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Abstract

This paper aims to statistically test the null hypothesis H0 for identity of the probability distribution of one-
dimensional (1D) continuous parameters in two different populations, presented by fuzzy samples of i.i.d. 
observations. A degree of membership to the corresponding population is assigned to any of the observations in the 
fuzzy sample. The test statistic is the Kuiper's statistic, which measures the identity between the two sample 
cumulative distribution functions (CDF) of the parameter. A Bootstrap algorithm is developed for simulation-based 
approximation for the CDF of the Kuiper statistic, provided that H0 is true. The pvalue of the statistical test is derived 
using the constructed conditional distribution of the test statistic. The main idea of the proposed Bootstrap test is 
that, if H0 is true, then the two available fuzzy samples can be merged into a unified fuzzy sample. The latter is 
summarized into a conditional sample distribution of the 1D continuous parameter used for generation of synthetic 
pairs of fuzzy samples in different pseudo realities. The proposed algorithm has four modifications, which differ by 
the method to generate the synthetic fuzzy sample and by the type of the conditional sample distribution derived 
from the unified fuzzy sample used in the generation process. Initial numerical experiments are presented which 
tend to claim that the four modifications produce similar results.

Keywords: fuzzy samples, percentile Bootstrap procedure, simulation-based algorithm, resemblance of fuzzy 
samples.

1. Problem Set-Up

Assume that there are two one-dimensional (1D)
samples of a continuous parameter that contain 
respectively n1 and n2 observations. Assume also that 
the observations 1

kz and 2
kz respectively of the first and 

of the second sample belong to two populations, called 

Population 1 and Population 2, with degrees of 
membership respectively 1

k and 2
k . In that sense, the 

data has fuzzy interpretation, hence we name the 
samples Fuzzy Sample 1 and Fuzzy Sample 2:

1 1
1 1 1 1 1 1 1

1 1 2 2 n nZ z , z ,..., z (1)
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2 2
2 2 2 2 2 2 2

1 1 2 2 n nZ z , z ,..., z (2)

The objective is to define how the different 
conditions to form fuzzy samples impact the values of 
the continuous 1D parameters. This may be interpreted 
as a case, where the fuzzy samples were formed by two 
different populations, and it is necessary to test if 
Population 1 has the same distribution as Population 2. 

The most common approximation of the cumulative 
distribution function (CDF) of a given random variable 
(r.v.) over a rigid sample is the empirical distribution 
function (ECDF)1. It only assumes that the observations 
in the sample are independent and identically distributed 
(i.i.d.). ECDF approximates the continuous random 
variable distribution function with a discrete function 
using the observations in the rigid sample. The assigned 
probability to each observation is its relative frequency 
in the sample. Different assumptions for the 
observations in the sample may result in other 
approximations of CDF. For example, three different 
sample approximations with increasing complexity have 
been reported2: continuous linear, functional continuous 
linear, and granular continuous linear.

The empirical sample approximation of CDF under 
the cases of Fuzzy sample Z1 and Fuzzy sample Z2 

according to equations (1) and (2), may be described as
natural generalization of the well-known ECDF 
formula3:

1 1

1

1 1
1

1 1
k

n n

k k
k k
z z

CDF z , for z ; (3)

2 2

2

2 2
2

1 1
k

n n

k k
k k

z z

CDF z , for z (4) 

The same idea can be seen in an implicit form4,
where the probability mass function (a numerical 
function indicating the probability that a given discrete
r.v. is exactly equal to a given value) has the form 
corresponding to (3) and (4). Just like the ECDF, the 
sample approximations (3) and (4) use no assumptions 
for the type of the approximated CDFs except for the 
standard requirement that the observations are 
independent and identically distributed (i.i.d). Assume 
that (3) and (4) are called fuzzy empirical distribution 
functions (FECDF).

2. Criteria and Statistical Tests for Identity of 1D 
Distributions for Two Populations

Most statistical tests that solve the problem of identity 
of variables distribution in two samples calculate the 
value s of a given estimator S of the difference in the 
two sample approximations of CDF and estimate how 
typical it is assuming that Populations 1 and Population 
2 had equal continuous distributions. The estimator S is 
called test statistic and it is a r.v. that tends to increase 
when the difference between the CDFs of the two 
samples increases. The null hypothesis H0 is that the 
continuous distributions of the two populations are 
equal, and the alternative hypothesis Ha is that the 
distributions are different. For the observed value of the 
test statistic (S=s) the probability to reject H0 that is true 
(i.e. pvalue), may be calculated if the conditional 
distribution of the r.v. S (provided that H0 is true) is 
available. Evidently, small values of pvalue would cast 
doubt on the validity of H0.

Different classes of such measures have been 
proposed for statistical tests of identity of two 
continuous distributions. The quadratic class5 has its
most familiar members to be the Cramér–von Mises
statistic and the quadratic Anderson-Darling statistic.
The rank class is represented mainly by the Mann-
Whitney U statistic and the Wilcoxon T statistic6.
However, the supremum based class has the dominant 
position nowadays. The Kolmogorov-Smirnov test 
statistic KS is probably the most intuitive, 
straightforward, and commonly used one for the 
specified problem, being the supremum of the absolute 
value of the difference between the two approximations 
of the CDF that result from the samples7:

1 2
z

KS sup CDF z CDF z (5)

The analytical Kolmogorov-Smirnov test uses (5) as 
a test statistic and approximates the test pvalue with a
series expansion in the case when (3) and (4) were 
calculated with unit degrees of membership8. An 
analytical generalization of this solution for the case of 
fuzzy data sets as in (1) and (2) is not available. 

One of the test statistic S with the most desirable 
properties is the Kuiper statistic (Ku)9. It sums the 
supremum of the positive difference between the two 
approximations of CDF that result from the samples and 
the supremum of the negative difference’s absolute 
value between the same:

1 2

2 1

z

z

Ku sup CDF z CDF z

sup CDF z CDF z
(6)

;
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The Kuiper statistic is a stabilized version of KS,
because its sensitivity to the deviation between the 
distributions is equal for all values of the r.v. This is not 
the case with the widely used KS statistic, where the 
deviations are much more difficult to identify at the tails
of the interval of z10. It is possible to prove11 that if 
FECDFs are utilized as approximations in (3) and (4),
then the solution of the two optimization tasks over the 
continuous parameter z in (6) may be replaced with two 
optimizations over discrete sets with powers 
respectively n1 and n2:

1

2

1 1
1 2

1 2

2 2
2 1

1 2

k k
k , ,...,n

k k
k , ,...,n

Ku max CDF z CDF z

max CDF z CDF z
(7)

Furthermore, if (3) and (4) are plugged in (7), then 
the value of Ku may result directly from the 
observations in the samples without the need to 
construct the FECDFs:

1 1 2 2

1
1 1 2 1

2 2 1 1

2
2 2 1 2

1 1 2 2
1 2 1 1 1 1

2 2 1 1
1 2 1 1 1 1

i ik k

i ik k

r

n n n n

k k k k
i , ,...,n k k k k

z z z z

n n n n

k k k k
i , ,...,n k k k k

z z z z

Ku

max

max

(8)

Formula (8) takes into account the fact that the 
observations in the samples Z1 and Z2 are random, hence 
Ku is a r.v., and Kur is a possible realization. Strictly 
speaking, the same applies to (6) and (7). The analytical 
Kuiper test uses (8) for a test statistic and 
approximates12 the test pvalue with a series expansion of 
scaled Kuiper statistic :

1 2 1 2

1 2 1 2
0 155 0 24 r

n .n n n. . Ku
n n n .n

(9)

pvalue =
2 22 2 2

1
2 4 1 j

j
j e (10)

The resulting pvalue in (10) is true when the 
observations in the fuzzy sample (1) and (2) are all with 
unit degrees of membership. Additionally, the test is 
asymptotic, which requires a large number of 
observations in both samples in order to generate 
reliable results. Finally, analytical generalization of this 
solution for the case of fuzzy data sets (1) and (2) is not 

available. These shortcomings of the analytical Kuiper 
test also apply to its modification9.

Bootstrap simulation is one of the most reliable 
procedures to calculate the conditional distribution of 
the statistic S if H0 is true13. The only assumption here is 
that the observations in the empirical samples are i.i.d. 
The usefulness of Bootstrap in hypothesis testing with 
fuzzy data has been discussed in literature14. The 
Bootstrap simulation is a computer intensive method 
since it needs a large number of calculations15.

There is a Bootstrap procedure to construct the 
conditional probability distribution of the Kuiper 
statistic if H0 is true for the case when each observation 
in samples (1) and (2) belongs with complete certainty 
to the respective Population16. In the current paper these 
ideas are generalized into a numerical simulation 
algorithm to calculate pvalue of the statistical test for 
identity of the 1D continuous distributions of the two 
populations represented by fuzzy empirical samples as 
in (1) and (2).

3. Generating Synthetic Fuzzy Samples in a 
Bootstrap Simulation 

Assume that the continuous distribution of the two 
populations are the same and equal to CDFtr(.) (which 
would be the true CDF, if H0 is true). Then the true 
value of the Kuiper statistic shall be Kutr=0. These two 
equal distributions are not available to the analyst, but 
are realized statistically by the pair of samples (Z1 – Z2), 
given in (1) and (2). Using (8) over these samples, it is 
possible to calculate the real estimate Kur of the Kuiper 
statistic. CDFtr(.) allows to generate countless number 
of hypothetic sample pairs, similar to the sample pair 
(Z1 – Z2): 1 2

1 1Z Z , 1 2
2 2Z Z , 1 2

3 3Z Z , ... . The 

analyst could calculate the hypothetical realizations Ku1,
Ku2, Ku3, ... of the Kuiper statistic based on each of the 
hypothetical sample pairs. The hypothetical realizations 
Ku1, Ku2, Ku3, ... would reveal the probability 
distribution of the sample numerical characteristics Ku,
and Kur would be a possible realization. The difference 
root=Ku–Kutr=Ku–0=Ku is an r.v., called pivot13 or 
root12 and its distribution entirely describes the 
quantitative uncertainty in the real parameters Kur. The 
main task of simulation techniques is to describe the 
distribution of root if CDFtr(.) and the hypothetical 
sample pairs 1 2

1 1Z Z , 1 2
2 2Z Z , 1 2

3 3Z Z , ... are 

not known. Since the true CDFtr(.) is unknown, then it 
may be replaced by its estimate17. If H0 is true, then 
CDFtr(.) is statistically realized (n1+n2) times in the 
samples (1) and (2). Let’s unite the samples Z1 and Z2

into a single sample that contains (n1 + n2) observations:

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

65



N. Nikolova et al.

1 1

2 2

1 2 1 2

1 2

1 1 1 1 1 1
1 1 2 2

2 2 2 2 2 2
1 1 2 2

1 2 1 2 1 2 1 2
1 1 2 2

1 2 1 2

n n

n n

n n n n

Z

z , z ,..., z ,

z , z ,..., z

z , z ,...,

, z

(11)

Then CDFtr(.) may be intuitively assessed with two 
different sample step function approximations. 

The first sample approximation is ECDF based on 
(11): 

1 2

1 2

1 2
11 2

1 1
z zk

n n

-
k

CDF z
n n

, for z ; (12)

This approximation is employed by the classical 
Bootstrap approach, where each observation from the 
unified sample (11) has equal chance of being 
generated, therefore the Bootstrap generation is 
performed using sampling with replacement from (11).

The second sample approximation is FECDF based 
on (11):

1 2 1 2

1 2

1 2

1 2 1 2

1 1
k

n n n n

k k
k k

z z

CDF z

, for z ; (13)

Here, the Bootstrap approach is modified so that 
each observation from the unified sample (11) has a 
probability to be generated, proportional to its degree of 

membership 
1 21 2 1 2 1 2

1
( )=

n n

k k k
k

P Z z , for k=1, 2, 

…, (n1+n2). The approximation (13) is the cumulative 
distribution function of a discrete r.v. with possible 
values coinciding with the different observations in the 
fuzzy sample (11). The assigned probability to each 
value is proportional to the sum of the degrees of 
membership of the instances of that value in the fuzzy 
sample (11).
Assume that in a computer-simulated environment 
(called 'Bootstrap world'18), the true CDFtr(.) of the two 
populations is replaced by one of the two sample 
approximations CDF1-2(.) from (12) or (13). Since in the 
Bootstrap world the two populations have equal 
distributions, then the value of the Kuiper statistic 
would be Kucw=0. In the Bootstrap world, the known
CDF1-2(.) allows to generate M synthetic pairs of fuzzy 
samples 1 2,s ,s

q qZ Z , for q=1, 2, …, M. The synthetic 

pairs of fuzzy samples (again) can be generated using 
two intuitive methods ensuring that they resemble the 
original pair (Z1 – Z2). 

A) Equal-size generation: The method generates 
synthetic pairs of fuzzy samples with the same sizes as 
the original fuzzy samples (1) and (2): 

1 1
1 1 1 1 1 1 1

1 1 2 2
,s ,s ,s ,s ,s ,s .s

q ,q ,q ,q ,q n ,q n ,qZ z , z ,..., z (14)

22
2 2 2 2 2 2 2

1 1 2 2
,s ,s ,s ,s ,s ,s .s

q n ,q,q ,q ,q ,q n ,qZ z , z ,..., z (15)

The equal-size generation is used in the classical 
Bootstrap procedure, but also in the entire Monte Carlo 
simulation, when the true distributions are considered 
known. 

B) Quasi-equal-information generation: If, for 
example, an observation in a fuzzy sample has a degree 
of membership to the Population equal to 1, then the 
information it contains should be equal to the 
information supplied by two observations of the same 
fuzzy sample with degrees of membership to the 
Population equal to 0.65 and 0.35. It follows that the 
information content in a fuzzy sample can be measured 
with the sum of the degrees of membership of its 
observations. The proposed method generates synthetic 
pairs of fuzzy samples with approximately the same 
information content as the original fuzzy samples (1) 
and (2). This method is realized in three steps.

B1) in the first step, two initial synthetic fuzzy 
samples with preselected numbers of observations have 
to be generated, using the known CDF1-2(.):

11
1 1 1 1 1 1 1

1 1 2 2
,s ,s ,s ,s ,s ,s .s

q,ini g ,q,q ,q ,q ,q g ,qZ z , z ,..., z (16)

22
2 2 2 2 2 2 2

1 1 2 2
,s ,s ,s ,s ,s ,s .s

q,ini g ,q,q ,q ,q ,q g ,qZ z , z ,..., z (17)

The counts g1 and g2 are determined as the minimal 
sizes, which ensure that the initial synthetic fuzzy 
samples would contain not less information than the 
original fuzzy samples (1) and (2): 

1

1 2
1 1 2 1 2 1 2

1 1 2
1

n

k n n
k

g min , , , (18)

2

1 2
2 1 2 1 2 1 2

2 1 2
1

n

k n n
k

g min , , , (19)

Here x stands for the minimum integer, which is not 
less than x. In fact rounds the values upwards.
B2) in the second step, the sizes n1,q and n2,q of the final 
synthetic fuzzy samples have to be evaluated in such a 
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way that the first n1,q and n2,q observations of (16) and 
(18) have information content as close as possible to the 
information content of the original fuzzy samples (1) 
and (2): 

1

1

1 1
1

1 2 1 1

ni ,s
,q kk ,q

i , , ,g k k
n arg min (20)

2

2

2 2
2

1 2 1 1

ni ,s
,q kk ,q

i , , ,g k k
n arg min (21)

B3) in the third step, the final synthetic fuzzy samples 
are obtained by cutting down the two generated initial 
synthetic fuzzy samples to their first n1,q and n2,q fuzzy 
observations:

1 1

1

1 1 1 1 1 1
1 1 2 2 ,q ,q

,s
q

,s ,s ,s ,s ,s .s
,q ,q ,q ,q n ,q n ,q

Z

z , z ,..., z
(22)

2 2

2

2 2 2 2 2 2
1 1 2 2 ,q ,q

,s
q

,s ,s ,s ,s ,s .s
,q ,q ,q ,q n ,q n ,q

Z

z , z ,..., z
(23)

4. Assessing pvalue in a Bootstrap Kuiper test with 
Fuzzy Samples

Regardless of whether the synthetic samples were 
derived as in (14) and (15) using equal-size generation 
or as in (22) and (23) using quasi-equal-information 
generation, for the q-th pair of fuzzy samples it is 
possible to calculate the synthetic Kuiper statistic s

qKu
using (8), which is a realization of the sample numerical 
characteristic in the Bootstrap world Kus:

1 1

1 1 1

2 21

2 1

2 2

2 2

2

1 1

1 1

1 2
2 2

1 1

2 2

1 1

1 2

,g ,g

, ,s
i ,qk ,q

,g ,g,g

,s ,s
i ,qk ,q

,g ,g

,s ,s
i ,qk ,q

,g

n n
,s ,s

k ,q k ,q
k k

z z
s
q n ni , ,...,n

,s ,s
k ,q k ,q

k k
z z

n n
,s ,s

k ,q k ,q
k k

z z

i , ,...,n

k

Ku max

max
1 1

1 1 2

1 1

1 1

,g ,g

, ,s
i ,qk ,q

n n
,s ,s
,q k ,q

k k
z z

(24)

In (24) n1,g and n2,g are the generalized sizes of the 
synthetic fuzzy samples in the qth synthetic pair:

1

1

1

for 'equal-size generation'
for 'quasi-equal-information generation'

,g

,q

n

n
n

(25)

2

2

2

for 'equal-size generation'
for 'quasi-equal-information generation'

,g

,q

n

n
n

(26)

After M computer-simulated realities (called pseudo
realities12), a synthetic sample SKu containing number 
of instances of the r.v. Kus is generated:

1 2
s s s

Ku MS Ku ,Ku , ,Ku (27)

If M is a great number (for example 100000), then 
the cumulative distribution of the r.v. Kus may be 
constructed with high precision as ECDF over (27):

1

1 1
sKu kq u

M
Ku u

q
CDF k

M
, for uk ; (28)

The difference Kus–Kucw=Kus–0=Kus is a r.v. called 
rootbw. The main assumption of the Bootstrap technique 
is that the distribution of rootbw in the Bootstrap world is 
the same as the distribution of root in the real world15.

Since in that case, root coincides with Ku, and rootbw
coincides with Kus, then the necessary distribution of 
the sample numerical characteristic Ku coincides with 
the constructed distribution of Kus in (28). So the pvalue
of the test is the relative number of synthetic Kuiper 
statistic higher than the real estimate Kur derived in (8):

1

11 1
sKu Kuq r

M
value Ku r

q
p CDF Ku

M
(29)

The necessary pvalue of the Bootstrap Kuiper test over 
fuzzy samples may be calculated as follows.

Bootstrap algorithm for estimation of pvalue for the 
Kuiper test over fuzzy samples
1. Select the sample approximation of CDF using the 
unified sample:

0 for ECDF
1 for FECDF

Fdist

2. Select the generation method for synthetic pairs of 
fuzzy samples: 

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

67



N. Nikolova et al.

0 for 'equal-size generation'
1 for 'quasi-equal-information generation'

Fgen

3. Select the count of pseudo realities M;
4. Estimate the actual realization of the Kuiper statistic 
Kur according to (8);
5. Form the unified fuzzy sample 1 2Z according to 
(11);
6. If Fgen is 1, then determine the fixed sizes of the 
initial synthetic fuzzy samples:
6.1. Calculate the size g1 of the first initial synthetic 
samples 1,s

q ,iniZ according to (18);
6.2. Calculate the size g2 of the second initial synthetic 
samples 2,s

q ,iniZ according to (19);
7. Initialize pseudo reality cycle: q=1;
8. Form the synthetic fuzzy sample 1,s

qZ :
8.1. If Fgen is 1, then go to step 8.8.;
8.2. Initialize synthetic observation cycle: k=1;
8.3. If Fdist is 0, then draw the kth observation of 1,s

qZ

from the unified fuzzy sample 1 2Z by generation 
according to (12):
8.3.1. generate a pseudo-random number rand [0;1) 
from an even distribution;
8.3.2. find the number in 1 2Z of the kth observation of

1,s
qZ : 1 2numt rand n n ;

8.3.3. remember the kth observation of 1,s
qZ :

1 1 1 2 1 2,s ,s
numt numtk ,q k ,qz z ;

8.4. If Fdist is 1, then draw the kth observation of 1,s
qZ

from the unified fuzzy sample 1 2Z by generation 
according to (13):
8.4.1. generate a pseudo-random number rand [0;1)
from an even distribution;
8.4.2. find the number in 1 2Z of the kth observation of

1,s
qZ : numt is the minimal i from the set {1,2,…, n1+n2}

which satisfies the condition 1 2

1

i
k

k
rand ;

8.4.3. remember the kth observation of 1,s
qZ :

1 1 1 2 1 2,s ,s
numt numtk ,q k ,qz z ;

8.5. Move to the next observation: k=k+1;
8.6. Check whether there are enough generated 
observations for 1,s

qZ : if k n1, then go to step 8.3;

8.7. Form the synthetic fuzzy sample 1,s
qZ according to 

(14) and go to step 9;

8.8. Start initial synthetic observation cycle: k=1;
8.9. If Fdist is 0, then draw the kth observation of 1,s

q ,iniZ

from the unified fuzzy sample 1 2Z by generation 
according to (12):
8.9.1. generate a pseudo-random number rand [0;1)
from an even distribution;
8.9.2 find the number in 1 2Z of the kth observation of 

1,s
q,iniZ : 1 2numt rand n n ;

8.9.3 remember the kth observation of 1,s
q ,iniZ :

1 1 1 2 1 2,s ,s
numt numtk ,q k ,qz z ;

8.10. If Fdist is 1, then draw the kth observation of 1,s
q ,iniZ

from the unified fuzzy sample 1 2Z by generation 
according to (13):
8.10.1. generate a pseudo-random number rand [0;1)
from an even distribution;
8.10.2. find the number in 1 2Z of the kth observation of 

1,s
q ,iniZ : numt is the minimal i from the set {1,2,…, 

n1+n2} which satisfies the condition 1 2

1

i
k

k
rand ;

8.10.3. remember the kth observation of 1,s
q ,iniZ :

1 1 1 2 1 2,s ,s
numt numtk ,q k ,qz z ;

8.11. Move to the next observation: k=k+1;
8.12. Check whether there are enough generated 
observations for 1,s

q,iniZ : if k g1, then go to step 8.9;

8.13. Form the initial synthetic fuzzy sample 1,s
q,iniZ

according to (16);
8.14. Calculate the size n1,q of the final synthetic fuzzy 
sample 1,s

qZ according to (20);

8.15. Form the final synthetic fuzzy sample 1,s
qZ

according to (22) by cutting down 1,s
q ,iniZ to its first n1,q

fuzzy observations;
9. Form the synthetic fuzzy sample 2,s

qZ :
9.1. If Fgen is 1, then go to step 9.8;
9.2. Initialize synthetic observation cycle: k=1;
9.3. If Fdist is 0, then draw the kth observation of 2,s

qZ

from the unified fuzzy sample 1 2Z by generation 
according to (12):
9.3.1. generate a pseudo-random number [0;1)rand
from an even distribution;
9.3.2. find the number in 1 2Z of the kth observation of 

2,s
qZ : 1 2numt rand n n ;
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9.3.3. remember the kth observation of 2,s
qZ :

2 2 1 2 1 2,s ,s
numt numtk ,q k ,qz z ;

9.4. If Fdist is 1, then draw the kth observation of 2,s
qZ

from the unified fuzzy sample 1 2Z by generation 
according to (13):
9.4.1. generate a pseudo-random number [0;1)rand
from an even distribution;
9.4.2. find the number in 1 2Z of the kth observation of 

2,s
qZ : numt is the minimal i from the set {1,2,…, n1+n2}

which satisfies the condition 1 2

1

i
k

k
rand ;

9.4.3. remember the kth observation of 2,s
qZ :

2 2 1 2 1 2,s ,s
numt numtk ,q k ,qz z ;

9.5. Move to the next observation: k=k+1;
9.6. Check whether there are enough generated 
observations for 2,s

qZ : if k n2, then go to step 9.3;

9.7. Form the synthetic fuzzy sample 2,s
qZ according to 

(15) and go to step 10;
9.8. Start initial synthetic observation cycle: k=1;
9.9. If Fdist is 0, then draw the kth observation of 2,s

q,iniZ

from the unified fuzzy sample 1 2Z by generation 
according to (12):
9.9.1. generate a pseudo-random number rand [0;1)
from an even distribution;
9.9.2. find the number in 1 2Z of the kth observation of 

2,s
q ,iniZ : 1 2numt rand n n ;

9.9.3. remember the kth observation of 2,s
q ,iniZ :

2 2 1 2 1 2,s ,s
numt numtk ,q k ,qz z ;

9.10. If Fdist is 1, then draw the kth observation of 2,s
q ,iniZ

from the unified fuzzy sample 1 2Z by generation 
according to (13):
9.10.1. generate a pseudo-random number rand [0;1)
from an even distribution;
9.10.2. find the number in 1 2Z of the kth observation of 

2,s
q ,iniZ : numt is the minimal i from the set {1,2,…, 

n1+n2} which satisfies the condition 1 2

1

i
k

k
rand ;

9.10.3. remember the kth observation of 2,s
q ,iniZ :

2 2 1 2 1 2,s ,s
numt numtk ,q k ,qz z ;

9.11. Move to the next observation: k=k+1;
9.12. Check whether there are enough generated 
observations for 2,s

q ,iniZ : if k g2, then go to step 9.9;

9.13. Form the initial synthetic fuzzy sample 2,s
q ,iniZ

according to (17);
9.14. Calculate the size n1,q of the final synthetic fuzzy 
sample 2,s

qZ according to (21);

9.15. Form the final synthetic fuzzy sample 2,s
qZ

according to (23) by cutting down 2,s
qZ to its first n2,q

fuzzy observations;
10. Calculate the generalized number n1,g  of the fuzzy 
observations in 1,s

qZ according to (25) ;
11. Calculate the generalized number n2,g  of the fuzzy 
observations in 2,s

qZ according to (26) ;

12. Calculate the Kuiper's statistic s
qKu in the qth

pseudo reality according to (24);
13. Move to the next pseudo reality: q=q+1;
14. Check for end of simulation: if q M, go to step 8;
15. Form the synthetic sample SKu containing 
instances of the r.v. Kus according to (27); 
16. Calculate pvalue according to (29).

To clarify the procedure, the steps in the above 
algorithm are organized in four parallel schemes, one
for each of the Kuiper test modifications according to 
the values Fdist and Fgen in the presented unified 
algorithm (see Fig. 1 to Fig. 4).

5. Interpretation of the Set-up Problem

The number of studies, where fuzzy techniques have 
been applied, in the statistical analysis is continuously 
growing under the Soft Computing paradigm. The 
objectives of such studies involve four different 
purposes, the first and the last being19:  "…(i) to 
introduce new data analysis problems in which the 
objective involves either fuzzy relationships or fuzzy 
terms; …(iv) to incorporate fuzzy sets to help in solving 
traditional statistical problems with non-fuzzy data". 
The presented research represents the outlined trend. 
Depending on the set-up interpretation, this work can 
contribute in reaching both of the above-mentioned 
purposes. 
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Fig.1. Scheme for pvalue
Bootstrap calculation with 
'equal-size' generation
using ECDF

Fig.2. Scheme for pvalue
Bootstrap calculation with
'equal-size' generation
using FECDF 

Fig.3. Scheme for pvalue
Bootstrap calculation with
'quasi-equal information' 
generation using ECDF

Fig.4. Scheme for pvalue
Bootstrap calculation with
'quasi-equal information' 
generation using FECDF 

5.1. Solving Data Analysis Problems Involving Fuzzy 
Relations
There are generally two wide spread interpretations of 
fuzzy data measured in random experiments: epistemic 
and physical20,21. Under the epistemic interpretation, it is 
considered that the result of each experiment is a crisp 
original r.v. value, which, however, is partially observed 

and cannot be precisely measured. Almost every 
classical statistic can be fuzzified using the extension 
principle22. As stated in literature23: ''in general,
fuzziness and errors are superimposed". Under the 
physical interpretation, it is assumed that data is 
intrinsically fuzzy and therefore the result of any 
experiment is a fuzzy value. When discussing fuzzy 
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random variables, it is claimed24 that the latter were 
invented for the case when random mechanisms are 
generating imprecisely-valued fuzzy data. The two 
interpretations are not competing, but rather 
complementary and choosing which to adopt in each 
particular case depends more on the problem itself, 
rather than on the attitude of the researcher. 

The proposed Bootstrap Kuiper test that uses fuzzy 
samples is most useful under the physical interpretation.
For example, consider patients with ischemic heart 
disease also experiencing mild to moderate ischemic 
mitral regurgitation. These patients are divided in two 
groups25 – A and B. Group A consists of patients who
were subjected to combined myocardial 
revascularization with mitral valve repair, while group 
B consists of patients who were subjected to isolated 
myocardial revascularization. One of the important 
continuous parameters, indicating medical status, is the 
ejection fraction (EF), which shows what percentage of 
maximal blood volume in the heart is ejected.  Since 
both groups are quite heterogeneous, each is further 
divided into two comparatively homogeneous 
subgroups – A1, A2, B1 and B2. Subgroups A1 and B1 
include patients with comparatively preserved medical 
condition, while subgroups A2 and B2 contain patients 
with worse medical condition. Obviously, the medical 
condition of a patient from group A is intrinsically 
fuzzy, because it can not only take two states (A1 or 
A2), but the whole spectrum between A1 and A2. The 
same applies to group B. Each patient is assigned a
degree of membership to its own subgroup either by the 
cardiac team or by a fuzzy classifier26. If the problem is 
to test the identity of EF distributions in subgroups A1 
and B1 late after surgical operation, then two fuzzy 
samples can be formed. The first fuzzy sample contains 
the measured EF value for each patient in group A1 
along with the assigned degree of membership of the 
patient to A1. The second fuzzy sample has the same 
content, but refers to B1. Then, the set-up is the same as 
the one in Section 1.

5.2. Incorporating Fuzzy Sets in Statistical Problems 
with Non-Fuzzy Data
The set-up in Section 1 and the proposed solution can be 
applied to problems with non-fuzzy data by using the 
form of fuzzy samples (1) and (2). For example, in order 
to improve the understanding of the pathomechanism of 
ischemic arterial (coronary or peripheral) disease, 
thrombus samples of patients are collected and 
processed with two techniques (electron microscopic 
and immunohistochemic) to acquire quantitative data on 
thrombus composition. For each of the techniques,
between 2 and 5 different sections of each thrombus are 

used and in each section between 2 and 5 regions of 
interest are evaluated. The electron microscopic 
measurements generate data on fibrin fiber diameter and 
thrombus occupancy by fibrin and blood cells (red 
blood cells, leukocytes and platelets). The immune-
histochemical measurements generate data on the ratio 
of fibrin and platelet antigens27. The data is analysed 
using hypothesis testing for differences between groups 
of patients with common clinical features in order to 
draw general conclusions on the characteristics of the 
disease. However, a single thrombus from a single 
patient is exposed to effects that vary in space (e.g. 
blood flow in different regions of the thrombus). This 
results in a high degree of biological diversity reflected 
in the heterogeneity of the data measured in different 
areas of a thrombus. A statistical analytical procedure of 
hypothesis testing could account for this heterogeneity 
treating all data as separate observations characterizing 
the disease, if intra-individual heterogeneity is 
neglected. However, because of different size of the 
thrombus samples and consequent difference in the 
number of available measured data from each patient, 
this approach distorts the role of inter-individual 
differences ascribing higher weight for patients with 
larger sets of measured data. If the inter-individual 
differences are to be considered as a factor in the 
disease mechanism, all intra-individual data should be 
taken into account in the statistical analysis as a single 
observation originating as a dataset composed of 
discrete subsets of actually measured data with 
appropriate weighing factor reflecting the total number 
of measurements taken from each thrombus. For 
example, red blood cells are known to modify the fibrin 
structure causing formation of thinner fibers28. The red 
blood cell occupancy in different sections of the same 
thrombus can vary between 7% and 21%27. If these are 
considered as separate observations, this artificially 
increases the number of clots with thin or with thick 
fibers taken into consideration. That is why, a good way 
forward would be to form a sample with red blood cell 
occupancy in all coronary thrombus sections available,
but to weight each measured data for the patient number 
j with 1/tj, where tj is the count of the thrombus sections 
for the patient number j. Similar sample could be 
formed for the peripheral thrombus sections. By doing 
so the samples would reflect the true inter-individual 
heterogeneity in red blood cell occupancy, because each 
patient would contribute equally to the result. There is 
nothing fuzzy in the observations or in the weights, but 
it is convenient to use the set-up from Section 1
assigning 1/tj to the membership degree of the 
corresponding observation (red blood cell occupancy in 
a thrombus sections) in the 'fuzzy' samples.
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6. Numerical Examples 

Numerical example 1: Assume there are two fuzzy 
samples Z1={(15.25-1), (17.16-1), (11.55-1), (17.28-1), 
(23.88-1), (20.11-1)} and Z2={(15.19-1), (12.28-0.5), 
(31.38-0.7), (18.80-1), (15.30-0.6), (19.02-0.8), (18.97-
1), (21.28-1)}. The rigid samples containing the same 
observations are presented in earlier works16. The test 
statistic Kur is 0.4242 according to (9). Each of the four 
modifications of the proposed algorithm are realized 
with M=1000 pseudo realities. The corresponding 
Bootstrap generated CDFs of the Kuiper's statistic are 
shown on Fig.5. The pvalue for each of the Kuiper test 
modifications is: a) 0.649 for Bootstrap with quasi-
equal-information generation using ECDF; b) 0.662 for 
Bootstrap with quasi-equal-information generation 
using FECDF; c) 0.666 for Bootstrap with equal-size 
generation using ECDF; d) 0.625 for Bootstrap with 
equal-size generation using FECDF. Obviously, the data 
in the fuzzy samples does not contradict the null 
hypothesis for any reasonable significance level.
In fact, the observations in the two samples are 
generated from equal continuous distributions of the 
two populations. The unified distribution is a mixture of 
40% normal distribution with a mathematical 
expectation 14 and with variance 16, and 60% 2 with 

two degrees of freedom, with expectation 19 and 
variance 16. Since here, CDFtr(z) is known, then the 
true distribution of the Kuiper statistic is derived using 
Monte Carlo simulation with 1000 hypothetic samples. 
In the qth pseudo reality, there are respectively 6 and 8 
observations generated from CDFtr(z). Each of the 14 
observations has an associated degree of membership to 
the respective population from the given Z1 and Z2. In 
that way, a synthetic pair in the analyzed pseudo reality 
is formed from fuzzy samples 1 2,MK ,MK

q qZ Z , for 

q=1, 2, ..., 1000. Using the qth pair of samples it is 
possible to calculate the realization MC

qKu of the 
Kuiper statistic in a pseudo reality. Based on the 
resulting pseudo real realizations 

1 2 1000
MC MC MCKu ,Ku , ,Ku it is possible to construct the 

CDF of the Kuiper statistic using Monte Carlo 
simulation. The latter is presented on each of the four 
graphics on Fig. 5. It is obvious that regardless of the 
small number of fuzzy samples, the approximation of 
the distribution of the Kuiper statistic is comparatively 
close to the real Monte Carlo approximation. In the 
same time, there is no substantial difference between the 
results from the four versions of the proposed algorithm.

Fig. 5. Bootstrap generated CDFs of the Kuiper's statistic for the fuzzy samples in Numerical example 1, along 
with the true Monte-Carlo empirical CDF of the same data
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Numerical example 2: Let Z1={(12.38-1), (13.01-1), 
(11.14-1), (13.05-1), (15.25-1), (14.00-1)} and Z2 be as 
in Numerical Example 1. The rigid samples containing 
the same observations are presented in earlier works16,
where it is stated that in the rigid sample case, the 
analytical Kuiper test fails to prove the difference 
between the population CDFs. The test statistic 
calculated using (9) is Kur=0.7727. Each of the four 
modifications of the proposed algorithm is realized with 

M=1000 pseudo realities and the corresponding 
Bootstrap generated CDFs of the Kuiper statistic are 
shown on Fig. 6. The pvalue for each of the Kuiper test 
modifications is: a) 0.022 for Bootstrap with quasi-
equal-information generation using ECDF; b) 0.026 for 
Bootstrap with quasi-equal-information generation 
using FECDF; c) 0.049 for Bootstrap with equal-size 
generation using ECDF; d) 0.039 for Bootstrap with 
equal-size generation using FECDF.

Fig. 6. Bootstrap generated CDFs of the Kuiper's statistic for the fuzzy samples in Numerical example 2

At 5% significance level, the null hypothesis has to be 
rejected by each of the four modifications of the 
Bootstrap Kuiper test with fuzzy samples. There is no 
recognizable difference between the results of the four 
modifications of the proposed algorithm, in the same 
way as in Numerical example 1.

7. Conclusion

It is reasonable to ask which of the four proposed 
modifications is to be preferred, but that question has no 
definite answer, yet. Some discussion without empirical 
background may be offered here.

First of all, we can compare the generation methods.
The 'equal-size' generation method is simple. It is
traditionally well established and theoretically sound at 

least for the special case of crisp samples, so our guess 
is that the end users would trust it more. Unfortunately, 
there are no generalizations of the basic Bootstrap 
theorems for the case with fuzzy samples (1) and (2). In 
the same time, the 'quasi-equal-information' method 
may be expected to produce more stable generation 
without the expected odd interruptions and outliers 
which the 'equal-size' generation method is prone to
give, due to the possibility to produce vast difference in 
the information content in different pseudo realities.

Second of all, we can discuss the distribution used 
for generation. The CDF of any population can be better 
approximated by the FECDF of a fuzzy sample, 
compared to approximation by the ECDF of the same 
sample. That is why the proposed algorithm always 
calculates the Kuiper statistic as special difference of 
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the FECDFs of two fuzzy samples, those being either 
the original ones or the synthetic samples. At first 
glance it appears that the generation of the synthetic 
samples in different pseudo realities should utilize the 
FECDF, rather than the ECDF of the unified fuzzy 
sample. The last statement is, however, flawed. A low 
degree of membership of a specific fuzzy observation, 
included in a synthetic fuzzy sample, ensures less 
influence on the sample FECDF of the parameter in the 
pseudo reality. Using the FECDF of the unified fuzzy 
sample for generation of the synthetic samples ensures 
that this synthetic observation has even less chance to 
be included in the synthetic fuzzy sample. So, the low 
degree of membership is in a way double-accounted. 
That is why, it can be expected that the modifications, 
which generate the synthetic fuzzy samples from the 
ECDF of the unified fuzzy sample, would produce 
better results than the corresponding ones, which utilize 
the FECDF of the unified fuzzy sample for generation. 
Similar statement can be discovered in literature29.
However, the two numerical examples, presented here, 
do not support this claim, and produce similar results. 

From the above considerations, it is obvious that 
new extensive numerical simulations and new 
theoretical advances are needed to clarify which of the 
four modifications should be trusted. It is quite possible 
to have problem- and/or interpretation-dependent 
answer. Having said that, our recommended selection at 
this stage would be Bootstrap Kuiper test with 'quasi-
equal information' generation using ECDF.

Another problem of the proposed general algorithm 
for testing the identity of two population's distributions 
using fuzzy samples is that it works about an order 
slower than the corresponding algorithm to solve the 
same problem using two rigid samples16. In any 
computer-intensive family of methods (as the Bootstrap 
procedures) the delay of execution time by such 
magnitude cannot be disregarded, but should be 
addressed in future research.
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