
Received 4 July 2015

Accepted 3 January 2016

Hyperrectangles Selection for Monotonic Classification
by Using Evolutionary Algorithms

Javier Garcı́a 1 , Adnan M. AlBar,2 Naif R. Aljohani,2 José-Ramón Cano 1 , Salvador Garcı́a 3
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Abstract

In supervised learning, some real problems require the response attribute to represent ordinal values that
should increase with some of the explaining attributes. They are called classification problems with mono-
tonicity constraints. Hyperrectangles can be viewed as storing objects in R

n which can be used to learn
concepts combining instance-based classification with the axis-parallel rectangle mainly used in rule in-
duction systems. This hybrid paradigm is known as nested generalized exemplar learning. In this paper,
we propose the selection of the most effective hyperrectangles by means of evolutionary algorithms to
tackle monotonic classification. The model proposed is compared through an exhaustive experimental
analysis involving a large number of data sets coming from real classification and regression problems.
The results reported show that our evolutionary proposal outperforms other instance-based and rule learn-
ing models, such as OLM, OSDL, k-NN and MID; in accuracy and mean absolute error, requiring a fewer
number of hyperrectangles.

Keywords: Monotonic Classification, Nested Generalized Examples, Evolutionary Algorithms, Rule In-
duction, Instance-based Learning.

1. Introduction

The classification with monotonicity constraints,

also known as monotonic classification 1, is an or-

dinal classification problem where a monotonic re-

striction is present: a higher value of an attribute in

an example, fixing other values, should not decrease

its class assignment. The monotonicity of relations

between the dependent and explanatory variables is

very usual as a prior knowledge form in data clas-

sification 2. To illustrate, while considering a credit

card application 3, a $1000 to $2000 income may be
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considered a medium value of income in a data set.

If a customer A has a medium income, a customer B

has a low income (i.e. less than $1000) and the rest

of input attributes remain the same, there is a rela-

tionship of partial order between A and B: B < A.

Considering that the application estimates lending

quantities as output class, it is quite obvious that the

loan that the system should give to customer B can-

not be greater than the given to customer A. If so, a

monotonicity constraint is violated in the decision.

The estimation of the knowledge about mono-

tonicity in learning models is of a great interest for

two main arguments 4. Firstly, monotonicity im-

poses constraints on the prediction function. This

decreases the size of the hypothesis space and also

the complexity of the model. Secondly, the do-

main experts decide the acceptance or rejection of

the models yielded if they are consistent with the

domain knowledge, regardless of their accuracy 5.

Many data learning algorithms have been

adapted to be able to handle monotonicity con-

straints in several styles. There are two steps to

treat with monotonic classification problems. The

first one is to preprocess the data 6 in order to

“monotonize” the data set 7, rejecting the exam-

ples that violate the monotonic restrictions or select-

ing features to improve classification performance

and avoid overfitting 8,9; and the second one is to

force learning only monotone classification func-

tions. Proposals of this type are: classification trees

and rule induction 10,11,12,13, neural networks 14 and

instance-based learning 15,16,17.

Instance-based learning was baptized as learning

family in 18 and considers a set of methods widely

used in machine learning 19. An analogous scheme

for instance-based learning is the Nested General-

ized Exemplar (NGE) theory. It was announced

in 20 and perform various major adjustments to the

instance-based learning model. The most relevant

is that it allows two type of examples, standard ex-

amples represented as single points and generalized

examples which fill a hyper-volume in R
n. They are

closely connected to the nearest neighbor classifier

(NN) 21, in such a way that they are intended to en-

hance it. NGE learning algorithms are being more

popular in recent years due to the simplicity and ef-

fectiveness of the outcome they provide.

In this manner, the hyperrectangles are general-

ization of examples in R
n, according to NGE the-

ory. Single and generalized examples coexist and

hyperrectangles may be nested and inner hyperrect-

angles serve as exceptions to surrounding hyperrect-

angles. They constitute axis-parallel rectangle rep-

resentations as in many of the rule learning systems
22. Using this model, a new example can be classi-

fied by estimating the Euclidean distance between it

and every of the hyperrectangles stored. The class is

predicted according to the label associated with the

nearest hyperrectangle. In the case that two or more

hyperrectangles cover the example, it is necessary

to resolve a possible conflict derived from different

labels among the hyperrectangles 20.

The profits of combining hyperrectangles with

instances to build classification models are pointed

out in the literature 23,24,25. Looking at rule induc-

tion 22, the modeling of decision surfaces derived

from combinations between parallel axis separators

and Voronoi diagrams (typical decision surfaces of

NN classifiers) may adapt the prediction to examples

drawn along curves, improving the performance in

complex domains. Regarding instance-based classi-

fication 18, the hyperrectangles adds interpretability

to the model and reduces storage requirements.

The generation of an optimal minimal number

of hyperrectangles for classifying a set of points

is NP-hard. Heuristic algorithms produce a large

but finite subset of hyperrectangles from the train-

ing data. Nevertheless, it may be easy that almost

all hyperrectangles modeled could be unnecessary.

Thus, there is a need for selecting the most influen-

tial ones, and it can be done by using data reduction

schemes 6. Evolutionary Algorithms (EAs) 26 have

been used for data reduction with promising results
27. They have been favorably used in NGE learning

in the past 28,29.

In this paper, we propose the utilization of EAs

for hyperrectangles’ selection in monotonic classi-

fication tasks. Our goal is to increase the perfor-

mance in this type of problem by means of selecting

the best suitable set of hyperrectangles which opti-

mizes the nearest hyperrectangle classification with

monotonicty constraints. We compare our algorithm
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with other monotonic learning models belonging to

both instance-based and rule learning paradigms.

They are OLM 15, MID 10, OSDL 16 and mono-

tonic k-NN 17. The experimental design incorpo-

rates non-parametrical statistical testing 30,31. The

results show a significant improvement in accuracy

whereas the number of examples stored in the fi-

nal subset is further reduced. Besided, the main key

point of our proposal is that the model built is com-

posed of generalized examples which all fulfill the

monotonicity constraints.

The paper is organized as follows. Section 2 pro-

vides an background in monotonic classification and

the NGE learning model. In Section 3, all topics

concerning the approach proposed are described. In

Section 4 the experimentation framework is given

and in Section 5 the results and analysis are pre-

sented. In Section 6, the conclusions are high-

lighted.

2. Background

We will do a brief review of the monotonic classi-

fication including the description of the most used

techniques for monotonic classification in Subsec-

tions 2.1 and 2.2. The NGE classification will be

described in Subsection 2.3.

2.1. Monotonic Classification

Ordinal classification problems are those in which

the class is neither numeric nor nominal. Instead,

the class values are ordered. For instance, a worker

can be described as “excellent”, “good” or “bad”,

and a bond can be evaluated as “AAA”, “AA”, “A”,

“A-”, etc. Similar to a numeric scale, an ordinal

scale has an order, but it does not possess a precise

concept of distance. Ordinal classification problems

are important, since they are fairly common in our

daily life. Employee selection and promotion, deter-

mining credit rating, bond rating, economic perfor-

mance of countries, industries and firms, and insur-

ance underwriting, are examples of ordinal problem-

solving in business. Rating manuscripts, evaluating

lecturers, student admissions, and scholarships deci-

sions for students, are examples of ordinal decision-

making in academic life. Ordinal problems have

been investigated in scientific disciplines such as

information retrieval, psychology, and statistics for

many decades 4 .

A monotonic classifier is one that will not vio-

late monotonicity constraints. Informally, the mono-

tonic classification implies that the assigned class

values are monotonically non-decreasing (in ordi-

nal order) with the attribute values. More for-

mally, let {xi,class(xi)} denote a set of examples

with attribute vector xi = (xi,1, . . . ,xi,m) and a class,

class(xi), being n the number of instances and m the

number of attributes. Let xi � xh iff ∀ j=1,...,m,xi, j �
xh, j.

A data set {xi,class(xi)} is monotonic if and only

if all the pairs of examples i, h are monotonic with

respect to each other 10 (see equation 1).

xi � xh =⇒ class(xi)� class(xh),∀i,h (1)

Some monotonic ordinal classifiers require

monotonic data sets to successfully learn, although

there are others that are capable of learning from

non-monotonic data sets as well.

2.2. Monotonic Classification Methods

Four monotonic learning methods are pioneers and

well-known in the field of monotonic classification.

In the following, we will discuss each one in detail.

• The Ordinal Learning Model (OLM) 15 is a very

simple algorithm that learns ordinal concepts by

eliminating non-monotonic pairwise inconsisten-

cies. The generated concepts can be viewed as

rules. During the learning phase, each example is

checked against every rule in a rule-base, which

is initially empty. If an example is inconsistent

with a rule in the rule-base, one of them is selected

at random while the other is discarded, but if the

example is selected, it must be checked for con-

sistency against all the other monotonicity rules.

If it passes this consistency test, it is added as a

rule. Consequently, the rule-base is kept mono-

tonic at all times. Classification is done conser-

vatively. All the rules are checked in decreasing

order of class values against an attribute vector,

and the vector is classified as the class of the first
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rule that covers it. If such a rule does not exist,

the attribute vector is assigned the lowest possible

class.

• As its name implies, Ordinal Stochastic Domi-

nance Learner (OSDL) 16, is based on the con-

cept of Ordinal Stochastic Dominance (OSD).

The rationale behind OSD can be given through

an example: In life insurance, one may expect

a stochastically greater risk to the insurer from

older and sicker applicants than from younger and

healthier ones. Higher premiums should reflect

greater risks and vice versa. There are several

definitions of stochastic ordering. The stochastic

order computes when a random variable is big-

ger than another. Considering this order, stochas-

tic dominance can be established as a form of

stochastic order. In this case, a probability dis-

tribution over possible predictions can be ranked.

The ranking depends of the nature of the data set.

Stochastic dominance refers to a set of relations

that may hold between a pair of distributions.

The most commonly used, as stochastic ordering,

is first OSD, which was used by 36 in the OSDL.

For each vector xi, the OSDL computes two map-

ping functions: one that is based on the examples

that are stochastically dominated by xi with the

maximum label (of that subset), and the second is

based on the examples that cover (i.e., dominate)

xi, with the smallest label. Later, an interpolation

between the two class values (based on their posi-

tion) is returned as a class.

• The monotonic kNN (Mk-NN) was proposed in
17. This method consists of two steps. In the first

step, the training data is made monotone by re-

labeling as few cases as possible. This relabeled

data set may be considered as the monotone clas-

sifier with the smallest error index in the train-

ing data. In the second step, we use a modified

nearest neighbour rule to predict the class labels

of new data so that violations of the restrictions

of monotonicity will not occur. Considering the

monotonic nearest neighbor rule, the class label

assigned to a new data point x0 must lie in the in-

terval [classmin,classmax], where

classmin =max{class(xi)|{xi,class(xi)}∧xi � x0}
(2)

and

classmax =min{class(xi)|{xi,class(xi)}∧x0 � xi}
(3)

where {xi,class(xi)} is the monotone data set. To

conserve the monotonicity the choice of the class

value for x0 must be in this interval.

• A monotone extension of ID3 (MID) was pro-

posed by Ben-David 10 using an additional im-

purity measure for splitting, the total ambigu-

ity score. However, the resulting tree may not

be monotone anymore even when starting from

a monotone data set. MID defines the total-
ambiguity-score as the sum of the entropy score

of ID3 and the order-ambiguity-score. This last

score is defined in terms of the non-monotonicity

index of the tree, which computes the number of

pair branches that are non-monotonic regarding

the total possible non-monotonic pairs there may

be.

2.3. NGE Learning

NGE is a learning paradigm based on class exem-

plars, where an induced hypothesis has the graph-

ical shape of a set of hyperrectangles in R
n. Ex-

emplars of classes are either hyperrectangles or sin-

gle instances 20. The input of an NGE system is a

set of training examples, each described as a vector

of pairs numeric attribute/value and an associated

class. Attributes can either be numerical or categor-

ical. Numerical attributes are usually normalized in

the [0,1] interval.

In NGE, an initial set of hyperrectangles in R
n

formed by single points directly taken from the data

is generalized into a smaller set of hyperrectangles

regarding the elements that it contains. Choosing

which hyperrectangle is generalized from a subset of

points or other hyperrectangles and how it is gener-

alized depends on the concrete NGE algorithm em-

ployed.

The matching process is one of the central fea-

tures in NGE learning and it allows some customiza-
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tion, if desired. Generally speaking, this process

computes the distance between a new example and

an exemplar memory object (a generalized exam-

ple). Let the example to be classified be termed as

x0 and the generalized example as G, regardless of

whether G is formed by a single point or if it has

some volume.

The model computes a match score between x0

and G by measuring the Euclidean distance between

two objects. The Euclidean distance is well-known

when G is a single point. Otherwise, the distance

is computed as follows (considering numerical at-

tributes):

Dx0G =

√√√√ m

∑
j=1

(
rdif j

max j −min j

)2

(4)

rdif j =

⎧⎨
⎩

x0, j −max(G j) when x0, j > max(G j),
min(G j)−x0, j when x0, j < min(G j),
0 otherwise

(5)

where m is the number of attributes of the data, x0, j
is the value of the jth attribute of the example x0,

max(G j) and min(G j) are the maximum and mini-

mum values of G for the jth attribute and max j and

min j are the maximum and minimum values for jth
attribute in training data, respectively.

The distance measure represents the length of a

line dropped perpendicularly from the point x0 to the

nearest surface, edge or corner of G. Note that inter-

nal points in a hyperrectangle have a distance of 0

to that rectangle. In the case of overlapping rectan-

gles, several strategies could be implemented, but it

is usually accepted that a point falling in the overlap-

ping area belongs to the smaller rectangle (the size

of a hyperrectangle is defined in terms of volume).

The volume is computed following the indications

given in 23. In nominal attributes, the distance is 0

when two attributes have the same categorical label,

and 1 on the contrary.

3. Evolutionary Selection of Hyperrectangles
for Monotonic Clasification

The approach proposed in this paper, named Evo-

lutionary Hyperrectangle Selection for Monotonic

clasification by CHC (EHSMC-CHC), is fully ex-

plained in this section. First, we approximate the

NGE theory to monotonic classification in Subsec-

tion 3.1 by providing some definitions. Then, we

describe the process for generating the initial set of

hyperrectangles in Subsection 3.2. After this, we in-

troduce the CHC model used as an EA to perform

hyperrectangle selection in Subsection 3.3. Finally,

the specific issues regarding representation and fit-

ness function are specified in Subsection 3.4.

3.1. Definitions

We represent each instance with xi =
(xi,1;xi,2; .......;xi,m; class(xi)), where xi, j is the in-

put value of the instance i in the attribute j, m is

the total number of input attributes and class(xi) is

the class or output value of the instance i. Let the

hyperrectangles be denoted by H : (∏
j
A j;C), where

A j is a condition belonging to the antecedent and C
is the response. A formal definition is given next:

H : A1 × A2 × .....× Am ⇒C,

with A j =

{
[ jmin, jmax] if numerical,

{α ,β ,....} if nominal,

C = a value of the class,

(6)

where jmin and jmax are the minimum and maxi-

mum boundaries for the condition j respectively,

and α,β , . . . are the possible categorical values be-

longing to the domain of the attribute j, if it is nom-

inal.

The hyperrectangles should not break mono-

tonicity in the sense we saw in Subsection 2.1.

Hence, we define a partial order relation in the set

of disjoint hyperrectangles, deciding when a prece-

dent is higher than, lower than or equal to another:
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A j � A′
j if attribute j is numeric and jmax � j′min

or if attribute j is nominal and A j ⊆ A′
j,

A j � A′
j if attribute j is numeric and jmax � j′min

or if attribute j is nominal and A′
j ⊆ A j,

A j = A′
j if attribute j is numeric and

jmin = j′min and jmax = j′max

or if attribute j is nominal and A j ≡ A′
j.
(7)

Then let two hyperrectangles H and H ′ be de-

fined as:

H � H ′ if A j � A′
j ∀ j and ∃l,1 � l � m,Al < A′

l,

H = H ′ if A j = A′
j ∀ j,

H � H ′ if A j � A′
j ∀ j and ∃l,1 � l � m,Al > A′

l.
(8)

Two hyperrectangles are comparable if H � H ′
or H � H ′, and non-comparable in contrary case,

since we cannot establish an order between them.

Hence, an hyperrectangle H : (∏
j
A j,C) will be non-

monotonic with respect to another H ′ : (∏
j
A′

j,C
′) if:

H � H ′ andC >C′ or

H � H ′ andC <C′ or

H = H ′ andC �=C′.

(9)

The distance between an instance xi and an hy-

perrectangle H is defined as follows:

DxiH =

√
∑m

j=1

(
dis j

Range

)2

, (10)

where dis j and Range are defined differently de-

pending on the type of the attribute. If the attribute

is numeric:

Range = max j −min j,

dis j =

⎧⎪⎨
⎪⎩

xi, j − jmax if xi, j > jmax,

jmin −xi, j if xi, j < jmin,

0 otherwise.

(11)

If the attribute is nominal:

dis j =

{
0 xi, j ∈ A j,

1 otherwise,

Range = Num. of possible values of the attribute.
(12)

where xi, j is the value of the j-th attribute of the in-

stance i, jmax and jmin are the maximum and mini-

mum values of the hyperrectangle H in the attribute

j and maxi and mini are the maximum and minimum

values of the attribute j in the data set.

The distance between two hyperrectangles H and

H ′ is defined as:

DHH ′ =

√
∑m

j=1

(
dis j

Range

)2

, (13)

where dis j and Range are defined as:

dis j = | jmax+ jmin

2
− j′max+ j′min

2
|,

Range = max j −min j,
(14)

if the attribute j is numeric and

dis j = 1− #(A j
⋂

A′
j)

#(A j
⋃

A′
j)
, (15)

if the attribute j is nominal.

3.2. Getting the Initial Set of Hyperrectangles

We start from a training set T R with n instances

which consists of pairs (xi,class(xi)), i = 1, ...,n.

Each one of the n instances has m input attributes.

In this first phase will get a hyperrectangle set

HS with N hyperrectangles whose rule represen-

tation consists of pairs (Hi,class(Hi)), i = 1, ...,N,

where Hi defines a set of conditions (A1,A2, ...,Am)
and class(Hi) defines the associated class label of

the hyperrectangle. Each one of the N hyperrectan-

gles has m conditions which can be numerical con-

ditions, expressed in terms of minimum and maxi-

mum values in intervals [0,1]; or they can be cate-

gorical conditions, by using a set of possible values

Ai = {v1i,v2i, ...,vvi}, assuming that it has vi differ-

ent values. Note that we make no distinction be-

tween a hyperrectangle with volume and minimal

hyperrectangles formed by isolated points.
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In this first stage of our method, we have used

a simple heuristic which is fast and yields accept-

able results. The heuristic yields a hyperrectangle

from each example in the training set. For each

one, it finds the k − 1 nearest neighbors being the

k−th neighbor an example of a different class. Then,

each hyperrectangle is expanded considering these

k−1 neighbors by using, in the case of numerical at-

tributes, the minimal and maximal values as the lim-

its of the interval defined, or getting all the different

categorical values, in the case of nominal attributes,

to form a subset of possible values from them.

Once all the hyperrectangles are obtained, the

duplicated ones are removed, keeping one represen-

tative in each case. Hence |HS| � |T R|. Note that

point hyperrectangles are possible to be obtained us-

ing this heuristic when the nearest neighbor of an

instance belongs to a different class.

3.3. CHC Model

As an evolutionary computation method, we have

used the CHC model 32. CHC is a classical evo-

lutionary model that introduces important aspects to

obtain a trade-off between exploration and exploita-

tion; such as incest prevention, restoration of the

search process when it becomes locked and the fight

among parents and offspring into the replacement

process.

During each generation the CHC realizes the fol-

lowing stages:

• NC children born after mating of NC individuals

of the father population.

• Then, among the 2NC individuals formed by par-

ents and children takes place a struggle for sur-

vival in which only remain NC individuals for the

new generation.

CHC also implements a form of heterogeneous

recombination using HUX, a special recombination

operator 32. HUX exchanges half of the bits that

differ between parents, where the bit position to be

exchanged is randomly determined. CHC also em-

ploys a method of incest prevention. Before apply-

ing HUX to the two parents, the Hamming distance

between them is measured. Only those parents who

differ from each other by some number of bits (mat-

ing threshold) are mated. The initial threshold is set

at L/4, where L is the length of the chromosomes.

If no offspring are inserted into the new population

then the threshold is reduced by one.

CHC also performs a form of heterogeneous

HUX recombination using a special operator recom-

bination 32. HUX exchanged half the bits that dif-

fer between parents, where the bit position to ex-

change is determined randomly. CHC also employs

a method of preventing incest. Before applying

HUX to the both parents, the Hamming distance be-

tween them is measured. Only parents who are dis-

tinguished by some number of bits (mating thresh-

old) are coupled. The initial threshold is stable at L

/ 4, where L is the length of the chromosomes. If no

offspring are inserted into the new population then

the threshold it decrements by one.

No mutation is applied during the recombina-

tion phase. Instead, when the population converges

or the search stops making progress (i.e., the dif-

ference threshold has dropped to zero and no new

offspring are being generated which are better than

any member of the parent population) the popula-

tion is reinitialized to introduce new diversity to the

search. The chromosome representing the best solu-

tion found over the course of the search is used as a

template to reseed the population. Reseeding of the

population is accomplished by randomly changing

35% of the bits in the template chromosome to form

each of the other NC − 1 new chromosomes in the

population. The search is then resumed.

3.4. Representation and Fitness Function

Let S ⊆ HS be the subset of selected hyperrectan-

gles that result from the run of a hyperrectangle se-

lection algorithm. Hyperrectangle selection can be

considered as a search problem to which EAs can

be applied. We take into account two important is-

sues: the specification of the representation of the

solutions and the definition of the fitness function.

• Representation: We use a binary representation, a

chromosome consists of N genes (one from each

hyperrectangle in HS) with two possible values: 0

and 1. If the gene is 1, the associated hyperrectan-
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gle is included in the subset represented by S. If

this is 0, this is not included.

• Fitness Function: Let S be a subset of hyperrect-

angles of HS and be coded by a chromosome. We

define a fitness function based on the accuracy

(classification rate) and the Non-Monotonic Index

(NMI) evaluated over T R through the formula.

Fitness(S) = (1−λ ) · (β · (α · clas rat +(1−α)·
perc red)+(1−β ) · cover)+λ ·NMI red.

(16)

clas rat means the percentage of correctly classi-

fied objects from T R using S. perc red is defined

as

perc red = 100 · |HS|− |S|
|HS| . (17)

cover refers the total coverage of examples in T R
in the subset of selected hyperrectangles or, in

other words, the number of examples of T R whose

distance value has been equal to 0 (examples cov-

ered by hyperrectangles in S).

NMI red is defined as

NMI red = 50∗ NMI initial −NMI current
NMI initial

(18)

where NMI initial is the number of monotonic

violations computed by the predictions made for

all the rules derived from the training set and

divided by the total number of pairs of exam-

ples. NMI current is similarly computed to

NMI initial, but instead using the rules selected

by the chromosome. NMI red represents the rel-

ative reduction of NMI achieved by each chromo-

some and it is weighted by a constant factor of

50 due to the fact that this measure represents low

values with respect to classification and reduction

rates.

The objective of the EAs is to maximize the fit-

ness function defined, i.e., maximize the classifica-

tion rate and coverage while minimizing the number

of hyperrectangles selected and the anti-monotonic

index. Although the fitness function defined is fo-

cused on discarding single trivial hyperrectangles

(points), exceptions could be present in special cases

where points are necessary to achieve high rates of

accuracy. Thus, the necessity of using single hyper-

rectangles or not will be determined by the tradeoff

accuracy-coverage and will be conditioned by the

problem tackled.

Regarding the parameters, we preserved the

value of α = 0.5 as the best choice, due to the fact

that it was analyzed in previous works related to in-

stance selection 33,34,35. We have conducted several

experimental evaluations to estimate the best values

of these parameters. For the sake of shortness, we

determined that a suitable value for β should fall

near 0.66 and the value for λ should be close to 0.25.

It is worth mentioning that our objective is to

identify the best values of the parameters that con-

figure the evolutionary approach in a general set up.

It is true that for a specific classification problem,

these values could be tuned in order to optimize the

results achieved, but this may affect to other aspects,

like efficiency or simplicity. General rules can be

given about this topic:

• The number of evaluations and population size are

the main factors for yielding good results in accu-

racy and simplicity. The raise of these values has a

negative effect on efficiency. In larger problems, it

may be necessary to increase both values, but we

will show in the experimental study that values of

10,000 and 50 work appropriately, respectively.

• Parameters α and β allow us to obtain a desired

trade-off between the accuracy and the number of

hyperrectangles created. In the case of obtaining

poor accuracy rates in a specific problem we have

to increase α or decrease β . In contrary case,

when the rules yielded are numerous and we are

interested in producing simpler models, we have

to increase β or decrease α . Besides, a large value

of λ penalizes the maximization of the accuracy

and minimization of the number of hyperrectan-

gles in favor of the loss of anti-monotonic index.

Regarding to the specification of the classifica-

tion conflicts, we employ the same mechanisms as

shown in 20. In short, they are:

• If no hyperrectangle covers the example, the class
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of the nearest hyperrectangle defines the predic-

tion.

• If various hyperrectangles cover the example, the

one with lowest volume is the chosen to predict

the class, allowing exceptions within generaliza-

tions.

Our approach computes the volume of a hyper-

rectangle in the following way:

VH =
m

∏
j

L j, (19)

where L j is computed for each condition as

L j =

⎧⎪⎨
⎪⎩

Hupper −Hlower if numeric and Hupper �= Hlower,

1 if numeric and Hupper = Hlower,
num. values selected

vi if nominal.

(20)

4. Experimental Framework

In this section, we present the experimental frame-

work developed to analyze and compare our pro-

posal EHSMC-CHC with other well-known algo-

rithms presented in this domain. The study will in-

corporate two types of data set. On the one hand,

we will involve real life data sets coming from stan-

dard classification problems whose classes are not

initially ordered. For our purposes, we instigate the

sorting of the class values, assigning each category a

number. The order among classes is made according

to the arrangement that achieves the fewest number

of monotonicity violations reported in each data set.

On the other hand, we will use regression data sets

whose output attribute has a numeric domain which

will be ordered into categorical values. In this sec-

ond subset, the order of classes is natural and we

tackle real ordinal prediction problems.

In the next subsection, the experimental method-

ology will be specified, including data sets, perfor-

mance measures, parameters of the algorithms and

statistical validation.

4.1. Experimental methodology

The elements included in the framework are the fol-

lowing:

• Data sets: The study includes a total of 30 data

sets, as a result of the joint selection of standard

classification data sets (CLAS) whose class at-

tribute is transformed into an ordinal attribute, as-

signing each category a number in such a way that

the number of pairs of non-monotonic examples

is minimized, and regression data sets (REGR)

whose class attribute is discretized into 4 or 10

categorical values, keeping the class distribution

balanced. Also, four classical ordinal classifica-

tion data sets (ORD) are included in this study

(era, esl, lev and swd) 1. Their main character-

istics are described in Table 1. They are classical

data sets used in the classification scope and ex-

tracted from the UCI and KEEL repositories 37,38.

The run of the algorithms has been done following

a 10-fold cross validation procedure (10-fcv).

Table 1 shows the name of the data sets and their

number of instances, variables and classes. In case

of containing missing values, the total number of

instances of the original data set appears in paren-

thesis. In this paper, these instances have been

ignored.

• Evaluation metrics:

• Accuracy (Acc), defined as the number of suc-

cessful hits relative to the total number of classi-

fications. It has been by far the most commonly

used metric for assessing the performance of

classifiers for years 39.

• Mean Absolute Error (MAE), calculated as the

sum of the absolute values of the errors and then

dividing it by the number of classifications. The

errors between the real label and the predicted

label are estimated by the difference between

the ordinal class values. Various studies con-

clude that MAE is one of the best performance

metrics in ordered classification 40.

• Monotonic Accuracy (MAcc), computed as

standard Acc, but only considering those ex-

amples that completely fulfill the monotonic-

ity constraints. In other words, non-monotonic
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Figure 1: Process of transformation the 10-fcv to the new one by removing the non-monotonic instances from

the test data sets.

comparable examples do not take part in the cal-

culation of MAcc. The sense behind this is to

simulate that future examples to be classified

will check the monotonicity assumption. This

metric serves as a manner of monotonicity level

measurement of the predictions carried out. To

address this, the process followed is presented

in Figure 1 where the partitions used in 10-fcv

are modified conserving the training data sets

but removing the non-monotonic instances in

the test data sets. We must point out that in

the new validation data sets the test instances

belong to the original data set, they are real in-

stances, not artificial. In the same way for this

new data sets obtained, we must highlight that

the test data sets have been generated using dif-

ferent strategies than the noise removal filter or

relabeling, searching to fair comparisons. The

process presented in Figure 1 does not present

any kind of randomness due to it is based in a

deterministic greedy algorithm (see Algorithm

1).

• Monotonic Mean Absolute Error (MMAE),

used to pursue the same goal of MAcc, but us-

ing MAE instead of Acc. Obviously, the data

sets used in this case are the same than in the

MAcc analysis.

• Non-Monotonicity Index (NMI) 41, defined as

the number of clash-pairs divided by the total

number of pairs of examples in the predictions

made by an algorithm:

NMI =
1

n(n−1) ∑
x∈D

NClash(x), (21)

where x is an example from the data set D.

NClash(x) is the number of examples from D
that do not meet the monotonicity restrictions

(or clash) with x and n is the number of in-

stances in D.

• Number of Rules (NRules), number of

rules/hyperrectangles that compose the models

produced by the algorithms.

• Parameters configuration: See Table 2.

• Statistical procedures: Several hypothesis testing

procedures are considered to determine the most

relevant differences found among the methods 30.

The use of non-parametric tests will be preferred

to parametric ones, since the initial conditions that

guarantee the reliability of the latter may not be

satisfied. This could cause the statistical analysis

to lose credibility. Friedman ranks test 31 is used

to contrast the behavior of each algorithm. It high-

lights the significant differences between methods

if they appear.
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Table 1: Description of the 30 data sets used in the study.

Data set Ins. At. Cl. Type Data set Ins. At. Cl. Type
appendicitis 106 7 2 CLAS hepatitis 80 (155) 19 2 CLAS

bands 365 (539) 19 2 CLAS ionosphere 351 33 2 CLAS

baseball10cl 337 16 10 REG iris 150 4 3 CLAS

baseball4cl 337 16 4 REG machinecpu10cl 209 6 10 REG

breast 277 (286) 9 2 CLAS machinecpu4cl 209 6 4 REG

cleveland 297 (303) 13 5 CLAS movement libras 360 90 15 CLAS

dee10cl 365 6 10 REG newthyroid 215 5 3 CLAS

dee4cl 365 6 4 REG pima 768 5 2 CLAS

dermatology 358 (366) 34 6 CLAS sonar 208 60 2 CLAS

ecoli 336 7 8 CLAS spectfheart 267 4 2 CLAS

era 1000 4 9 ORD swd 1000 10 4 ORD

esl 488 4 9 ORD vowel 990 13 11 CLAS

german 1000 20 2 CLAS wdbc 569 30 2 CLAS

glass 214 9 7 CLAS wine 178 13 2 CLAS

haberman 306 3 2 CLAS wisconsin 683 (699) 9 2 CLAS

Table 2: Parameters considered for the algorithms compared.

Algorithm Parameters

Mk-NN k = {1, 3}, distance = euclidean

OLM modeResolution = conservative

modeClassification = conservative

OSDL classificationType = media, balanced = No

weighted = No, tuneInterpolationParameter = No,

lowerBound = 0, upperBound = 1

interpolationParameter = 0.5, interpolationStepSize = 10

MID confidence = 0.25, 2 items per leaf, R = 1

EHSMC-CHC Popul. Size = 50, Num. Evaluations = 10000

α = 0.5, β = 0.66, λ = 0.25
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Table 3: Results for Acc and MAE

Acc MAE
EHSMC-CHC MID OLM OSDL M1-NN M3-NN EHSMC-CHC MID OLM OSDL M1-NN M3-NN

appendicitis 0.8673 0.8236 0.8018 0.7736 0.1855 0.1591 0.1327 0.1764 0.1982 0.2264 0.8145 0.8409

bands 0.6658 0.6194 0.3702 0.6219 0.6859 0.6250 0.3342 0.3806 0.6298 0.3781 0.3141 0.3750

baseball10cl 0.2796 0.2493 0.1988 0.2643 0.2494 0.2314 1.3814 1.4658 2.0048 1.5855 1.7870 1.8635

baseball4cl 0.6647 0.5850 0.5289 0.4983 0.4748 0.4961 0.3678 0.4802 0.5869 0.6028 0.6822 0.6611

breast 0.7146 0.6749 0.6817 0.5447 0.6272 0.6310 0.2854 0.3251 0.3183 0.4553 0.3728 0.3690

cleveland 0.5389 0.5517 0.5657 0.5655 0.5254 0.5253 0.9424 0.6931 0.8477 0.6471 0.7436 0.7774

dee10cl 0.2875 0.2633 0.1781 0.0985 0.2384 0.2766 1.3971 1.2493 2.6059 4.5396 1.8289 1.7619

dee4cl 0.6493 0.6053 0.4682 0.2522 0.5454 0.5809 0.4085 0.4221 0.7838 1.4927 0.5887 0.5259

dermatology 0.9354 0.9239 0.3800 0.1259 0.7898 0.8094 0.1435 0.1691 1.5331 1.7599 0.4625 0.4259

ecoli 0.8126 0.8007 0.5715 0.0324 0.5923 0.5893 0.7016 0.7738 1.5379 2.3482 1.4875 1.5829

era 0.1620 0.2740 0.1690 0.2320 0.1430 0.1410 2.1480 1.3630 2.1500 1.2850 2.3360 2.3400

esl 0.5353 0.6784 0.5963 0.6785 0.3956 0.3915 0.7750 0.3525 0.4324 0.3521 0.7418 0.7459

german 0.6970 0.6920 0.7110 0.3740 0.6370 0.6330 0.3030 0.3080 0.2890 0.6260 0.3630 0.3670

glass 0.6975 0.6200 0.3244 0.3379 0.7172 0.6783 0.5602 0.7595 1.7816 1.7729 0.5408 0.6460

haberman 0.7514 0.7120 0.3496 0.7158 0.4803 0.4771 0.2486 0.2880 0.6504 0.2842 0.5197 0.5229

hepatitis 0.8343 0.7735 0.2497 0.8118 0.8222 0.8030 0.1657 0.2265 0.7503 0.1882 0.1778 0.1970

ionosphere 0.9174 0.9002 0.6269 0.7407 0.7071 0.6702 0.0826 0.0998 0.3731 0.2593 0.2929 0.3298

iris 0.9467 0.9533 0.9333 0.3667 0.9533 0.9533 0.0533 0.0467 0.0667 0.9067 0.0467 0.0467
machinecpu10cl 0.2864 0.3298 0.3205 0.3493 0.3105 0.2962 1.6021 1.2550 1.4960 1.2631 1.4176 1.4938

machinecpu4cl 0.6457 0.6267 0.6219 0.5736 0.6267 0.6505 0.4352 0.3924 0.4452 0.4843 0.4117 0.3929

movement libras 0.7222 0.6667 0.3000 0.0611 0.6139 0.5778 1.2444 1.5667 4.8306 7.0333 1.7528 2.0944

newthyroid 0.9491 0.9264 0.5636 0.1439 0.7957 0.7723 0.0833 0.1104 0.7662 0.8654 0.3165 0.3578

pima 0.6787 0.7265 0.7110 0.6563 0.7358 0.7320 0.3213 0.2735 0.2890 0.3437 0.2642 0.2680

sonar 0.7312 0.7460 0.4662 0.5419 0.8555 0.8307 0.2688 0.2540 0.5338 0.4581 0.1445 0.1693

spectfheart 0.7942 0.7608 0.1983 0.7830 0.7236 0.7050 0.2058 0.2392 0.8017 0.2170 0.2764 0.2950

swd 0.3930 0.5660 0.4040 0.5820 0.3360 0.3360 0.6630 0.4670 0.7510 0.4350 0.8810 0.8810

vowel 0.7838 0.7990 0.0909 0.0859 0.9949 0.9788 0.4313 0.5586 5.0000 4.8273 0.0101 0.0444

wdbc 0.9364 0.9350 0.3392 0.3568 0.3465 0.3341 0.0636 0.0650 0.6608 0.6432 0.6535 0.6659

wine 0.9431 0.9160 0.3042 0.3261 0.7542 0.8147 0.0569 0.0840 0.9536 0.9487 0.3180 0.2408

wisconsin 0.8230 0.9460 0.8872 0.9593 0.9622 0.9622 0.1770 0.0540 0.1128 0.0407 0.0378 0.0378
Average 0.6881 0.6882 0.4637 0.4485 0.5942 0.5887 0.5328 0.4966 1.1393 1.2423 0.6861 0.7107
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Table 4: Results for MAcc and MMAE

MAcc MMAE
EHSMC-CHC MID OLM OSDL M1-NN M3-NN EHSMC-CHC MID OLM OSDL M1-NN M-3NN

appendicitis 0.9431 0.9111 0.8018 0.7736 0.1500 0.1167 0.0569 0.0889 0.1982 0.2264 0.2111 0.8500

bands 0.6663 0.6175 0.3724 0.6253 0.6896 0.6281 0.3337 0.3825 0.6276 0.3747 0.3635 0.3104

baseball10cl 0.2920 0.2700 0.5783 0.5350 0.2841 0.2647 1.3342 1.3383 0.5048 0.5411 1.8795 1.5814

baseball4cl 0.7119 0.6155 0.2237 0.3072 0.5209 0.5464 0.3123 0.4414 1.9201 1.3864 0.5367 0.6134

breast 0.7902 0.7534 0.7769 0.5710 0.6958 0.6996 0.2098 0.2466 0.2231 0.4290 0.2309 0.3042

cleveland 0.5682 0.5517 0.5575 0.5673 0.5536 0.5533 0.8920 0.6931 0.8448 0.6583 0.6963 0.6811

dee10cl 0.3204 0.2960 0.5069 0.2439 0.2776 0.3237 1.3093 1.1540 0.7144 1.5358 1.3429 1.4843

dee4cl 0.6807 0.6350 0.2085 0.0991 0.5898 0.6270 0.3728 0.3829 2.5892 4.7203 0.3818 0.5036

dermatology 0.9370 0.9313 0.4037 0.1334 0.8357 0.8489 0.1360 0.1583 1.5298 1.7417 0.3153 0.3405

ecoli 0.8521 0.8366 0.5653 0.0235 0.6696 0.6566 0.4925 0.6243 1.5889 2.3213 1.0180 1.0977

era 0.1626 0.7239 0.2837 0.5134 0.1811 0.1836 1.9900 0.4726 1.7797 0.5651 2.5840 2.0704

esl 0.7429 0.8340 0.6758 0.8119 0.4476 0.4399 0.2752 0.1861 0.3318 0.2035 1.6437 0.6796

german 0.7035 0.6973 0.7260 0.3815 0.6496 0.6465 0.2965 0.3027 0.2740 0.6185 0.3556 0.3504

glass 0.6983 0.6200 0.3227 0.3411 0.7221 0.6832 0.5580 0.7595 1.7892 1.7667 0.6372 0.5307
haberman 0.9460 0.8009 0.2777 0.7157 0.5857 0.5814 0.0540 0.1991 0.7223 0.2843 0.8754 0.4143

hepatitis 0.8343 0.7735 0.2497 0.8118 0.8222 0.8030 0.1657 0.2265 0.7503 0.1882 0.2000 0.1778

ionosphere 0.9290 0.9111 0.6576 0.7703 0.7416 0.7027 0.0710 0.0889 0.3424 0.2297 0.2212 0.2584

iris 0.9595 0.9590 0.9267 0.3667 0.9662 0.9662 0.0405 0.0410 0.0733 0.9133 0.0271 0.0338

machinecpu10cl 0.3302 0.3907 0.6707 0.6252 0.3831 0.3619 1.4441 1.0995 0.3969 0.4158 1.2460 1.2553

machinecpu4cl 0.6660 0.6640 0.3719 0.4290 0.6815 0.7026 0.4119 0.3570 1.3555 1.0573 0.3382 0.3496

movement libras 0.7226 0.6715 0.3145 0.0643 0.6434 0.6049 1.2474 1.5329 4.7228 6.9883 1.5169 1.4765

newthyroid 0.9561 0.9366 0.5721 0.1504 0.8310 0.8065 0.0687 0.0924 0.7486 0.8591 0.3393 0.2562

pima 0.6787 0.7587 0.7005 0.6563 0.7894 0.7863 0.3213 0.2413 0.2995 0.3437 0.2062 0.2106

sonar 0.7457 0.7460 0.4662 0.5419 0.8555 0.8307 0.2543 0.2540 0.5338 0.4581 0.1445 0.1693

spectfheart 0.7917 0.7575 0.2008 0.7917 0.7315 0.7110 0.2083 0.2425 0.7992 0.2083 0.2880 0.2685

swd 0.4101 0.8485 0.4682 0.8878 0.3876 0.3876 0.6151 0.1561 0.6393 0.1122 1.0399 0.7730

vowel 0.7838 0.7990 0.0909 0.0859 0.9949 0.9788 0.4313 0.5586 5.0000 4.8273 0.0444 0.0101
wdbc 0.9364 0.9315 0.3073 0.2970 0.4626 0.4495 0.0636 0.0685 0.6927 0.7030 0.6184 0.5374

wine 0.9462 0.9229 0.3258 0.3258 0.7947 0.8595 0.0538 0.0771 0.9324 0.9490 0.2169 0.2581

wisconsin 0.8230 0.9529 0.8641 0.9571 0.9708 0.9708 0.1770 0.0471 0.1359 0.0429 0.0280 0.0292

Average 0.7176 0.7373 0.4823 0.4801 0.6303 0.6240 0.4732 0.4171 1.1020 1.1890 0.6516 0.5959
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Table 5: Results for NMI and MRules

NMI(%) NRules
EHSMC-CHC MID OLM OSDL M1-NN M3-NN EHSMC-CHC MID OLM

appendicitis 5.44 0.00 0.22 0.00 14.34 15.37 9.8 8.7 23.3

bands 0.00 0.00 0.00 0.01 0.01 0.01 49 60 102.9

baseball10cl 1.13 10.68 12.58 12.45 14.09 13.98 33.7 93.2 215.7

baseball4cl 0.00 11.14 13.48 13.36 12.13 12.26 40.2 61.2 123.4

breast 0.16 0.64 3.48 2.35 3.78 3.78 25.5 142.9 18.4
cleveland 0.00 0.40 0.89 0.98 1.01 0.89 13.3 60.1 35.7

dee10cl 0.84 2.82 0.02 4.40 4.99 4.95 27.5 92.5 94.5

dee4cl 0.56 2.41 0.02 4.86 4.26 4.13 35.7 55.1 27.5
dermatology 0.02 0.00 0.05 0.19 0.16 0.16 13.3 13.2 36.9

ecoli 0.17 11.31 0.02 12.72 13.40 13.17 33.4 37.7 75.8

era 8.79 17.03 13.49 12.59 12.25 12.27 9.4 26.9 38.2

esl 0.44 61.70 61.92 61.56 63.28 63.30 24.4 55.4 39.6

german 0.00 0.02 0.06 0.05 0.05 0.06 38.6 288.8 288.8

glass 0.00 0.00 0.00 0.00 0.00 0.00 28.6 33.4 191

haberman 3.46 0.29 0.56 3.80 19.72 19.74 25.4 8.9 25.2

hepatitis 0.00 0.00 0.10 0.10 0.40 0.00 5.3 9.8 17.3

ionosphere 0.09 0.00 0.29 0.23 0.45 0.40 24.1 24.5 116.8

iris 0.00 23.00 3.89 20.97 23.05 23.05 6.1 4.4 5.5

machinecpu10cl 0.87 5.18 4.88 4.92 6.78 6.93 17.9 53.3 58.9

machinecpu4cl 0.20 3.95 6.24 6.19 5.05 4.89 21.3 35.6 20.4
movement libras 0.06 0.15 0.02 0.57 0.51 0.51 44.1 55.2 51.2

newthyroid 0.20 0.05 0.09 3.32 1.76 2.16 8 11.5 33.3

pima 0.01 3.47 0.12 3.67 5.50 5.52 37.9 52.7 39.3

sonar 0.00 0.00 0.00 0.00 0.00 0.00 28.8 22.3 187.2

spectfheart 0.00 0.00 0.00 0.00 0.03 0.03 22.7 27.6 239.5

swd 1.50 10.73 10.11 9.04 9.29 9.29 4.1 57.8 41.6

vowel 0.00 0.00 0.00 0.00 0.00 0.00 142.6 104.1 891

wdbc 0.01 0.00 0.00 1.37 3.35 3.34 17 16.7 64.3

wine 0.00 0.00 0.01 0.01 0.33 0.26 9.4 7.9 17.9

wisconsin 0.00 36.83 37.66 32.46 37.55 37.85 6.2 22.8 9.7

Average 0.80 6.73 5.67 7.07 8.58 8.61 26.78 51.47 104.36
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Algorithm 1 Greedy Non-Monotonic Instances Removal Algorithm for test partitions.

function GREEDYREMOVE(T - dataset)

while NumberOfTotalCollisions(T )>0 do
maxColis=0, instancSelec=0;

for each instance i in T do
Colis=NumberOfCollisionsProduced(i,T );

if Colis>maxColis then
maxColis=Colis, instancSelec=i;

end if
end for
T = T - instancSelec;

end while
return T

end function

5. Results and Analysis

This section shows the results obtained in the exper-

imental study as well as the analysis based on them.

Tables 3 and 4 report the results measured by accu-

racy, MAE and their monotonic versions explained

before (MAcc and MMAE) in test data. Further-

more, Table 5 shows the NMI measured in the pre-

diction for each algorithm and the number of rules

reported for those algorithms which produce rules:

MID and OLM. The best case in each data set is

stressed in bold. The last row in each table shows

the average measured by considering all data sets.

At a glance, observing Tables from 3 to 5, we can

make the following analyses:

• The EHSMC-CHC proposal yields the second

best average result in accuracy over test data, the

first best average results is offered by MID. It

is slightly more accurate than Mk-NN and much

more accurate than OLM and OSDL.

• The MID proposal gets the best average result in

MAE over test data. EHSMC-CHC obtains a very

close result to MID, but it is clearly better than

OLM and OSDL.

• By considering the monotonic measures, MAcc

and MMAE, EHSMC-CHC is again slightly out-

performed by MID, obtaining the second best re-

sults. Also, both are clearly superior to the rest of

algorithms.

• The EHSMC-CHC proposal obtains the best aver-

age result in NMI over test data. The differences

in NMI are very clear, thus our approach obtains

very good monotonic predictions.

• Finally, the number of rules required by EHSMC-

CHC is the lowest regarding the three algorithms

compared. Hence, the models produces are sim-

pler than the ones produced by MID and OLM.

In summary, our proposal EHSMC-CHC

achieves competitive results in terms of accuracy

and MAE by considering both classical and mono-

tonic measures. It requires few rules and yields

more monotonic models. Clearly, EHSMC-CHC

is as good as MID in precision performance, but it

requires a much lower number of generalized in-

stances for building the model. With respect to the

monotonicity in predictions, the NMI associated

with EHSMC-CHC is also better than the reported

by MID. Hence, EHSMC-CHC requires less rules

and makes predictions with a higher monotonic in-

dex with similar behavior to MID.

Table 6 collects the results of applying the

Wilcoxon test to EHSMC-CHC and the rest of the

methods studied in this paper. In each one of the

cells, three symbols can appear: +, = or –. They rep-

resent either that EHSMC-CHC outperforms (+), is

similar to (=) or is worse (–) in performance than the

rest of the methods. The value in brackets is the p-

value obtained in the comparison. Other statistical
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Table 6: Wilcoxon p-values reported comparing with EHSMC-CHC

Algorithm Acc MAE MAcc MMAE NMI NRules
MID =(0.2580) =(0.7577) =(0.1642) =(0.6071) +(0.0034) +(0.0009)

OLM +(0.0001) +(0.0002) +(0.0001) +(0.0020) +(0.0258) +(0.0000)

OSDL +(0.0005) +(0.0040) +(0.0017) +(0.0086) +(0.0000) —

M1-NN +(0.0052) +(0.0080) +(0.0248) +(0.0081) +(0.0000) —

M3-NN +(0.0015) +(0.0035) +(0.0081) +(0.0137) +(0.0000) —

Table 7: Rankings reported by the test of Friedman

Algorithm Acc MAE MAcc MMAE NMI NRules
EHSMC-CHC 2.3 2.4333 2.3833 2.45 1.8833 1.4333
MID 2.6667 2.5 2.9333 2.8667 2.6 2.05

OLM 4.5 4.7667 4.35 4.4333 3.2333 2.5167

OSDL 4.1333 4.1 4.3333 4.35 3.7833 —

M1-NN 3.4333 3.2833 3.3 3.4667 4.8167 —

M3-NN 3.9667 3.9167 3.7 3.4333 4.6833 —

studies can be performed by using non-parametric

multiple comparison tests. These types of proce-

dures study the set of results obtained by all the algo-

rithms to compute a ranking that takes into account

the multiple comparison. The smaller the ranking,

the better the algorithm is. Rankings of the Fried-

man test are depicted in Table 7.

The results of the statistical tests allow us to

highlight the following observations:

• EHSMC-CHC and MID are the best approaches

compared with the other techniques regarding ac-

curacy and MAE. No statistical differences are

registered between both, thus they behave equally

in performance.

• Our algorithm significantly outperforms OLM,

OSDL, M1-NN and M3-NN in Acc, MAE, MAcc

and MMAE.

• Considering NMI and NRules, our approach is the

best according to the statistical report.

6. Conclusions

The purpose of this paper was to present a proposal

of hyperrectangle selection for monotonic classifi-

cation through evolutionary algorithms. The novel

algorithm named EHSMC-CHC constitutes a novel

approach for nested generalized exemplar learning

in classification with monotonicity constrains. It

builds a beginning set of hyperrectangles by using

a heuristic on training data and then it carries out a

selection process focused on maximizing the perfor-

mance of several objectives: accuracy, coverage of

examples and reduction of the monotonicity viola-

tions registered in the model learned with the lowest

possible number of hyperrectangles.

The results showed that EHSMC-CHC will allow

us to produce very accurate models with a low num-

ber of hyperrectangles with very few monotonicity

ruptures. We have compared it with the most im-

portant monotonic learning approaches, including

both rule and instance based learners, and the per-

formance of the models obtained by EHSMC-CHC
in several data sets overcomes the offered by them.

Acknowledgments

This work is supported by the National Research

Project TIN2014-57251-P.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

199



J. Garcı́a et al. / Hyperrectangles Selection for Monotonic Classification

References

1. A. Ben-David, L. Serling and Y. Pao, “Learning and
classification of monotonic ordinal concepts,” Com-
putational Intelligence, 5, 45–49 (1989).

2. W. Kotłowski and R. Słowiński, “On nonparametric
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“Learning rule ensembles for ordinal classification
with monotonicity constraints,” Fundamenta Infor-
maticae, 94:2, 163-178 (2009).

13. Q. Hu, X. Che, Z. Lei, D. Zhang, M. Guo and D.
Yu, “Rank entropy-based decision trees for mono-
tonic classification,” IEEE Transactions on Knowl-
edge Data Engineering, 24:11, 2052-2064 (2012).

14. H. Daniels and M. Velikova, “Monotone and partially
monotone neural networks,” IEEE Transactions on
Neural Networks, 21:6, 906-917 (2010).

15. A. Ben-David, “Automatic generation of sym-
bolic multiattribute ordinal knowledge-based DSSs:
methodology and applications,” Decision Sciences,

23, 1357-1372 (1992).
16. S. Lievens, B. De Baets and K. Cao-Van, “A proba-

bilistic framework for the design of instance-based su-
pervised ranking algorithms in an ordinal setting,” An-
nals of Operational Research, 163:1, 115-142 (2008).

17. W. Duivesteijn and A. Feelders, “Nearest neigh-
bour classification with monotonicity constraints,” In
ECML/PKDD , 1, 301-316 (2008).

18. D. W. Aha, D. Kibler and M. K. Albert, “Instance-
based learning algorithms,” Machine Learning, 6:1,
37-66 (1991).

19. P. Flach, “Machine Learning: The Art and Science
of Algorithms that Make Sense of Data,” Cambridge
University Press, 2012.

20. S. Salzberg, “A nearest hyperrectangle method,” Ma-
chine Learning, 6:1, 151-276 (1991).

21. T. M. Cover and P. E. Hart, “Nearest neighbor pat-
tern classification,” IEEE Transactions on Information
Theory, 13:1, 21-27 (1967).

22. J. Fürnkranz, D. Gamberger and N. Lavrač, “Founda-
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