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Abstract

In this paper, we propose new methods to represent interdependence among alternative attributes and ex-
perts’ opinions by constructing Choquet integral using interval-valued intuitionistic fuzzy numbers. In
the sequel, we apply these methods to solve the multiple attribute group decision-making (MAGDM)
problems under interval-valued intuitionistic fuzzy environment. First, the concept of interval-valued in-
tuitionistic fuzzy Choquet integral is defined, and some elementary properties are studied in detail. Next,
an axiomatic system of interval-valued intuitionistic fuzzy measure is established by delivering a series
of mathematical proofs. Then, with fuzzy entropy and Shapely-values in game theory, we propose the
interval-valued intuitionistic fuzzy measure development methods in order to form the importance mea-
sure of attributes and correlation measure of the experts, respectively. Based on the results of theoretical
analysis, a new method is proposed to handle the interval-valued intuitionistic fuzzy group decision mak-
ing problems. A numerical example illustrates the procedure of the proposed methods and verifies the
validity and effectiveness of our new proposed methods.

Keywords: Interval-valued intuitionistic fuzzy Choquet integral, interval-valued intuitionistic fuzzy sets,
interval-valued intuitionistic fuzzy measure , multiple attribute group decision making.

1. Introduction

With the increasing complexity and uncertainty of

the social-economic environment and various limi-

tations, such as time pressure, lack of knowledge of

problem domain, difficulties in information extrac-

tion etc., there are numerous uncertain phenomena

existing in our daily life. Therefore, in order to bet-

ter understand the vagueness and uncertainty of the

real world and being able to explain it, Zadeh 1 pro-

posed fuzzy set theory in 1960s. Since its incep-

tion, the fuzzy set theory has shown convenience as

a powerful tool for modeling vagueness and uncer-

tainty in a variety domains, such as economics 2,3,4,

management 5,6,7,8, artificial intelligence 16, pro-

cessing control 10,11, pattern recognition 12, deci-

sion making 13,14,15,16 etc. In 1980s, Atanassov 17,18

generalized fuzzy set theory by bringing an idea

of intuitionistic fuzzy set (IFS). IFS is character-

ized by three important notations: membership de-
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gree, non-membership degree and hesitancy degree.

On the basis of these three indexes, IFS can cope

with the vagueness and uncertainty characteristics

of complex systems. Now, IFS has become an im-

portant area of research, and attracted more atten-

tion in various fields. For example, Xu 19,20 has

completed some research in the field of IFS, espe-

cially in aggregation operators, developed a series

of intuitionistic fuzzy information aggregation op-

erators for aggregating intuitionistic fuzzy informa-

tion and applied these operators to multiple attribute

decision making (MADM) problems. Wang and

Liu 22 proposed the intuitionistic fuzzy aggregation

operators realized through Einstein operations and

analyzed the relations between these operators and

some existing intuitionistic fuzzy aggregation oper-

ators. Li 23 developed the concept of IFS, and fur-

ther extended mathematical programming method-

ology of matrix games with payoffs represented by

IFS. Furthermore, some desirable properties were

discussed in detail. Farhadinia and Ban 24 developed

some new similarity measures to deal with general-

ized intuitionistic fuzzy numbers.

However, in many practical situations, there are

limitations given various factors, such as a lack of

information, uncertainty of the decision making en-

vironment, difficulties in information extraction etc.

Therefore, it is not easy for decision maker to de-

termine exact values of membership degree, non-

membership degree and hesitancy degree. To over-

come these limitations, Atanassov and Gargov 18

proposed the concept of the interval-valued intu-

itionistic fuzzy set (IVIFS), in which the attributes

are taken the form with interval-valued intuition-

istic fuzzy number (IVIFN). Many studies were

completed in recent years and various approaches

to solve MADM problems under interval-valued

intuitionistic fuzzy environment have been devel-

oped 24,25,26,27,28,29,30,31,32,33,34. For example, Farha-

dinia 31 generalized recent results for the entropy of

interval-valued fuzzy set (IVFS) based on the intu-

itionistic distance measure and its relationship with

the similarity measure, and then applied them to

interval-valued intuitionistic fuzzy decision making

problem. Liu 32 developed some geometric aggre-

gation operators based on interval-valued intuition-

istic uncertain linguistic variables and some desir-

able properties were discussed as well. Wang and

Li 34 proposed a framework to handle multi-attribute

group decision making (MAGDM) problems with

incomplete pair-wise comparison preference over

decision alternatives. Wu and Chiclana 33 defined

interval-valued intuitionistic fuzzy COWA opera-

tor and a new score function, then proposed some

non-dominance and attitudinal prioritization deci-

sion making methods for intuitionistic fuzzy pref-

erence relations.

As the most important branch of fuzzy mathe-

matics, fuzzy integrals were originally investigated

by Choquet 36 in 1950s, as a powerful tool for mod-

eling interaction phenomena among various factors.

The main difference between the fuzzy integral and

the classic integral is that fuzzy integral focuses on

non-additive cases while the classical integral only

consider additive cases. On the basis of classic sets

theory and measure theory, it can be easily proved

the fact that the Choquet integral is a special case

of classical integral when Choquet integral satisfies

the condition of additivity, In this case Choquet in-

tegral reduces to the Lebesgue integral. Therefore,

the Choquet integral is more general. Compared

with the Sugeno integral 37, which is also known

as a fuzzy integral for aggregating discrete sets,

Choquet integral exhibits interesting mathematical

properties, such as boundary conditions, monotonic-
ity, continuity from below, continuity from above.

Therefore, Choquet integral is more suitable to cope

with fuzzy uncertainty problems in practical appli-

cations. Recently, Choquet integral has been widely

used in decision making 35,38,45,46,48, especially in

intuitionistic fuzzy MADM problems. Xu 40 in-

vestigated Choquet integral to propose some intu-

itionistic fuzzy aggregation operators, and then ap-

plied them to solve intuitionistic fuzzy multiple at-

tribute decision making problems. Tan and Chen
42,43 developed an weight solution method based on

Choquet integral and further proposed a new Cho-

quet integral-TOPSIS approach to handle MADM

problems. Meng and Tang 44 developed a interval-

valued intuitionistic fuzzy multi-attribute group de-

cision making approach based on cross entropy mea-

sure and Choquet integral. Compared with other
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existing methods, this algorithm can not only deal

with the relevance among the indexes, but also can

cope with dynamic fuzzy systems. Meng et al. 45

defined some new hybrid Choquet integral aggre-

gation operators, and proposed a method to solve

multiple criteria group decision making (MCGDM)

based on intuitionistic fuzzy Choquet integral with

respect to the generalized λ -Shapely index. Wu et

al. 47 presented a detailed discussion on the inte-

gration properties of the interval intuitionistic fuzzy

conjugate Choquet integral, and applied these theo-

retical analysis results to software development risks

decision making. In addition, some authors have

also applied Choquet integral to other fields, such

as hesitant fuzzy set 49, game theory 50, neural net-

works 51,52, statistical learning 53, and combinatorial

optimization 54,55,56.

According to the previous overview, intuitionis-

tic fuzzy Choquet integral and its property has been

widely used in decision making problems. However,

there has been a limited research on Choquet inte-

gral under interval-valued intuitionistic fuzzy deci-

sion making environment in the literatures. When

Choquet integral is used to handle MADM prob-

lems under interval-valued intuitionistic fuzzy envi-

ronment, the most challenging difficulty is how to

determine fuzzy measure with an effective and ac-

curate method. For an MADM problem which con-

tains n attributes, we should determine 2n − 2 ele-

ments of fuzzy measures in decision making pro-

cess. When the problem dimensionality increases,

the computational complexity increases rapidly. So

far, in the current literature 42,43,44,45,57,58,59, the

fuzzy measures are usually provided by decision

makers (DMs) in advance, which maybe difficult to

the DMs and is closely related the subjective pref-

erences of the DMs, or can even lead to inconsis-

tent results. If the fuzzy measures can be deter-

mined from the problem formulation or the decision

maker’s known information directly, the decision

making model solution can be more reliable and ob-

jective than the current ones. Therefore, how to de-

termine the fuzzy measure based on the expert deci-

sion making information becomes a very important

issue both in theory and practice. The motivation of

this study is to develop a new method of constructing

fuzzy measures based on interval-valued intuitionis-

tic information and apply them to the group decision

making problems.

The remainder of this paper is organized as fol-

lows. In Section 2, we briefly introduce some ba-

sic concepts and related operational laws of interval-

valued intuitionistic fuzzy set (IVIFS) and the Cho-

quet integral. In Section 3, we give the definition

of interval-valued intuitionistic fuzzy measure with

Choquet integral and propose some useful theoreti-

cal background. In Section 4, we develop new meth-

ods to determine fuzzy measure in real-world de-

cision marking situations, by establishing interval-

valued intuitionistic fuzzy measure to determine the

measure of expert weights and attribute weights, and

strict mathematical proof process is given. In Sec-

tion 5, a new approach based on interval-valued in-

tuitionistic fuzzy Choquet integral is proposed to

solve MAGDM problems. In Section 6, an illustra-

tive example is provided to illustrate the proposed

method. Finally, we come up with some conclusions

and point out the future research in Section 7.

2. Preliminaries

In this section, we briefly review some basic con-

cepts of interval-valued intuitionistic fuzzy set (IV-

IFS) and fuzzy measure, which are extended to

interval-valued intuitionistic fuzzy measure in next

Section 3.

2.1. Interval-valued intuitionistic fuzzy set

Definition 1 18 Let X be a universe of discourse.
Then

A =
{〈

x,
(
[μL

A(x),μ
R
A (x)], [ν

L
A(x),ν

R
A (x)]

) |x ∈ X
〉}
(1)

is an IVIFS, where μA(x) = [μL
A(x),μR

A (x)],νA(x) =
[νL

A(x),νR
A (x)] is called as interval membership de-

gree and non-membership degree of x. The follow-
ing two conditions are satisfied:

(1) For all x ∈ X , [μL
A(x),μR

A (x)] ⊆ [0,1], and
[νL

A(x),νR
A (x)]⊆ [0,1];

(2) ∀x ∈ X ,0 � μR
A (x)+νR

A (x)� 1.
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In particular, if μL
A(x) = μR

A (x),νL
A(x) = νR

A (x), for
each x ∈ X, then the IVIFS is reduced to IFS.

For convenience, Xu 20 called α =
([aL,aR], [bL,bR]) an interval-valued intuition-

istic fuzzy number (IVIFN), where [aL,aR] ⊆
[0,1], [bL,bR] ⊆ [0,1],aR + bb � 1, and let Θ be the

set of all IVIFNs. Obviously, α+ = ([1,1], [0,0])
is the largest IVIFN, and α− = ([0,0], [1,1]) is the

smallest IVIFN.

Definition 2 20 Let α = ([aL,aR], [bL,bR]),β =
([cL,cR], [dL,dR]) be two IVIFNs. The operational
laws are shown as follows:

(1) α ⊕ β = ([aL + cL − aLcL,aR + cR −
aRcR], [bLdL,bRdR]);

(2) α ⊗ β = ([aLcL,aRcR], [bL + dL − bLdL,bR +
dR −bRdR]);

(3) αC = ([bL,bR], [aL,aR]);

(4) aλ = ([(aL)λ ,(aR)λ ], [1 − (1−bL)λ ,1 −
(1−bR)λ ]), λ > 0.

Definition 3 19 Let α = ([aL,aR], [bL,bR]) be an IV-
IFN. Then the score function of α is defined as fol-
lows:

s(α) =
aL +aR −bL −bR

2
(2)

where s(α) ∈ [−1,1]. Obviously, the greater s(α)
is, the larger IVIFN α becomes.

Definition 4 21 Let A=
{〈

xi,
(
[aL

i ,a
R
i ], [b

L
i ,b

R
i ]
) |x ∈ X

〉}
(i = 1,2, · · · ,n) be a discrete IVIFS. The entropy of
A is defined in the following form:

E(A) =
1

n

n

∑
i=1

cos

∣∣bL
i −aL

i

∣∣+ ∣∣bR
i −aR

i

∣∣
2
(
πL

i +πR
i +2

) π (3)

The interval-valued intuitionistic fuzzy entropy sat-
isfies the following properties:

(1) E(A) = 0 if and only if aL
i = aR

i = 0,bL
i = bR

i = 1

or aL
i = aR

i = 1,bL
i = bR

i = 0;

(2) E(A) = 1 if and only if [aL
i ,a

R
i ] = [bL

i ,b
R
i ], for

any xi ∈ X;

(3) E(A) = E(Ac);

(4) E(A) � E(B), ∀xi ∈ X, if aL
B � bL

B,a
R
B � bR

B,
then aL

A � aL
B,a

R
A � aR

B,b
L
A � bL

B,b
R
A � bR

B or
aL

B � bL
B,a

R
B � bR

B, then aL
A � aL

B,a
R
A � aR

B,b
L
A �

bL
B,b

R
A � bR

B.

2.2. Fuzzy measure and Choquet integral

Definition 5 60 Let X be a universe of discourse,
P(X) be the power set of X. A fuzzy measure on
X is a mapping μ: P(X) �→ [0,1] which satisfies the
following properties:

(1) μ(φ) = 0,μ(X) = 1 (boundary conditions);

(2) if A ⊆ B implies μ(A) � μ(B), for all A,B ⊆
X,(monotonicity);

(3) μ(A+B) = μ(A)+ μ(B)+λ μ(A)μ(B), where
A,B ⊆ P(X) and A∩B = φ ,λ �−1;

(4) μ(
n⋃

n=1
An) = lim

n→∞
μ(An), whenever An ⊆

An+1,An ∈ X ,n ∈ N (continuity from below);

(5) μ(
∞⋂

n=1
An) = lim

n→∞
μ(An), whenever An ⊇

An+1,An ∈ X ,n ∈ N (continuity from above).

Definition 6 37 Let X = {x1,x2, · · · ,xn} be a uni-

verse of discourse, and X =
n⋃

i=1
xi, then λ − f uzzy

measure μ satisfies following condition:

μ(X) =

⎧⎪⎨
⎪⎩

1
λ (

n
∏
i=1

[1+λ μ(xi)]−1) i f λ �= 0

n
∑

i=1
μ(xi) i f λ = 0

(4)

where λ > −1. From Eq.(4), the value of λ can be
uniquely determined by setting μ(X) = 1, which is
equivalent by solving the following equation:

λ +1 =
n

∏
i=1

(1+λ μ(xi)) (5)

Definition 7 35 Let μ be a fuzzy measure on X, f
is a nonnegative, real-valued, and measurable func-
tion. Then the Choquet integral is defined in the
form:

(c)
∫

f dμ =
∫ ∞

0
μ{Fα}dl (6)

where Fα = {x| f (x)� α} denotes the α −cut of the
function. When X = {x1,x2, · · · ,xn} be a discrete
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set, the discrete form of Choquet integral with re-
spect to a fuzzy measure μ is defined as:

(c)
∫

f ◦dμ =
n

∑
i=1

( f (x∗i )− f (x∗i−1))μ
({

x∗i ,x
∗
i+1, · · · ,x∗n

})
(7)

Where A∗ = {x∗1,x
∗
2, · · · ,x∗n} is a monotonic non-

decrease permutation of X = {x1,x2, · · · ,xn} such
that f (x∗1)� f (x∗2)� · · ·� f (x∗n) and A∗

n+1 = /0.

3. Interval-valued intuitionistic fuzzy Choquet
integral

In this section, we investigate the definition of the

interval-valued intuitionistic fuzzy measure and the

interval-valued intuitionistic fuzzy Choquet integral

with such fuzzy measure. Some properties and char-

acteristics of them are proposed and discussed in de-

tail.

Definition 8 Let X be a universe of discourse,
and (X ,Σ,μ) be an interval intuitionistic fuzzy
measure space, Σ is a σ− algebra and μ =
([μ1,μ2], [μ3,μ4]), where fuzzy measure μ satisfies
the following properties:

(1) μ(φ) = ([μ1(φ),μ2(φ)], [μ3(φ),μ4(φ)]) =
([0,0], [1,1]);

(2) μ(X) = ([μ1(X),μ2(X)], [μ3(X),μ4(X)]) =
([1,1], [0,0]);

(3) If E,F ∈ Σ, and E ⊆ F, then μ1(E) �
μ1(F),μ2(E) � μ2(F) and μ3(E) �
μ3(F),μ4(E)� μ4(F) ;

(4) For any E ∈ Σ, μ2(E)+μ4(E)� 1.

Especially, when μ1(E) = μ2(E),μ3(E) =
μ4(E), for any E ∈ Σ, the interval-valued intuitionis-

tic fuzzy measure reduces to the commonly encoun-

tered intuitionistic fuzzy measure.

Based on the decomposition theorem for the

original Choquet integral and the extended intuition-

istic fuzzy Choquet integral, the interval-valued in-

tuitionistic fuzzy Choquet integral of f with respect

to μ is defined as:

(c)
∫

f ◦dμ =
([∫

aL
i ◦dμ1,

∫
aR

i ◦dμ2

]
,[∫

bL
i ◦dμ3,

∫
bR

i ◦dμ4

]) (8)

where f =
([

aL
i ,a

R
i
]
,
[
bL

i ,b
R
i
])

, μ =([μ1,μ2] , [μ3,μ4]).
For any set A ∈ Σ, which satisfies μ1(A) �
μ2(A),μ3(A) � μ4(A),μ2(A) + μ4(A) � 1, and “-

“ denotes the dual operation, i.e.,

f (x) = 1− f (x) μ(A) = 1−μ(A) (9)

Theorem 1 Let μ be an interval-valued intuitionis-

tic fuzzy measure defined on X , and A is an interval-

valued intuitionistic fuzzy set on P(X). Then the

interval-valued intuitionistic fuzzy Choquet integral

with respect to μ is also an IVIFN.

Proof. Based on the definition of IVIFS, we

have aL � aR,bL � bR. According to the mono-

tonicity of fuzzy measure, we can prove that∫
aL

i dμ1 �
∫

aR
i dμ1 �

∫
aR

i dμ2 and
∫

bL
i dμ3 = 1 −∫

bL
i dμ3 = 1−∫ (1−bL

i )dμ3 � 1−∫ (1−bR
i )dμ3 �

1− ∫ (1−bR
i )dμ4 = 1− ∫ bR

i dμ4 =
∫

bR
i dμ4. Thus,

Eq. (8) satisfies the partial order of the IVIFS.

For convenience, we denote f1 = aL
i , f2 =

aR
i , f3 = bL

i , f4 = bR
i in the following proof process.

Based on the definition of discrete Choquet integral

described in Section 2, we have:

(c)
∫

f1 ◦μ1 =
∫

μ1( f1(x)� α1)dα1

(c)
∫

f2 ◦μ2 =
∫

μ2( f2(x)� α2)dα2

(10)

So we only need to prove the following relation-

ships:

(c)
∫

f3 ◦μ3 =
∫

μ3( f3(x)� α3)dα3

(c)
∫

f4 ◦μ4 =
∫

μ4( f4(x)� α4)dα4

(11)
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Based on Eq. (10), we have

∫
f3 ◦μ3 = 1−

∫ 1

0
μ3( f3(x)� α3)dα3

= 1−
∫ 1

0
[1−μ3( f3(x)� α3)]dα3

=
∫ 1

0
μ3( f3(x)� α3)dα3

=
∫ 1

0
(1−μ3)( f3(x)� 1−α3)dα3

= 1−
∫ 1

0
μ3( f3(x)� 1−α3)dα3

=
∫ 1

0
μ3( f3(x)� α3)dα3

(12)

In a similar way, it is easy to prove that (c)
∫

f4 ◦
μ4 =

∫
μ4( f4(x)� α4)dα4 holds.

Next, Based on the definition of interval intu-

itionistic fuzzy sets described in Section 2, we only

need to prove that the following inequality holds:

(c)
∫

f2 ◦μ2 +(c)
∫

f 4 ◦μ4 � 1 (13)

Since f2 + f4 � 1,μ2 + μ4 � 1, based on the mono-

tonicity of Choquet integral, the following inequal-

ity ensues:

(c)
∫

f 4 ◦μ4 � (c)
∫

f2 ◦μ4 � (c)
∫

f2 ◦μ2 (14)

Then

(c)
∫

f2 ◦μ2 +(c)
∫

f 4 ◦μ4 = (c)
∫

f2 ◦μ2 +1−

(c)
∫

f 4 ◦μ4 � (c)
∫

f2 ◦μ2 +1− (c)
∫

f2 ◦μ2 = 1

(15)

The proof has been completed.

Theorem 2 Let X = {x1,x2, · · · ,xn} be the universe

of discourse, then the interval-valued intuitionistic

fuzzy Choquet integral of f with respect to μ can be

expressed as the following form:

(c)
∫

f ◦dμ =

⎛
⎜⎝
⎡
⎢⎣

n
∑

i=1
aL

i (xi)(μ1(Ai)−μ1(Ai+1)),

n
∑

i=1
aR

i (xi)(μ2(Ai)−μ2(Ai+1))

⎤
⎥⎦ ,

⎡
⎢⎣

n
∑

i=1
bL

i (xi)(μ1(Bi+1)−μ1(Bi)),

n
∑

i=1
bR

i (xi)(μ4(Bi+1)−μ4(Bi))

⎤
⎥⎦
⎞
⎟⎠
(16)

where
Ai =

{
xi, · · · ,xn|

(
aL +aR

)
(xi+1)�

(
aL +aR

)
(xi)
}

and
Bi =

{
xi, · · · ,xn|

(
bL +bR

)
(xi+1)�

(
bL +bR

)
(xi)
}

(i = 1,2, · · · ,n)

Proof. Based on the definition of Choquet integral

described in Section 2, it can be easily shown that

the following two relationships are satisfied:

(c)
∫

f1 ◦dμ1 =
n

∑
i=1

f1(xi)(μ1(Ai)−μ1(Ai+1))

=
n

∑
i=1

aL
i (xi)(μ1(Ai)−μ1(Ai+1))

(c)
∫

f2 ◦dμ2 =
n

∑
i=1

f2(xi)(μ2(Ai)−μ2(Ai+1))

=
n

∑
i=1

aR
i (xi)(μ2(Ai)−μ2(Ai+1))

Thus, we should only prove the following formulas:

(c)
∫

f 3 ◦dμ3 =
n

∑
i=1

f 3(xi)(μ3(Bi+1)−μ3(Bi))

=
n

∑
i=1

bL
i (xi)(μ3(Bi+1)−μ3(Bi))

(c)
∫

f 4 ◦dμ4 =
n

∑
i=1

f 4(xi)(μ4(Bi+1)−μ4(Bi))

=
n

∑
i=1

bR
i (xi)(μ4(Bi+1)−μ4(Bi))
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Based on Eqs.(9,10,12), we obtain

(c)
∫

bL ◦dμ3

=
∫

f3 ◦dμ3

= 1−
∫

f3 ◦dμ3

= 1−
n

∑
i=1

f3(xi) [μ3(Bi)−μ3(Bi+1)]

= 1−
n

∑
i=1

f3(xi) [(1−μ3(Bi))− (1−μ3(Bi+1))]

=
n

∑
i=1

(μ3(Bi+1)−μ3(Bi))−
n

∑
i=1

f3(xi)(μ3(Bi+1)−μ3(Bi))

=
n

∑
i=1

(μ3(Bi+1)−μ3(Bi))(1− f3(xi))

=
n

∑
i=1

f3(xi)(μ3(Bi+1)−μ3(Bi))

Similarly, it is easy to verify that the following for-

mula holds:

(c)
∫

bR ◦dμ4 =
n

∑
i=1

bR
i (xi)(μ4(Bi+1)−μ4(Bi))

Thus, the proof has been completed.

In what follows, we investigate two useful theo-

rems of the interval-valued intuitionistic fuzzy Cho-

quet integral proposed above.

Theorem 3 Let X be a universe of discourse, f =
([ f1, f2], [ f3. f4]) be an interval intuitionistic fuzzy-

valued function on X . 0 = ([0,0], [1,1]) and 1 =
([1,1], [0,0]) are the smallest and largest interval

intuitionistic fuzzy-valued function, respectively.

Then

1. (Idempotency). c(0,0, · · · ,0)= 0,c(1,1, · · · ,1)=
1,c( f , f , · · · , f ) = f ;

2. (Boundary). min( f (1), f (2), · · · , f (n)) �
c( f (1), f (2) · · · , f (n))�max( f (1), f (2), · · · , f (n));

3. (Monotonicity). If f (k) � f (k
∗), then c( f (1),

· · · , f (k), · · · , f (n))� c( f (1), · · · , f (k
∗), · · · , f (n)).

Proof.

(1) Based on the definition of Choquet integral, we
have

(c)(0,0, · · · ,0) = 0×
n

∑
i=1

(μ(xi)−μ(xi+1)) = 0×1 = 0

(c)(1,1, · · · ,1) = 1×
n

∑
i=1

(μ(xi)−μ(xi+1)) = 1×1 = 1

(c)( f , f , · · · , f ) = f ×
n

∑
i=1

(μ(xi)−μ(xi+1)) = f ×1 = f

(2) Based on Theorems 1 and 2, we

obtain (c)( min
1�i�n

f (i), · · · , min
1�i�n

f (i)) �

(c)( f (1), · · · , f (n))� (c)(max
1�i�n

f (i), · · · , max
1�i�n

f (i)).

Then according to the property of idempo-

tency, we have (c)( min
1�i�n

f (i), · · · , min
1�i�n

f (i)) =

min
1�i�n

f (i) and (c)(max
1�i�n

f (i), · · · , max
1�i�n

f (i)) =

max
1�i�n

f (i). Therefore, min( f (1), f (2), · · · , f (n)) �

(c)( f (1), f (2), · · · , f (n))�max( f (1), f (2), · · · , f (n)).

(3) Based on the monotonicity of fuzzy integral and

Theorem 2, the conclusion directly ensues.

which completes the proof of Theorem 3.

Theorem 4 Let X be a universe of discourse, P(X)
is a power set of X , set function μ is an interval-

valued intuitionistic fuzzy measure on X ,let f =
([ f1, f2], [ f3, f4]) be an interval-valued intuitionistic

fuzzy-valued function X . 0 = ([0,0], [1,1]) and 1 =
([1,1], [0,0]) are the smallest and largest interval-

valued intuitionistic fuzzy measure, respectively.

Then

1. (c)
∫

f ◦1 = max
x∈X

f ;

2. (c)
∫

f ◦0 = min
x∈X

f ;

3. For any interval intuitionistic fuzzy measure μ
on X, min

x∈X
f � (c)

∫
f ◦μ � max

x∈X
f .

Proof.

(1) For any α = ([α1,α2], [α3,α4]) ∈ X , based on

the definition of interval intuitionistic fuzzy
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Choquet integral described in Section 2, we

have

(c)
∫

f ◦μ

=

⎛
⎝
[∫ 1

0 μ1( f1 � α1)dα1,
∫ 1

0 μ2( f2 � α2)dα2

]
,[∫ 1

0 μ3( f3 � α3)dα3,
∫ 1

0 μ4( f4 � α4)dα4

]
⎞
⎠

where { f � α} = {x ∈ X | f (x) � α} = {x ∈
X | f1(x) � α1 ∩ f2(x) � α2 ∩ f3(x) � α3 ∩
f4(x) � α4}. When α � β , then {x| f �
α} ⊆ {x| f � β}, which implies μ{x| f � α} �
μ{x| f � β}.

If μ{x| f � α}= 1 ⇒ μ{x| f � β}= 1. Then,

(c)∫ f ◦μ

=

⎛
⎝
[∫ 1

0 μ1( f1 � α1)dα1,
∫ 1

0 μ2( f2 � α2)dα2

]
,[∫ 1

0 μ3( f3 � α3)dα3,
∫ 1

0 μ4( f4 � α4)dα4

]
⎞
⎠

(c)∫ f ◦1

= sup
μ( f�α)=1

⎛
⎜⎜⎜⎝
[ ∫ 1

0 μ1( f1 � β1)dβ1,∫ 1
0 μ2( f2 � β2)dβ2

]
,[ ∫ 1

0 μ3( f3 � β3)dβ3,∫ 1
0 μ4( f4 � β4)dβ4

]
⎞
⎟⎟⎟⎠

= sup
μ( f�α)=1

([α1,α2], [α3,α4])

= sup
μ( f�α)=1

α � sup
μ( f�α)=1

inf
μ( f�α)=1

f

� sup
μ( f�α)=1

sup
μ( f�α)=1

f = max f

(2) The proof of property 2 is similar to property 1,

omitted.

(3) Based on the monotonicity of fuzzy measure,

we have 0 � μ � 1, so we can easily prove the

following inequality

(c)
∫

f ◦0 � (c)
∫

f ◦μ � (c)
∫

f ◦1

According to Theorem 3, we have min
x∈X

f �
(c)
∫

f ◦μ � max
x∈X

f .

which completes the proof of Theorem 4.

4. A new method to determine fuzzy measure
under interval-valued intuitionistic fuzzy
environment

In most real-world decision making situations,

where the measure of attributes usually does not sat-

isfy the condition of non-additive property. How-

ever, there exist some cases where the attributes may

interact. Therefore, how to derive the fuzzy mea-

sures to reflect the relationship of attributes becomes

a vital problem in such practical problems. From the

current literature 57,58,59, we can only find research

on the determination of the fuzzy measures with

the decision makers assignment directly, which not

only raises difficulties for large dimensional prob-

lems and may also lead to information losses, dis-

tortion and inconsistencies. Here, we propose a new

method to determine the fuzzy measures from the

known information, which can avoid the shortcom-

ings of the current direct assignment methods.

For convenience, we first introduce some new

notations. Let D= {D1,D2, · · · ,Dp} be the set of ex-

perts, where Di indicates the i-th expert, and Ei indi-

cates the average interval-valued intuitionistic fuzzy

entropy provided by Di, which is calculated by Eq.

(3).

4.1. Experts importance measure based on
interval-valued intuitionistic fuzzy entropy

Definition 9 Let μ(Di) denote the importance mea-
sure of expert Di, and μ(Di1 ,Di2 , · · · ,Din) denotes
the joint absolute importance measure of experts
Di1 ,Di2 , · · · ,Din, the experts absolute importance
measure can be defined as:

μ(Di) = 1−Ei (17)

μ(Di,D j) = 1−E(Ei ∩E j) (18)

μ(Di1 ,Di2 , · · · ,Din) = 1−E(Ei1 ∩Ei2 ∩·· ·∩Ein)
(19)

where {i1, i2, · · · , in} is a subset of {1,2, · · · , p}, Eki j
is the interval-valued intuitionistic fuzzy entropy

provided by expert Dk for the alternative Ai with

respect to the attribute Cj. It should be noted that

E(Ei1 ∩Ei2 ∩ ·· ·∩Ein) indicate the average interval-

valued intuitionistic fuzzy entropy provided by ex-
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perts Di1,Di2, · · · ,Din, where Ei1 ∩Ei2 ∩·· ·∩Ein is a

real-valued entropy matrix.

Remark 1 This definition is established based on
interval-valued intuitionistic fuzzy entropy. As we
know, the entropy can be regarded as an important
measure that reflects the decision making informa-
tion to some extent. The smaller the entropy is, the
greater the information will be. Therefore, consider
the characteristics of the group decision making
problems under interval-valued intuitionistic fuzzy
environment, we utilize the minimize entropy princi-
ple to fuse the decision making information among
the experts and establish the model above to obtain
the experts absolute importance measure.

Due to the fact that importance measure should

satisfy normalization condition, we should normal-

ize the absolute measure before calculation. Hence,

we define a new concept as follows:

Definition 10 Let μ(Di) denote the relative im-
portance measure of Di, and μ(Di1 ,Di2 , · · · ,Din)
denotes the joint relative importance measure of
Di1 ,Di2 , · · · ,Din, the experts relative importance
measure is defined as follows:

μ(Di1 ,Di2 , · · · ,Din) =
μ(Di1 ,Di2 , · · · ,Din)

μ(D1,D2, · · · ,Dn)
(20)

Theorem 5 μ(Di1 ,Di2 , · · · ,Din) satisfies the mono-
tonicity of the fuzzy measure.

Proof. Since {Di1 ,Di2 , · · · ,Din}⊆{Di1 ,Di2 , · · · ,Din+1
},

then

μ(Di1 ,Di2 , · · · ,Din ,Din+1
)−μ(Di1 ,Di2 , · · · ,Din)

=
μ(Di1 ,Di2 , · · · ,Din ,Din+1

)−μ(Di1 ,Di2 , · · · ,Din)

μ(D1,D2, · · · ,Dn)

=
1−E(Ei1 ∩Ei2 ∩·· ·∩Ein ∩Ein+1

)− (1−E(Ei1 ∩Ei2 ∩·· ·∩Ein))

μ(D1,D2, · · · ,Dn)

=
E(Ei1 ∩Ei2 ∩·· ·∩Ein)−E(Ei1 ∩Ei2 ∩·· ·∩Ein ∩Ein+1

)

μ(D1,D2, · · · ,Dn)
� 0

(21)

So μ(Di1 ,Di2 , · · · ,Din) satisfies the monotonicity of

the fuzzy measure. The proof has been completed.

Remark 2 Theorem 5 indicates the fact that with
the increasing number of experts (or decision mak-
ers), the information proposed by experts (or deci-
sion makers) is also increasing. It also states that the

uncertainty of information reduces. Therefore, the
experts relative importance measure proposed here
is reasonable in real life decision making situations.

4.2. Attributes importance measure based on
weight information matrix

Attribute importance measure is a key issue of the

decision making problems in practice. As a use-

ful tool to solve the attribute importance measure,

Shannon entropy was widely used to trade off the

importance among the attributes in real life decision

making. Let Ci denote the ith attribute, Hi denote

the Shannon entropy with respect to Ci. We usu-

ally measure the importance of Ci based on the value

of Hi. The smaller value of Hi, the great impor-

tance of Ci is. In what follows, we define some new

joint attributes information entropy based on origi-

nal Shannon entropy to measure the importance of

the attributes.

Definition 11 Let Hi indicates the Shannon entropy
with respect to the attribute Ci. Three types of joint
attributes information entropy are defined as fol-
lows:

(1) EΔ1(in) =
in
∏
i=1

(1−Hi)
π
4

;

(2) EΔ2(in) = sin

(
in
∏

i=i1
(1−Hi)

π
4

)
;

(3) EΔ3(in) = tan

(
in
∏

i=i1
(1−Hi)

π
4

)
.

where In = {i1, i2, · · · , in} is a index sequence such
that in−1 � in,1 � in � p.

It is clear that 0 � EΔ1(in),EΔ2(in),EΔ3(in) <
1, and EΔ1(in),EΔ2(in),EΔ3(in) are all continuous,

monotonic and decreasing functions of In. That

is to say, if |In| < |In+1| (where |In| is the num-

ber of In), then EΔ j(in+1) < EΔ j(in), j = 1,2,3,

which means, with an increasing of the number of

attributes, the uncertainty of the information is re-

duced. Therefore, we can use these three formu-

las to measure the importance of the attributes. Let

CI={{i1, i2, · · · , in}|in � in−1,1 � in � p} be a set

of index sequence, then we derive the following

Theorem 6.
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Theorem 6 For any In ∈ CI,EΔ2(In) < EΔ1(In) <
EΔ3(In).

Proof. Considering the sine function y = sinx, we
can clearly see that when x ∈ (0, π

2
),the sine function

is a continuous, monotonic increasing with respect
to x. Based on the theory of trigonometric function,
we can easily infer the fact that if x ∈ (0, π

2
), then

sinx < x < tanx. Let x =
in
∏
i=1

(1−Hi)
π
4

, it is clear to

see that 0 < x =
in
∏
i=1

(1−Hi)
π
4
< π

4
< π

2
. Thus, we

obtain the following inequalities:

sin

(
in

∏
i=1

(1−Hi)
π
4

)
<

in

∏
i=1

(1−Hi)
π
4
< tan

(
in

∏
i=1

(1−Hi)
π
4

)

Therefore, we have EΔ2(in) < EΔ1(in) < EΔ3(in).
The proof has been completed.

To determine the importance of attributes, Xu 41

proposed a useful weight solving method with in-

complete information. A weight information ma-

trix W = (wi j)m×n is established based on a multi-

objective optimization model, whose elements wi j
is the optimal weight solution corresponding to the

alternatives. In what follows, we consider a multi-

attribute group decision-making problem with at-

tributes interaction information, and give a formu-

lation based on weight information matrix and the

three types of joint attributes information entropy we

proposed to determine the attributes important mea-

sure under interval-valued intuitionistic fuzzy envi-

ronment.

Definition 12 Let W = (w ji)m×n be a weight infor-
mation matrix, w ji indicates the optimal weight for
the alternative A j with respect to the attribute Ci,
μ(Ci) indicates the attribute importance measure
with respect to the attribute Ci. μ(Ci1 ,Ci2 , · · · ,Cin)
indicates the attribute importance measure with re-
spect to the attributes Ci1 ,Ci2 , · · · ,Cin . Then the at-
tributes importance measures are defined as:

μ(Ci)

=

⎛
⎜⎝
[
w1−λ

i ,wi
(1−λ )EΔ3(i1)

]
,[(

1−wi
(1−λ )EΔ2(i1)

)2
,1−wi

(1−λ )EΔ1(i1)
]
⎞
⎟⎠

(22)

μ(Ci1 ,Ci2 , · · · ,Cin)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[(
in
∑

i=i1
wi

)1−λ

,

(
in
∑

i=i1
wi

)(1−λ )EΔ3(in)
]
,

⎡
⎢⎢⎢⎢⎣

(
1−
(

in
∑

i=i1
wi

)(1−λ )EΔ2(in)
)2

,

1−
(

in
∑

i=i1
wi

)(1−λ )EΔ1(in)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(23)

where λ indicates an interaction coefficient.

Theorem 7 μ(Ci1 ,Ci2 , · · · ,Cin) satisfies the mono-

tonicity of the interval-valued intuitionistic fuzzy

measure.

Proof. Based on the theory of inequality, since

−1 � λ � 1,0 � H � 1, and 0 <
in
∑

i=i1
wi � 1, so we

have 0<
n
∏
i=1

(1−Hi)< 1,0<
n
∏
i=1

(1−Hi)
π
4
< π

4
, and

0 < tan

(
n
∏
i=1

(1−Hi)
π
4

)
< tan π

4
= 1. Since

in
∑

i=i1
wi �

1 and (1 − λ ) > (1 − λ ) tan

(
i=in
∏

i=i1
(1−Hi)

π
4

)
,

then

(
in
∑

i=i1
wi

)1−λ

<

(
in
∑

i=i1
wi

)(1−λ ) tan

(
n
∏
i=1

(1−Hi)
π
4

)
,⎛

⎜⎝1−
(

in
∑

i=i1
wi

)(1−λ )sin

(
n
∏
i=1

(1−Hi)
π
4

)⎞
⎟⎠

2

< 1 −

(
in
∑

i=i1
wi

)(1−λ )sin

(
n
∏
i=1

(1−Hi)
π
4

)
< 1−

(
in
∑

i=i1
wi

)(1−λ )
(

n
∏
i=1

(1−Hi)
π
4

)

(
in
∑

i=i1
wi

)(1−λ ) tan

(
n
∏
i=1

(1−Hi)
π
4

)
+1−

(
in
∑

i=i1
wi

)(1−λ )
n
∏
i=1

(1−Hi)
π
4

<

(
in
∑

i=i1
wi

)(1−λ )
n
∏
i=1

(1−Hi)
π
4

+1−
(

in
∑

i=i1
wi

)(1−λ )
n
∏
i=1

(1−Hi)
π
4

=

1

Then we prove the monotonicity of the interval-

valued intuitionistic fuzzy measure as follows:

(1) Let μ1(i) =
(

in
∑

i=i1
wi

)1−λ

, then we have μ1(i+
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1) − μ1(i) =

(
in+1

∑
i=i1

wi

)1−λ

−
(

in
∑

i=i1
wi

)1−λ

=

e
ln

(
in+1

∑
i=i1

wi

)1−λ

− e
ln

(
in
∑

i=i1
wi

)1−λ

> 0.

Thus, μ1(i) is an increasing function with re-

spect to i.

(2) Let μ2(i) =

(
in
∑

i=i1
wi

)(1−λ ) tan

(
∏

i=i1
in
(1−Hi)

π
4

)
.

Then

ln μ2(i+1)− ln μ2(i)

= (1−λ ) tan

(
in+1

∏
i=i1

(1−Hi)
π
4

)
ln

(
in+1

∑
i=i1

wi

)

−(1−λ ) tan

(
in
∏

i=i1
(1−Hi)

π
4

)
ln

(
in
∑

i=i1
wi

)

= (1−λ )
(

tan

(
in+1

∏
i=i1

(1−Hi)
π
4

)
ln

(
in+1

∑
i=i1

wi

)

− tan

(
in
∏

i=i1
(1−Hi)

π
4

)
ln

(
in
∑

i=i1
wi

))

= (1−λ )

⎛
⎜⎝ln

(
in+1

∑
i=i1

wi

)tan

(
in+1

∏
i=i1

(1−Hi)
π
4

)

− ln

(
in
∑

i=i1
wi

)tan

(
in
∏

i=i1
(1−Hi)

π
4

)⎞
⎟⎠

= (1−λ ) ln

(
in+1

∑
i=i1

wi

)tan

⎛
⎝in+1

∏
i=i1

(1−Hi)
π
4

⎞
⎠

(
in
∑

i=i1
wi

)tan

⎛
⎝ in

∏
i=i1

(1−Hi)
π
4

⎞
⎠ > 0

From ln μ2(i+ 1)− ln μ2(i) > 0 ⇒ μ2(i+ 1) >
μ2(i). So μ2(i) is an increasing function with

respect to i.

(3) Let μ3(i)=

⎛
⎜⎝1−

(
in
∑

i=i1
wi

)(1−λ )sin

(
n
∏
i=1

(1−Hi)
π
4

)⎞
⎟⎠

2

μ3(i+1)−μ3(i)

=

⎛
⎜⎝1−

(
in+1

∑
i=i1

wi

)(1−λ )sin

(
in+1

∏
i=i1

(1−Hi)
π
4

)⎞
⎟⎠

2

−

⎛
⎜⎝1−

(
in
∑

i=i1
wi

)(1−λ )sin

(
in
∏

i=i1
(1−Hi)

π
4

)⎞
⎟⎠

2

=

⎛
⎜⎝2−

(
in+1

∑
i=i1

wi

)(1−λ )sin

(
in+1

∏
i=i1

(1−Hi)
π
4

)

−
(

in
∑

i=i1
wi

)(1−λ )sin

(
in+1

∏
i=i1

(1−Hi)
π
4

)⎞
⎟⎠

×

⎛
⎜⎝( in

∑
i=i1

wi

)(1−λ )sin

(
in
∏

i=i1
(1−Hi)

π
4

)

−
(

in+1

∑
i=i1

wi

)(1−λ )sin

(
in+1

∏
i=i1

(1−Hi)
π
4

)⎞
⎟⎠< 0

From μ3(i+1)−μ3(i)< 0, we can obtain μ3(i+
1) < μ3(i). Hence, μ3(i) is a decreasing func-

tion with respect to i.

(4) The proof of (4) is similar to the proofs of (1)-

(3), omitted.

Hence, we verify the proposed fuzzy measure satis-

fies the properties of the interval-valued intuitionis-

tic fuzzy sets and when i1 = i2 = · · · = in, Eq. (23)

is reduced to Eq. (22). Thus, the proof is complete.

In this section, we give a new method to solve ex-

perts importance measure and attributes importance

measure under interval-valued intuitionistic fuzzy

environment. Since the given approach based on

interval-valued intuitionistic fuzzy Choquet integral,

which greatly reduces the complexity of determin-
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ing the fuzzy measures, and improves the practical-

ity of the method.

5. An approach to multi-attribute group
decision-making based on interval-valued
intuitionistic fuzzy Choquet integral

Interval-valued intuitionistic fuzzy multiple attribute

group decision making task is a special case of fuzzy

multiple attribute group decision making problems.

In the sequel, based on the interval-valued intuition-

istic fuzzy entropy and the interval-valued intuition-

istic fuzzy measure we derived above, a new ap-

proach is proposed to solve multiple attribute group

decision making problem under interval-valued in-

tuitionistic fuzzy environment. We propose two

methods to determine the fuzzy measure which are

used to calculate the interactive importance mea-

sure of attributes and its correlation measure of ex-

perts (e.g. absolute measure, relative measure).

Firstly, we describe the interval-valued intuitionis-

tic fuzzy multiple attribute group decision making

(MAGDM) problems in this paper.

5.1. The description of MAGDM problems

For an interval-valued intuitionistic fuzzy multi-

ple attribute group decision making problem. Let

A = {A1,A2, · · · ,Am} be a discreet set of al-

ternatives, C = {C1,C2, · · · ,Cn} be a set of at-

tributes, and D = {D1,D2, · · · ,Dp} be a set of

experts. The performance of the alternative Ai
with respect to the attribute Cj which is provided

by expert Dk is expressed by an IVIFN A(k)
i j =([

aL
i jk,a

R
i jk

]
,
[
bL

i jk,b
R
i jk

])
, where

[
aL

i jk,a
R
i jk

]
indi-

cates the interval-valued degrees that the alterna-

tive Ai satisfies the attribute Cj, and
[
bL

i jk,b
R
i jk

]
in-

dicates the interval-valued degrees that the alter-

native Ai does not satisfies the attribute Cj, such

that
[
aL

i jk,a
R
i jk

]
⊆ [0,1],

[
bL

i jk,b
R
i jk

]
⊆ [0,1] and 0 �

aR
i jk +bR

i jk � 1. For all elements A(k)
i j are contained in

the decision matrix DM(k) which is provided by ex-

pert Dk. Based on the analysis presented before, we

develop a new method for MAGDM problems un-

der interval-valued intuitionistic fuzzy environment.

Based on these necessary conditions, the ranking of

alternatives is required.

5.2. Decision making steps

The interval-valued intuitionistic fuzzy Choquet in-

tegral method is illustrated in what follows. The al-

gorithm involves the following steps:

Step 1 Construct the individual decision matrix
DM(k)(k = 1,2, · · · , p).

Step 2 Calculate the entropy of each decision ma-
trix Ek(k = 1,2, · · · , p).

Step 3 Calculate the importance measure based on
the entropy of experts in accordance with decision
matrix.

(1) Calculate the absolute measure
With the use of Definition 9 and Eqs. (17-19), we

obtain the experts absolute importance measure.
(2) Calculate the relative measure
Using Definition 10 and Eq. (20), we determine

the experts relative importance measure.

Step 4 Calculate the weights of experts.
Based on game theory, we get the expert weights

with Shapely value 60.

σk(v) =
(p−|k|)!(|k|−1)!

p!

(
μ(DS)−μ(DS−{i})

)
(24)

where σk(v) indicates the expert weight of Dk.

Step 5 Aggregate the decision information of each
expert to collect into group decision matrix G by us-
ing the IVIFWA operator.

Utilize the IVIFWA operator to arrange the in-
dividual decision matrices into a collective (aggre-
gate) decision matrix as follows:

G =
([

gL
μi j
,gL

μi j

]
,
[
gL

νi j
,gL

νi j

])
m×n

(25)

Step 6 Calculate the group decision score matrix
and the entropy matrix, respectively.

With Eqs. (2) and (3), we calculate the score ma-
trix SG and entropy matrix EG respectively, which
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are defined as follows:

SG =

⎡
⎢⎢⎣

s11 s12 · · · s1n

s21 s22 · · · s2n

. . . · · · · · · · · ·
sm1 sm2 · · · smn

⎤
⎥⎥⎦

EG =

⎡
⎢⎢⎣

E11 E12 · · · E1n

E21 E22 · · · E2n

. . . · · · · · · · · ·
Em1 Em2 · · · Emn

⎤
⎥⎥⎦

(26)

Step 7 Construct the programming model of at-
tribute weights based on the relative entropy mea-
sure.

Based on the definition of relative entropy, and
with the purpose to determine the optimal weight
vector, we have the basic idea to maximize the score
function of each alternative, and minimize the en-
tropy function of each alternative. On the basis of
the above analysis, we establish the following linear
programming model corresponding to the i-th alter-
native:

minWi =
n

∑
j=1

wi j ln |Ei j

si j
|, i = 1,2, · · ·m

s.t.

⎧⎨
⎩

n
∑
j=1

wi j = 1

wi j � 0

(27)

By solving the above sated linear programming
model, we produce the solution of the attribute
weight vectors W (i) = (w(i)

1 ,w(i)
2 , · · ·w(i)

n ), where i =
1,2, · · · ,m.
Step 8 Solve the optimal attribute weights vector.

Based on the definition of Shannon entropy, we
can determine the attribute weight vector as follows:

Hj =− 1

m ln2

m

∑
i=1

w(i)
i j lnw(i)

i j ( j = 1,2, · · · ,n) (28)

w j =
1−Hj

n−
n
∑

k=1
Hk

( j = 1,2, · · · ,n) (29)

Step 9 Calculate the interaction coefficient λ .
In virtue of Eq. (5), calculate the value of pa-

rameter λ by solving the following non-linear multi-
objective programming problem:

According to the principle of optimization,
we can construct a single-objective programming
model to solve this multiple-objective programming:

min
1

2

⎡
⎣( n

∏
i=1

(1+λHi)− (λ +1)

)2

−
n

∑
i=1

Hi+

n

∑
i=1

1

λ

(
n

∏
i=1

[1+λHi]−1

)
ln

(
1

λ

(
n

∏
i=1

[1+λHi]−1

))]

s.t.
{ −1 � λ � 1

λ �= 0

(30)

Step 10 Calculate the importance measure of at-
tribute weights.

Based on Eqs. (22-23), form the fuzzy measure
of attribute weights.
Step 11 Utilize the Choquet integral to aggregate
the interval-valued intuitionistic fuzzy information
of decision-making matrix.

Based on Definition 8 and Eq. (16), the aggre-
gate value of the alternatives is formed.
Step 12 Use the score function of IVIFS to obtain
the score of overall alternatives.

Based on Eq. (2), we form the score value of the
alternatives.
Step 13 Utilize the score value to rank the alterna-
tives in the descending order.

Rank all the alternatives by Eq. (2), the larger
the score value is, the better the alternative is.
Step 14 End.

6. Numerical example

In this section, we provide an example to show the

application of the proposed method for supplier se-

lection problem.

6.1. The supplier selection problem description

With the continuous development of economic glob-

alization, the supply chain management has played

an important role in marketing economic and be-

come the most hot research topic in modern manage-

ment science, which directly impact on the manu-
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factures performance. Consider a problem in a ship-

building company, which aims to search for the best

supplier for purchasing ship equipments. Three po-

tential ship equipments suppliers have been identi-

fied. The attributes to be considered in the eval-

uation process are: C1: business management ca-

pacity; C2: quality; C3: transportation and delivery

ability; C4: service ability. The three shipbuilding

companies are to be evaluated using the interval-

valued intuitionistic fuzzy information by three ex-

perts Dk(k = 1,2,3).

6.2. Illustration of the proposed method

Step 1 Construct the individual decision matrix
DM(k)(k = 1,2,3), respectively.

DM(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

([0.3,0.4], [0.4,0.6]) ([0.5,0.6], [0.1,0.2])
([0.6,0.8], [0.1,0.2]) ([0.6,0.7], [0.2,0.3])
([0.5,0.8], [0.1,0.2]) ([0.7,0.8], [0.0,0.2])
([0.6,0.7], [0.2,0.3]) ([0.7,0.8], [0.0,0.1])
([0.2,0.3], [0.4,0.6]) ([0.5,0.6], [0.1,0.3])
([0.5,0.5], [0.4,0.5]) ([0.2,0.3], [0.2,0.4])

⎞
⎟⎟⎟⎟⎟⎟⎠

DM(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

([0.4,0.5], [0.3,0.4]) ([0.5,0.6], [0.1,0.2])
([0.6,0.8], [0.1,0.2]) ([0.5,0.6], [0.3,0.4])
([0.5,0.6], [0.3,0.4]) ([0.5,0.7], [0.1,0.2])
([0.6,0.7], [0.2,0.3]) ([0.7,0.8], [0.1,0.2])
([0.4,0.5], [0.3,0.4]) ([0.4,0.6], [0.3,0.4])
([0.5,0.6], [0.3,0.4]) ([0.3,0.4], [0.2,0.5])

⎞
⎟⎟⎟⎟⎟⎟⎠

DM(3) =

⎛
⎜⎜⎜⎜⎜⎜⎝

([0.4,0.6], [0.3,0.4]) ([0.5,0.7], [0.0,0.2])
([0.5,0.8], [0.1,0.2]) ([0.3,0.5], [0.2,0.3])
([0.5,0.6], [0.0,0.1]) ([0.5,0.8], [0.1,0.2])
([0.5,0.6], [0.2,0.4]) ([0.6,0.8], [0.1,0.2])
([0.3,0.6], [0.2,0.4]) ([0.4,0.5], [0.2,0.4])
([0.4,0.7], [0.2,0.3]) ([0.2,0.4], [0.2,0.3])

⎞
⎟⎟⎟⎟⎟⎟⎠

Step 2 Calculate the entropy of each individual de-
cision matrix Ek(k = 1,2,3), respectively.

E1 =

⎛
⎝ 0.9791 0.8855 0.8412 0.6087

0.7308 0.8413 0.9510 0.9048

0.7705 0.6310 0.9972 0.9985

⎞
⎠

E2 =

⎛
⎝ 0.9914 0.8854 0.8412 0.6548

0.7308 0.9594 0.9914 0.9790

0.9594 0.8443 0.9594 0.9927

⎞
⎠

E3 =

⎛
⎝ 0.9791 0.8229 0.9422 0.7308

0.7933 0.9848 0.9823 0.9822

0.8467 0.7933 0.9238 0.9985

⎞
⎠

Step 3 Calculate the importance measure based on
the entropy of expert in accordance with the ob-
tained decision matrix.

Based on Defintion 10 and Eqs.(11-13), we cal-
culate the experts importance measure. The ob-
tained results are shown as follows:

μ(D1) = 0.1551,μ(D2) = 0.1009,μ(D3) = 0.1017

μ(D1,D2)

= 1−E

⎡
⎣ 0.9791 0.8854 0.8412 0.6087

0.7308 0.8413 0.9510 0.9048

0.7705 0.6310 0.9594 0.9927

⎤
⎦

= 1−0.8413 = 0.1587

Similarly, we form other fuzzy measures based on
the entropy of interval-valued intuitionistic fuzzy in-
formation. The results are calculated as follows:

μ(D1,D3) = 0.1664,μ(D2,D3) = 0.1245,

μ(D1,D2,D3) = 0.1669

Then we use Eq. (20) to normalize the absolute
measure, and obtain the experts importance mea-
sures:

μ(D1) = 0.9292,μ(D2) = 0.6045,μ(D3) = 0.6093,

μ(D1,D2) = 0.9508,μ(D1,D3) = 0.9970,

μ(D2,D3) = 0.7459,μ(D1,D2,D3) = 1

Step 4 Calculate the weight of experts.

According to the results of game theory, we get
the expert weight based on Shapely-value. The re-
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sults read shown as follows:

σ1(v) =
(3−1)!(1−1)!

3!
μ(D1)

+
(3−2)!(2−1)!

3!
(μ(D1,D2)−μ(D2))

+
(3−2)!(2−1)!

3!
(μ(D1,D3)−μ(D3))

+
(3−3)!(3−1)!

3!
(μ(D1,D2,D3)−μ(D2,D3))

=
1

3
×0.9292+

1

6
× (0.9508−0.6045)

+
1

6
× (0.9970−0.6093)+

1

3
× (1−0.7459)

= 0.4451

σ2(v) =
1

3
×0.6045+

1

6
× (0.9508−0.9292)

+
1

6
× (0.7459−0.6093)+

1

3
× (1−0.9970)

= 0.2288

σ3(v) =
1

3
×0.6093+

1

6
× (0.9970−0.9292)

+
1

6
× (0.7459−0.6045)+

1

3
× (1−0.9508)

= 0.2543

Normalize the results of σi(v)(i = 1,2,3), which
leads to the weight information corresponding to the
three experts:

wD1
=

σ1(v)
σ1(v)+σ2(v)+σ3(v)

= 0.4795

wD2
=

σ2(v)
σ1(v)+σ2(v)+σ3(v)

= 0.2465

wD3
=

σ3(v)
σ1(v)+σ2(v)+σ3(v)

= 0.2740

Step 5 Aggregate the decision information of each
expert to collect a group decision matrix G by using
the IVIFWA operator.

Utilize the IVIFWA operator, and then structure
the decision information in the form of the group de-

cision matrix.
G =⎡
⎣ ([0.35,0.48], [0.34,0.48]) ([0.50,0.63], [0.00,0.20])

([0.57,0.80], [0.10,0.20]) ([0.51,0.63], [0.22,0.32])
([0.50,0.71], [0.00,0.19]) ([0.61,0.77], [0.00,0.20])
([0.57,0.68], [0.20,0.32]) ([0.67,0.80], [0.00,0.14])
([0.36,0.44], [0.31,0.48]) ([0.45,0.57], [0.16,0.35])
([0.47,0.59], [0.30,0.41]) ([0.25,0.35], [0.20,0.39])

⎤
⎦

Step 6 Calculate the group decision score matrix
and the entropy matrix, respectively.

Based on the Definitions 3 and 4, the score ma-
trix SG and entropy matrix EG come in the form:

SG =

⎡
⎣ 0.005 0.465 0.365 0.665

0.535 0.300 0.005 0.255

0.510 0.590 0.175 0.005

⎤
⎦

EG =

⎡
⎣ 0.999 0.854 0.871 0.642

0.751 0.918 0.998 0.947

0.816 0.721 0.969 0.998

⎤
⎦

Step 7 Construct the programming model of at-
tribute weights based on relative entropy.

The information about attribute weights given by
the decision makers can be described as follows:

• ΩD1
: 0.1 � w1 � 0.3,w2 −w1 � 0.15

• ΩD2
: 0.1 � w2 � 0.4,0.2 � w3 � 0.3

• ΩD3
: w3 � w4,w4 −w2 � w3 −w1

Then we establish a linear programming prob-
lem:

minWi = 5.29w1 +6.07w2 +0.87w3 −0.035w4

s.t.
{

w1 +w2 +w3 +w4 = 1

wi � 0,ΩDk ,k = 1,2,3

By solving this problem, we can get
the optimal weight vector is W (1) =
(0.10,0.25,0.25,0.40). Similarly, we get W (2) =
(0.23,0.37,0.20,0.20),W (3) = (0.20,0.40,0.20,0.20).
Hence, the optimal weight information matrix be-
comes:

W =

⎡
⎣ 0.10 0.25 0.25 0.40

0.23 0.37 0.20 0.20

0.20 0.40 0.20 0.20

⎤
⎦

Step 8 Solve the optimal attribute weights vector.
Based on Eq. (28), we derive the value of Hi(i =

1,2,3,4) as follows: H1 = 0.428,H2 = 0.265,H3 =

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

147



J. Qin et al. / Multi-attribute group decision making

0.399,H4 = 0.376. Utilize Eq. (29) to calculate the
weights of attributes:

w1 =
1−H1

4−
3

∑
k=1

Hk

=
1−0.428

4−1.468
= 0.2259,

w2 =
1−H2

4−
3

∑
k=1

Hk

=
1−0.265

4−1.468
= 0.2902,

w3 =
1−H3

4−
3

∑
k=1

Hk

=
1−0.399

4−1.468
= 0.2373,

w4 = 4
1−H4

3−
3

∑
k=1

Hk

=
1−0.376

4−1.468
= 0.2466.

Step 9 Calculate the interaction coefficient λ .
Based on Eq. (5), we calculate the interaction

coefficient to be λ =−0.6925.
Step 10 Establish the importance measure of at-
tribute weights.

Based on Eqs. (22-23), we obtain the fuzzy mea-
sures directly. The results are shown as follows:

μ(C1) = ([0.0806,0.2800], [0.4318,0.6773]),

μ(C2) = ([0.1232,0.2261], [0.4463,0.7014]),

μ(C3) = ([0.0876,0.2696], [0.4367,0.6831]),

μ(C4) = ([0.0935,0.2619], [0.4394,0.6869]),

μ(C1,C2) = ([0.3264,0.6813], [0.0927,0.3090]),

μ(C1,C3) = ([0.2718,0.6973], [0.0861,0.2965]),

μ(C1,C4) = ([0.2811,0.6940], [0.0877,0.2993]),

μ(C2,C3) = ([0.3387,0.6761], [0.0948,0.3131]),

μ(C2,C4) = ([0.3489,0.6726], [0.0961,0.3157]),

μ(C3,C4) = ([0.2927,0.6889], [0.0900,0.3036]),

μ(C1,C2,C3) = ([0.6192,0.9081], [0.0127,0.0907]),

μ(C1,C2,C4) = ([0.6322,0.9086], [0.0126,0.0901]),

μ(C1,C3,C4) = ([0.7098,0.8143], [0.0714,0.1855]),

μ(C2,C3,C4) = ([0.6483,0.9091], [0.0124,0.0896]),

μ(C1,C2,C3,C4) = ([1,1], [0,0]).

Step 11 Utilize Choquet integral to aggregate the
interval-valued intuitionistic fuzzy information of
decision matrix.

Take A1 as an example. From Definition 8 and
Eq. (16), we have:

μL
A1

= 0.35× (μ(C)−μ(C2,C3,C4))

+0.50× (μ(C2,C3,C4)−μ(C3,C4))

+0.57× (μ(C3,C4)−μ(C4))

+0.67× (μ(C4)−μ(φ))
= 0.35× (1−0.6483)+0.50× (0.6483−0.2927)

+0.57× (0.2927−0.0935)+0.67× (0.0935−0)

= 0.4771

μR
A1

= 0.48× (μ(C)−μ(C2,C3,C4))

+0.63× (μ(C2,C3,C4)−μ(C3,C4))

+0.68× (μ(C3,C4)−μ(C4))

+0.80× (μ(C4)−μ(φ))
= 0.48× (1−0.9091)+0.63× (0.9091−0.6889)

+0.68× (0.6889−0.2619)+0.80× (0.2619−0)

= 0.6843

νL
A1

= 0.34× (μ(C1,C2,C4)−μ(C))

+0.2× (μ(C2,C4)−μ(C1,C2,C4))

+0× (μ(C4)−μ(C2,C4))

+0× (μ(φ)−μ(C4))

= 0.34× (0.0126−0)+0.2× (0.0961−0.0126)

+0× (0.4394−0.0961)+0× (1−0.4394)

= 0.0210

νR
A1

= 0.48× (μ(C2,C3,C4)−μ(C))

+0.32× (μ(C2,C4)−μ(C2,C3,C4))

+0.2× (μ(C4)−μ(C2,C4))

+0.14× (μ(φ)−μ(C4))

= 0.48× (0.0896−0)+0.32× (0.3157−0.0896)

+0.2× (0.6869−0.3157)+0.14× (1−0.6869)

= 0.2334

So the aggregation value of A1 based on interval-
valued intuitionistic fuzzy Choquet integral is:

(c)A1 = ([0.4771,0.6843], [0.0210,0.2334])
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Similarly, we can calculate the aggregation val-
ues of A2 and A3, respectively:

(c)A2 = ([0.4738,0.6607], [0.2652,0.3055])

(c)A3 = ([0.4631,0.6524], [0.2266,0.3287])

Step 12 Utilize the score function to get the score
value of the overall alternatives.

Based on Eq. (2), we can calculate the score
value of overall alternatives, respectively:

S(A1) = 0.4518,S(A2) = 0.2819,S(A3) = 0.2801

Step 13 Utilize the score value to rank the alterna-
tives.

Since S(A1) > S(A2) > S(A3), we have A1 �
A2 � A3. Thus, we choose A1 as the best alterna-
tive.

6.3. Comparisons and further discussion

In what follows, we compare our method with

other existing methods including interval-valued in-

tuitionistic fuzzy group decision making with Cho-

quet integral-based TOPSIS 42, and the interval-

valued intuitionistic fuzzy Choquet integral with

respect to the generalized lambda-Shapley index

method 50. The results are shown in Table 1.

Table 1. Comparasions with Choquet integral- TOPSIS and
generalized lambda-Shapley index methods.

Methods Order of alternatives

The proposed method A1 � A2 � A3

Choquet integral-based TOPSIS A1 � A2 � A3

lambda-Shapley index method A1 � A2 � A3

From Table 1, it is clear to see that three meth-

ods have the same ranking results. This verifies the

method we proposed is reasonable and validity in

this study.

(1) Compared with the Choquet integral-based

TOPSIS which was proposed by Tan 42. The

main advantage of our method is that we de-

velop a new method to determine the fuzzy

measures directly based on decision informa-

tion, while in Tan’s method, the fuzzy measures

need provided by the decision maker which

maybe difficult to the DMs and is closely re-

lated the subjective preferences of the DMs, or

even lead to inconsistent results. In addition, our

method makes full use of weights information

to characterize the interrelationships among the

attributes, which ensures the ranking results are

more objective and accurate.

(2) Compared with the generalized lambda-Shapley

index method which was proposed by Meng

et al. 50. The computational complexity of

our method is much lower than Mengs method.

The reason is that our method is a constructive

method, which only needs to determine a single

parameter by solving a simple linear program-

ming model, and then the fuzzy measures can be

easily obtained, whereas Meng’s method needs

to solve complex programming model, which

leads to high computational complexity and in-

formation loss. Moreover, our method can solve

the MAGDM with incomplete known informa-

tion, while generalized lambda-Shapley index

method does not deal with this problem. There-

fore, our method is more general.

According to the comparisons and analysis

above, the method we proposed is better than the

other two methods. Therefore, our method is more

suitable to solve interval-valued intuitionistic fuzzy

multiple attribute group decision making.

7. Conclusions

In this study, we have presented a new approach to

determine the fuzzy measure of Choquet integral on

the basis of interval-valued intuitionistic fuzzy de-

cision matrix. Considering the interval-valued in-

tuitionistic fuzzy entropy theory, we give a simple

solution method to determine the interval-valued in-

tuitionistic fuzzy measures and present a method

to obtain the experts weights and attributes weights

with fuzzy measures directly. The strict mathemati-

cal reasoning shows that our new proposed method

satisfies the axioms of interval-valued intuitionistic

fuzzy measures. Then, the experts weights and at-

tributes weights are aggregated by using the Shapely

values. The prominent advantage of such fuzzy
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measure method is that it can ease the burden of

the decision maker, avoid the information losing and

distortion and improve the accuracy of the decision

making results. Based on our theoretical analysis

results, we develop a new Choquet integral-based

approach to solve the interval-valued intuitionis-

tic fuzzy multiple attribute decision making prob-

lems. The fuzzy measures to determine the attribute

weights and experts weights are generated by rela-

tive entropy models. A solution process is proposed

to solve the intervalCvalued intuitionistic fuzzy mul-

tiple attribute group decision making problems. Our

new method is simple prerequisite conditions and

can be easily integrated into other multi-attribute

group decision-making techniques, which are effec-

tive expansions on the current interval-valued intu-

itionistic fuzzy decision making models and solution

methods. Furthermore, our new methods can also be

applied to the similar problems in the forms of lin-

guistic variables hesitate fuzzy sets and type-2 fuzzy

sets. These will be considered in the future research.
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