

nesses of the approach used and thus a great deal

of future work remains to be carried out: the pos-

sibility of using nominal attributes; the inclusion of

the principle of minimum description length (MDL)

as used by Zhou et al20 to reduce the slight over-

fitting that exists in some cases; the treatment of un-

balanced data or the implementation of OVO vari-

ant to replace the current OVA variant; the possi-

bility of imposing different costs on misclassifica-

tion. A method for adjusting the parameters w1 and

w2 needs to be researched, as does the implementa-

tion of multi-objective version, in order to perform

searches of candidate solutions over the Pareto front.

Furthermore, we need to make improvements in re-

ducing the number of models generated because it

was clearly seen to be one of the weak points of this

work.

Acknowledgments

“This project was funded by the Deanship of Sci-

entific Research (DSR), King Abdulaziz University,

Jeddah, under grant No. (2-611-35/HiCi) and the

Spanish Ministry of Economy and Competitiveness

and FEDER funds under grant No. TIN2014-55252-

P. The authors therefore express their sincerest grat-

itude for such technical and financial support”.

References

1. John Ross Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

2. Vladimir Naumovich Vapnik. The Nature of Statisti-
cal Learning Theory. Springer-Verlag New York, Inc.,
New York, NY, USA, 1995.

3. George John and Pat Langley. Estimating Continu-
ous Distributions in Bayesian Classifiers. In In Pro-
ceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pages 338–345. Morgan Kauf-
mann, 1995.

4. David Edward Goldberg. Genetic Algorithms
in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1989.

5. John Reed Koza. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion. MIT Press, Cambridge, MA, USA, 1992.

6. Agoston Endre Eiben and James Edward Keith
Smith. Introduction to Evolutionary Computing.
SpringerVerlag, 2003.

7. John Henry Holland. Adaptation in Natural and Ar-
tificial Systems: An Introductory Analysis with Appli-
cations to Biology, Control and Artificial Intelligence.
MIT Press, Cambridge, MA, USA, 1992.

8. Zbigniew Michalewicz. Genetic Algorithms + Data
Structures = Evolution Programs. Springer-Verlag
New York, Inc., New York, NY, USA, 2nd edition,
1994.

9. Pedro G. Espejo, Sebastián Ventura, and Francisco
Herrera. A Survey on the Application of Genetic Pro-
gramming to Classifcation. Ieee Transactions on Sys-
tems, Man, and Cybernetics, Part C: Applications and
Reviews, 40(2):121–144, 2010.

10. Cândida Ferreira. Gene Expression Programming: a
New Adaptive Algorithm for Solving Problems. Com-
plex Systems, 13(2):87–129, 2001.

11. John Henry Holland and Judith Olson Reitman. Cog-
nitive Systems Based on Adaptive Algorithms. Intel-
ligence SIGART Bulletin, 63:49–49, June 1977.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

278

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

12. Kenneth Alan De Jong. Learning Concept Classifica-
tion Rules using Genetic Algorithms. In Proceedings
of the Twelfth International Joint Conference on Artifi-
cial Intelligence, pages 651–656. Morgan Kaufmann,
1991.

13. Stephen Frederick Smith. A Learning System Based
on Genetic Adaptive Algorithms. PhD thesis, Pitts-
burgh, PA, USA, 1980. AAI8112638.

14. Gilles Venturini. SIA: A Supervised Inductive Al-
gorithm with Genetic Search for Learning Attributes
based Concepts. In Pavel Brazdil, editor, ECML, vol-
ume 667 of Lecture Notes in Computer Science, pages
280–296. Springer, 1993.

15. Attilio Giordana and Filippo Neri. Search-intensive
Concept Induction. Evol. Comput., 3(4):375–416, De-
cember 1995.

16. David Perry Greene and Stephen Frederick Smith.
Competition-Based Induction of Decision Models
from Examples. Mach. Learn., 13(2-3):229–257,
November 1993.

17. Alberto Fernández, Salvador Garcı́a, Julián Lu-
engo, Ester Bernadó-Mansilla, and Francisco Her-
rera. Genetics-based machine learning for rule in-
duction: State of the art, taxonomy, and comparative
study. IEEE Transactions on Evolutionary Computa-
tion, 14(6):913–941, 2010.

18. Albert Orriols-Puig, Jorge Casillas, and Ester
Bernadó-Mansilla. Genetic-based machine learning
systems are competitive for pattern recognition. Evol.
Intel., pages 1–24, 2008.

19. Kay Chen Tan, Arthur Tay, Tong Heng Lee, and C. M.
Heng. Mining multiple comprehensible classification
rules using genetic programming. In David B. Fogel,
Mohamed A. El-Sharkawi, Xin Yao, Garry Green-
wood, Hitoshi Iba, Paul Marrow, and Mark Shack-
leton, editors, Proceedings of the 2002 Congress on
Evolutionary Computation CEC2002, pages 1302–
1307. IEEE Press, 2002.

20. Chi Zhou, Weimin Xiao, Thomas Michael Tirpak, and
Peter C. Nelson. Evolving Accurate and Compact
Classification Rules with Gene Expression Program-
ming. Trans. Evol. Comp, 7(6):519–531, 2003.

21. Cândida Ferreira. Gene Expression Programming:
Mathematical Modeling by an Artificial Intelligence.
Revised and extended edition. Springer, 2nd edition,
May 2006.

22. Durga Prasad Muni, Nikhil Ranjan Pal, and Jyotirmoy
Das. A Novel Approach to Design Classifiers Using
Genetic Programming. Trans. Evol. Comp, 8(2):183–
196, April 2004.

23. Andrew Webb. Statistical Pattern Recognition. John
Wiley & Sons, 2nd edition, 2002.

24. Ronald Linn Rivest. Learning Decision Lists. Ma-
chine Learning, 2(3):229–246, 1987.

25. Wolfgang Banzhaf, Frank Francone, Robert Keller,

and Peter Nordin. Genetic Programming: An Intro-
duction: on the Automatic Evolution of Computer Pro-
grams and Its Applications. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1998.

26. Man Leung Wong and Kwong Sak Leung. Data Min-
ing Using Grammar-Based Genetic Programming and
Applications. Kluwer Academic Publishers, Norwell,
MA, USA, 2000.

27. Celia Cristina Bojarczuk, Heitor Silvério Lopes,
Alex Alves Freitas, and Edson Luiz Michalkiewicz.
A Constrained-syntax Genetic Programming System
for Discovering Classification Rules: Application to
Medical Data Sets. Artif. Intell. Med., 30(1):27–48,
January 2004.

28. David Hand. Construction and Assessment of Classi-
fication Rules. Wiley, 3rd edition, 1997.

29. Heitor Silvério Lopes, Mario S. Coutinho, and Wal-
ter C. Lima. An evolutionary approach to simulate
cognitive feedback learning in medical domain. In
E. Sanchez, T. Shibata, and L. A. Zadeh, editors,
Genetic Algorithms and Fuzzy Logic Systems, vol-
ume 7 of Advances in Fuzzy Systems - Applications
and Theory, pages 193–207. World Scientific Publish-
ing, 1997.

30. Jaume Bacardit. Pittsburgh genetic-based machine
learning in the data mining era: representations and
generalization and run-time. PhD thesis, Dept. of
Department of Computer Science, University Ramon
LLull, December 2004.

31. Ester Bernadó-Mansilla and Josep Maria Garrell-
Guiu. Accuracy-based Learning Classifier Systems:
Models, Analysis and Applications to Classification
Tasks. Evol. Comput., 11(3):209–238, September
2003.

32. Stewart Wilson. Get Real! XCS with Continuous-
Valued Inputs. In Learning Classifier Systems, From
Foundations to Applications, pages 209–222, London,
UK, UK, 2000. Springer-Verlag.

33. Kenneth Alan De Jong, William M. Spears, and Di-
ana Faye Gordon. Using genetic algorithms for con-
cept learning. Machine Learning, 13(2-3):161–188,
Nov.Dec. 1993.

34. Jesús Salvador Aguilar-Ruiz, José C. Riquelme, and
Miguel Toro. Evolutionary Learning of Hierarchi-
cal Decision Rules. Trans. Sys. Man Cyber. Part B,
33(2):324–331, April 2003.

35. Jesús Salvador Aguilar-Ruiz, Raúl Giráldez, and
José C. Riquelme. Natural encoding for evolutionary
supervised learning. IEEE Transactions on Evolution-
ary Computation, 11(4):466–479, August 2007.

36. Antonio González and Raúl Pérez. SLAVE: A Genetic
Learning System Based on an Iterative Approach.
Trans. Fuz Sys., 7(2):176–191, April 1999.

37. Jos Otero and Luciano Snchez. Induction of descrip-
tive fuzzy classifiers with the logitboost algorithm.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

279

A. Guerrero-Enamorado et al. / An algorithm evaluation for discovering classification rules

Soft Computing, 10(9):825–835, 2006.
38. Yoav Freund and Robert Elias Schapire. Experiments

with a New Boosting Algorithm. In Proceedings of the
Thirteenth International Conference, pages 148–156,
1996.

39. Jerome H. Friedman, Trevor J. Hastie, and Robert Tib-
shirani. Additive logistic regression: a statistical view
of boosting. Ann Stat, 32(2):337–374, 2000.

40. K. C. Tan, Q. Yu, and J. H. Ang. A coevolutionary
algorithm for rules discovery in data mining. Inter-
national Journal of Systems Science, 37(12):835–864,
2006.

41. Ivanoe De Falco, Antonio Della Cioppa, and Ernesto
Tarantino. Discovering interesting classification rules
with genetic programming. Applied Soft Computing,
1:257–269, 2002.

42. Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo,
Joaquin Derrac, Salvador Garcı́a, Luciano Sánchez,
and Francisco Herrera. KEEL Data-Mining Software
Tool: Data Set Repository and Integration of Algo-
rithms and Experimental Analysis Framework. Jour-
nal of Multiple-Valued Logic and Soft Computing,
17(2-3):255–287, 2011.

43. M. Lichman. UCI Machine Learning Repository,
2013.

44. Sebastián Ventura, Cristóbal Romero, Amelia Zafra,
José; A. Delgado, and César Hervás. JCLEC: A Java
Framework for Evolutionary Computation. Soft Com-
puting, 12(4):381–392, October 2007.

45. Wagner Rodrigo Weinert and Heitor Silvério Lopes.
GEPCLASS: A classification Rule Discovery Tool
Using Gene Expression Programming. Lecture Notes
in Artificial Intelligence, (4093):871–880, 2006.

46. Jesús Alcalá-Fdez, Luciano Sánchez, Salvador
Garcı́a, Marı́a José del Jesús, Sebastian Ventura,
Josep Maria Garrell, José Otero, Cristóbal Romero,
Jaume Bacardit, Victor M. Rivas, Juan Carlos
Fernández, and Francisco Herrera. KEEL : a software
tool to assess evolutionary algorithms for data mining
problems. Soft Computing, 13(3):307–318, 2008.

47. Janez Demšar. Statistical Comparisons of Classifiers
over Multiple Data Sets. Machine Learning Research,
7:1–30, 2006.

48. Mikel Galar, Alberto Fernández, Edurne Barrenechea,
Humberto Bustince, and Francisco Herrera. An
overview of ensemble methods for binary classifiers
in multi-class problems: Experimental study on one-
vs-one and one-vs-all schemes. Pattern Recognition,
44(8):1761–1776, 2011.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

280

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

