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Abstract

In this paper, an α-resolution method for a set of lattice-valued Horn generalized clauses is established in
lattice-valued propositional logic system L P(X) based on lattice implication algebra. Firstly, the notions
of lattice-valued Horn generalized clause, normal lattice-valued Horn generalized clause and unit lattice-
valued Horn generalized clause are given in L P(X). Then, the α-resolution of two lattice-valued Horn
generalized clauses is represented in L P(X). It indicates the reasoning rules in a resolution process,
which aims at deleting α-resolution literals and obtaining a resolvent. Finally, we build an α-resolution
algorithm for a set of lattice-valued Horn generalized clauses in L P(X). It provides a foundation for au-
tomated reasoning in lattice-valued first-order logic system and an application for designing an inference
system in the field of intelligent decision support.

Keywords: automated reasoning; lattice-valued logic; α-resolution; lattice-valued Horn g-clause; lattice
implication algebra.

1. Introduction

In the real world, human intelligence actions are al-

ways involved with uncertain information process-

ing, hence it is of important significance in AI that

how to make the computer simulate human being

to deal with uncertainty information. As one of the

research fields in AI, automated reasoning plays an

important role for achieving the intelligent comput-

ing reasoning in intelligent or complex systems.

One approach of automated theorem proving

is resolution and its variants. Since the resolu-

tion principle is presented by Robinson in 1965[1],

resolution-based automated reasoning has been ex-

tensively studied in the context of finding natural

and efficient proof systems to support a wide spec-

trum of computational tasks.

In classical logic, based on Robinson’s resolu-

tion principle, many resolution methods are studied,

and a number of important applications of such sys-

tems have been found in some areas such as AI,

logic programming, problem solving and question

answering systems, and so on [2,3]. Specially, there

are three typical resolution methods such as seman-

tic resolution, linear resolution and lock resolution.

Liu deeply studied these resolution methods and ex-
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tended them to the set of the generalized clauses [4].

Lu also presented the resolution principle for a spe-

cific set, which is the set of Horn clauses in classical

logic [5]. However, these classical resolution prin-

ciples or methods based on classical logic are easy

to deal with certain problem. In fact, there exists

much uncertain information or knowledge in the real

world. Because the real world is dealing with uncer-

tainty, it is difficult to design any intelligent system

based on traditional logic. Hence, the area of auto-

mated reasoning based on non-classical logic (espe-

cially multi-valued logic and fuzzy logic) has drawn

many researchers’ attention.

From the viewpoint of symbolism, it is highly

necessary to study and establish a logic founda-

tion for automated reasoning. Lattice-valued logic,

which is an important kind of non-classical logic,

plays an important role in dealing with comparabil-

ity and incomparability. In order to establish the the-

ories and methods to simultaneously deal with fuzzi-

ness and incomparability of processed object itself

and uncertainty in the course of information pro-

cessing, Xu presented lattice implication algebra by

combining lattice with implication algebra [6]. Sub-

sequently, Xu et al. established lattice-valued propo-

sitional logic system L P(X) and lattice-valued first-

order logic system L F(X) based on lattice implica-

tion algebra [7,8,10]. These logic systems, which

have not only stick syntax proof but also sound se-

mantic interpretation, provide a scientific and rea-

sonable logical foundation for intelligent informa-

tion processing and theorem automated proving.

In the frame of lattice-valued propositional logic

system L P(X), Xu et al. established α-resolution

principle for the generalized clauses[9,10,17]. The

α-resolution principle provides a crucial foundation

to construct resolution method for automated rea-

soning. Moreover, Xu et al. further studied the prop-

erties of generalized literals, and the α-resolution

determination table under 49 cases of any quasi-

regular generalized literals and constants are given

along with the proofs of all the cases in the a-

resolution determination table [11]. These can pro-

vide an important resolution foundation in the res-

olution process. Liu et al. established a new res-

olution strategy based on lattice-valued logic, and

constructed an automated reasoning algorithm [12].

Liu et al. aimed at the resolution principle for the

Pavelka type fuzzy logic, and used this resolution-

like principle to Horn clauses with truth-values in

an enriched residuated lattice and consider the L-

type fuzzy Prolog [13]. Liu et al. also proposed

Lukasiewicz implication resolution and applied to

the sets of Horn clauses in residuated lattice [14].

Tang et al. introduces an automatic Web service

composition method based on logical inference of

Horn clauses and Petri nets, and the Web service

composition problem is transformed into the logical

inference problem of Horn clauses by exploring the

dependency relations among services [16]. So far,

there have been a lot of excellent results and many

research areas have been developed on automated

reasoning, but most of them don’t involve lattice-

valued logic and gradational resolution level.

This paper is organized as follows: Section 2 as

a preliminary gives an overview of some basic con-

cepts of lattice implication algebra, basic concepts

of α-resolution principle in lattice-valued propo-

sitional logic, where some relevant works are re-

viewed. Section 3 as a major work proposes α-

resolution method for lattice-valued Horn general-

ized clauses in lattice-valued propositional logic sys-

tem L P(X). An algorithm based on the present

method is constructed in Section 4. Concluding re-

marks and future researches are presented in Section

5.

2. Preliminaries

In this section we review some essential conceptions

about lattice implication algebra, α-resolution prin-

ciple based on lattice-valued propositional logic sys-

tem L P(X).

Definition 1. [10] (Lattice implication algebra) Let

(L,∨,∧,O, I) be a bounded lattice with an order-

reversing involution ′, I and O the greatest and the

smallest element of L respectively, and →: L×L →
L be a mapping. L = (L,∨,∧,′ ,→,O, I) is called

a lattice implication algebra if the following condi-

tions hold for any x,y,z ∈ L ,

(1) x → (y → z) = y → (x → z);
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(2) x → x = I;

(3) x → y = y′ → x′;

(4) x → y = y → x = I implies x = y;

(5) (x → y)→ y = (y → x)→ x;

(6) (x∨ y)→ z = (x → z)∧ (y → z);

(7) (x∧ y)→ z = (x → z)∨ (y → z).

Example 1. [10] Let L = {O,a,b,c,d, I} and O′ = I,

a′ = c, b′ = d, c′ = a, d′ = b, I′ = O, the Hasse dia-

gram of L be defined as Fig.1 and its implication op-

erator be defined as Table 1, then (L,∨,∧,′ ,→,O, I)
is a lattice implication algebra, denoted by L6.
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Fig. 1 Hasse diagram of L6

Table 1 Implication operator of L6

→ O a b c d I
O I I I I I I
a c I b c b I
b d a I b a I
c a a I I a I
d b I I b I I
I O a b c d I

Definition 2. [18] Let ADn = {a1,a2, · · · ,an} be

a set with n modifiers and a1 < a2 < · · · < an,

MT = { f , t} be a set of meta truth values, f < t.
Denote LV (n×2) = ADn ×MT . Define a mapping g
as

g : LV (n×2) → Ln ×L2,

and

g((ai,mt)) =
{

(d
′
i ,b1) when mt = f ,

(di,b2) when mt = t.

then g is bijection, denote its inverse mapping as

g−1. For any x,y ∈ LV (n×2), define

x∨ y = g−1(g(x)∨g(y)),

x∧ y = g−1(g(x)∧g(y)),

x
′
= g−1((g(x)),

x → y = g−1((g(x)→ g(y)).

We call LV (n×2) = (LV (n×2),∨,∧,′ ,→,(an, f ),(an, t))
a linguistic truth-valued lattice implication alge-

bra generated by ADn and MT , its elements are

called linguistic truth-values, and g is an isomorphic

mapping from (LV (n×2),∨,∧,′ ,→,(an, f ),(an, t)) to

Ln ×L2 (see Fig. 1).

(an, t)

(an−1, t)

(ai, t)

(ai−1, t)

...

...

...

...

���� (a1, f )
����

(a2, f )
���� (ai−1, f )
����

(ai, f )...

...

...

...

(a1, t)

(a2, t) ���� (an−1, f )
����

(an, f )
Fig. 1: Hasse diagram of linguistic truth-valued

lattice implication algebra LV (n×2)

In the above definition, both Ln and L2

are Lukasiewicz implication algebras, i.e.,

Ln = (Ln,∨(Ln),∧(Ln),
′(Ln) ,→(Ln),d1,dn), L2 =

(L2,∨(L2),∧(L2),
′(L2) ,→(L2),b1,b2). Ln × L2 is

a lattice implication algebra generated by Ln
and L2, i.e., Ln × L2 = (Ln × L2,∨,∧,′ ,→
,(d1,b1),(dn,b2)).

Example 2. [18] Let AD9={(Slightly(Sl),
Somewhat(So), Rather(Ra), Almost(Al),
Exactly(Ex), Quit(Qu), Very(Ve), Highly(Hi),
Absolutely(Ab)}, MT ={False(F), True(T )}, and

Sl < So < Ra < Al < Ex < Qu < Ve < Hi < Ab,

F < T . According Definition 2, we can con-

struct a linguistic truth-valued lattice implication

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

77



W.T. Xu et al.

algebra with 18 elements, denoted by LV (9×2) =
(LV (9×2),∨,∧,′ ,→,(Ab,F),(Ab,T )).

Definition 3. [10] Let X be a set of propositional

variables, L be a lattice implication algebra, and

T = L
⋃{′,→} be a type with ar(′) = 1, ar(→) = 2,

and ar(a) = 0 for any a ∈ L, where ar : T → N is

a mapping, and N is a nonnegative integer set. The

propositional algebra of the lattice-valued proposi-

tional calculus on the propositional variables is a

free T algebra on X , denoted by LP(X).

Definition 4. [10] A mapping v : LP(X) → L
is called a valuation of LP(X) if it is a T -

homomorphism.

Definition 5. [10] Let F,G ∈ LP(X). If v(F)< v(G)
for any valuation v of LP(X), we say that F is al-

ways less than G, denoted by F < G. F and G are

equivalent propositions and denoted by F = G, if

v(F) = v(G) for any valuation v of LP(x).

Definition 6. [10] A lattice-valued propositional

logic formula F is called an extremely simple

form(ESF), if a lattice-valued propositional logic

formula F∗ obtained by deleting any constant, literal

or implication term occurring in F is not equivalent

to F .

Definition 7. [10] A lattice-valued propositional

logic formula is called an indecomposable ex-

tremely simple form (IESF), if

(1) F is an ESF containing connectives → and ′ at

most;

(2) For any G ∈ F , if G ∈ F in LP(X), then G is

an ESF containing connectives → and ′ at most,

where F is a set of formulae in LP(X).

Definition 8. [10] All the constants, literals and

IESFS are called generalized literals.

Definition 9. [10] A lattice-valued propositional

logical formula G is called a generalized clause

(phrase) if G is a formula of the form

G = g1 ∨·· ·∨gi ∨·· ·∨gn
or G = g1 ∧·· ·∧gi ∧·· ·∧gn,

where gi are generalized literals, i = 1, · · · ,n.

Definition 10. [10] Let F ∈ LP(X), α ∈ L. F is

called α − f alse, if for any valuation v of LP(X),
such that v(F)� α .

Remark 1. If a generalized clause is α-false, then

it is called an α-empty clause (for short, denoted by

α −�).

Definition 11. [9] In lattice-valued propositional

logic system L P(X), let L be a lattice implication

algebra, α ∈ L, G1 and G2 two generalized clauses

of the form

G1 = g1 ∨·· ·∨gi ∨·· ·∨gm,

G2 = h1 ∨·· ·∨h j ∨·· ·∨hn,

where gi(i = 1,2, · · · ,m) and h j( j = 1,2, · · · ,n) are

generalized literals in G1 and G2 respectively. If

gi ∧h j � α , then

g1 ∨·· ·∨gi−1 ∨gi+1 ∨·· ·∨gm ∨h1 ∨·· ·∨h j−1 ∨
h j+1 ∨·· ·∨hn

is called an α-resolvent of G1 and G2, denoted by

Rα(G1,G2), and (gi,h j) is called an α-resolution

pair, denoted by (gi,h j)−α .

Theorem 1. [9] Suppose a generalized conjunctive
normal form S =C1 ∧C2 ∧·· ·∧Cn in LP(X), α ∈ L,
D1,D2, · · · ,Dm is an α-resolution deduction from S
to a generalized clause Dm. If Dm is α −�, then
S � α , i.e., if Dm � α , then S � α .

Theorem 2. [9] Let S be a generalized conjunctive
normal form in LP(X), α ∈ L, α a daul numerator
and

∨
α∈L(a∧ a

′
) � α < I. Suppose that there ex-

ists β ∈ L such that β ∧ (β → β ′
) � α . If S � α ,

then there exists an α-resolution deduction from S
to α −�.

We refer the readers to [6,7,8,9,10] for more de-

tails of the concepts and properties about lattice im-

plication algebra, lattice-valued propositional logic

system L P(X) and α-resolution principle based on

L P(X).

3. α-resolution method for a set of
lattice-valued Horn generalized clauses

In the following, generalized literal and generalized

clause are denoted by g-literal and g-clause respec-

tively.
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Definition 12. Let L P(X) be lattice-valued propo-

sitional logic system, p is called a positive literal,

then p′ is called a negative literal.

Definition 13. Let L P(X) be lattice-valued propo-

sitional logic system, g is called a positive g-literal,

then g′ is called a negative g-literal.

Example 3. Let p and q be positive literals in

lattice-valued propositional logic system L P(X),
then

(1) p → q, p′ → q, p′ → q′, p → q′ are also positive

g-literals.

(2) (p → q)′, (p′ → q)′, (p′ → q′)′, (p → q′)′ are

called negative g-literals.

Remark 2. In L P(X), a positive literal is still called

a positive g-literal, and a negative literal is still

called a negative g-literal.

Definition 14. In lattice-valued propositional logic

system L P(X), let r be a positive g-literal, and

h1,h2, · · · ,hm are the negative g-literals, the clauses

with at most one positive g-literal of the following

form

h1 ∨h2 ∨·· ·∨hm ∨ r, or h1 ∨h2 ∨·· ·∨hm, or r

are called lattice-valued Horn generalized clauses,

shortly for lattice-valued Horn g-clause.

Example 4. In lattice-valued propositional logic

system L6P(X), let p, q, r be the literals, a,b,c∈ L6,

and

H1 = (p′ → b)′ ∨ r,

H2 = (p → a)′ ∨ (r → p)∨ (r → (p → q))′,

H3 = c → r,

then H1,H2,H3 are lattice-valued Horn g-clauses.

Definition 15. In lattice-valued propositional logic

system L P(X), if a lattice-valued Horn g-clause

contains only one positive g-literal, then it is called

unit lattice-valued Horn g-clause.

Example 5. In lattice-valued propositional logic

system L P(X), let p, q, r be the literals, a ∈ L, and

H4 = p → q,

H5 = p → q′,

H6 = p → a,

H7 = (p → q)→ r,

H8 = r,

then H4,H5,H6,H7,H8 are unit lattice-valued Horn

g-clauses.

Definition 16. In a lattice-valued Horn g-clause, if

the rightmost g-literal is a positive g-literal, then it

is called a normal lattice-valued Horn g-clause.

Example 6. In lattice-valued propositional logic

system L P(X), let p, q, r be the literals, and

H9 = (p → q)′ ∨ (r → (p → q))′ ∨ (r → p),

H10 = (p′ → q)′ ∨ (q → r),

then H9,H10 are normal lattice-valued Horn g-

clauses.

Remark 3. Obviously, a unit lattice-valued Horn g-

clause is also a normal lattice-valued Horn g-clause.

Definition 17. In lattice-valued propositional logic

system L P(X), let S be a set of the g-clauses. S is

called a set of lattice-valued Horn g-clauses if every

g-clause in S is lattice-valued Horn g-clause.

Definition 18. In lattice-valued propositional logic

system L P(X), let H1 and H2 be lattice-valued

Horn g-clauses. The resolvent of H1 and H2 are de-

fined as follows.

Case 1: H1 = h1 ∨h2 ∨ ·· ·∨hm ∨ r1, H2 = g1 ∨g2 ∨
·· ·∨gn ∨ r2.

(1) If r1 ∧ r2 � α , then the resolution of H1

and H2 is represented as

h1 ∨·· ·∨hm ∨ r1 g1 ∨·· ·∨gn ∨ r2

h1 ∨·· ·∨hm ∨α ∨g1 ∨·· ·∨gn ∨α
,

and the resolvent of H1 and H2 is

Rα(H1,H2)=α∨h1∨·· ·∨hm∨g1∨·· ·∨gn.

(2) If r1 ∧gi � α , then the resolution of H1

and H2 is represented as

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

79



W.T. Xu et al.

h1 ∨·· ·∨hm ∨ r1

g1 ∨·· ·∨ gi ∨·· ·∨gn ∨ r2

h1 ∨·· ·∨hm ∨α ∨g1 ∨·· ·∨
gi−1 ∨α ∨gi+1 ∨·· ·∨gn ∨ r2

,

and the resolvent of H1 and H2 is

Rα(H1,H2) = α ∨h1 ∨·· ·∨hm ∨g1∨
·· ·∨gi−1 ∨gi+1 ∨·· ·∨gn ∨ r2.

(3) If hi ∧ r2 � α , then the resolution of H1

and H2 is represented as

h1 ∨·· ·∨ hi ∨·· ·∨hm ∨ r1

g1 ∨·· ·∨gn ∨ r2

h1 ∨·· ·∨hi−1 ∨α ∨hi+1∨
·· ·∨hm ∨ r1 ∨g1 ∨·· ·∨gn ∨α

,

and the resolvent of H1 and H2 is

Rα(H1,H2) = α ∨h1 ∨·· ·∨hi−1∨
hi+1 ∨·· ·∨hm ∨g1 ∨·· ·∨gn ∨ r1.

Case 2: H1 = h1 ∨ h2 ∨ ·· · ∨ hm ∨ r, H2 = g1 ∨ g2 ∨
·· ·∨gn.

(1) If r∧ gi � α , then the resolution of H1

and H2 is represented as

h1 ∨·· ·∨hm ∨ r

g1 ∨·· ·∨ gi ∨·· ·∨gn

h1 ∨·· ·∨hm ∨α ∨g1 ∨·· ·∨
gi−1 ∨α ∨gi+1 ∨·· ·∨gn

,

and the resolvent of H1 and H2 is

Rα(H1,H2) = α ∨h1 ∨·· ·∨hm ∨g1∨
·· ·∨gi−1 ∨gi+1 ∨·· ·∨gn.

(2) If hi∧g j � α , then the resolution of H1

and H2 is represented as

h1 ∨·· ·∨ hi ∨·· ·∨hm ∨ r
g1 ∨·· ·∨ g j ∨·· ·∨gn

h1 ∨·· ·∨hi−1 ∨α ∨hi+1 ∨·· ·∨g1

∨·· ·∨g j−1 ∨α ∨g j+1 ∨·· ·∨gn ∨ r

,

and the resolvent of H1 and H2 is

Rα(H1,H2) = α ∨h1 ∨·· ·∨hi−1 ∨hi+1∨
·· ·∨g1 ∨·· ·∨g j−1 ∨g j+1 ∨·· ·∨gn ∨ r.

Case 3: H1 = h1 ∨h2 ∨·· ·∨hm ∨ r1, H2 = r2.

(1) If r1 ∧ r2 � α , then the resolution of H1

and H2 is represented as

h1 ∨·· ·∨hm ∨ r1 r2

h1 ∨·· ·∨hm ∨α ∨α
,

and the resolvent of H1 and H2 is

Rα(H1,H2) = α ∨h1 ∨h2 ∨·· ·∨hm.

(2) If hm∧r2 �α , then the resolution of H1

and H2 is represented as

h1 ∨h2 ∨·· ·∨hm−1 ∨ hm ∨ r1 r2

h1 ∨·· ·∨hm−1 ∨α ∨ r1 ∨α
,

and the resolvent of H1 and H2 is

Rα(H1,H2) = α ∨h1 ∨·· ·∨hm−1 ∨ r1.

Case 4: H1 = h1 ∨h2 ∨·· ·∨hm, H2 = r.

If hm ∧ r � α , then the resolution of H1 and

H2 is represented as

h1 ∨·· ·∨ hm r
h1 ∨·· ·∨hm−1 ∨α ∨α

,

and the resolvent of H1 and H2 is

Rα(H1,H2) = α ∨h1 ∨·· ·∨hm−1.

Where, hi(i = 1,2, · · · ,m) and gi(i = 1,2, · · · ,n) are

the negative g-literals, r,r1 and r2 are the positive

g-literals.

Remark 4.

(1) Specially, if H1 is a lattice-valued Horn g-

clause, then α ∨H1 is still called lattice-valued

Horn g-clause. Here, α is regard as an identifi-

cation and doesn’t implement the resolution.

(2) Obviously, the resolvent of two lattice-valued

Horn g-clauses is still lattice-valued Horn g-

clause.
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(3) There exists no self-resolution in every resolu-

tion process.

Example 7. In lattice-valued propositional logic

system L6P(X), let H1 and H2 be lattice-valued g-

Horn clauses, and H1 = (p → q)′ ∨ (r → a)′ ∨ p,

H2 = (p → r)′ ∨ (p → b), a,b ∈ L6.

According to Definition 9, since p∧ (p → b) �
α , then we obtain the resolution process

(p → q)′ ∨ (r → a)′ ∨ p (p → r)′ ∨ (p → b)
(p → q)′ ∨ (r → a)′ ∨α ∨ (p → r)′ ∨α

,

and the resolvent of H1 and H2 is as follows:

Rα(H1,H2) = α ∨ (p → q)′ ∨ (r → a)′ ∨ (p → r)′.

Theorem 3. In lattice-valued propositional logic
system L P(X), H1 and H2 are the lattice-valued
Horn g-clauses, and H1 = h1 ∨ h2 ∨ ·· · ∨ hm ∨ r1,
H2 = g1 ∨ g2 ∨ ·· · ∨ gn ∨ r2, α ∈ L. If Rα(H1,H2)
is the resolvent of H1 and H2, then H1 ∧ H2 �
Rα(H1,H2).

Proof. Let H1 = G1 ∨ r1, H2 = G2 ∨ r2. Since

Rα(H1,H2) is the resolvent of H1 and H2, we sup-

pose that there exist r1 in H1 and r2 in H2 such that

r1 ∧ r2 � α , then

H1 ∧H2 = (G1 ∨ r1)∧ (G2 ∨ r2)

= (G1 ∧G2)∨ (G1 ∧ r2)∨
(r1 ∧G2)∨ (r1 ∧ r2)

� α ∨ (G1 ∧G2)∨ (G1 ∧ r2)∨ (r1 ∧G2)

� (α ∨G1)∨ (α ∨G2)

= α ∧G1 ∨G2.

Hence, H1 ∧H2 � Rα(H1,H2).

Definition 19. In lattice-valued propositional

logic system L P(X), let S = {H1, · · · ,Hi, · · · ,Hn}
be a set of lattice-valued Horn g-clauses, α ∈ L.

ω = {D1,D2, · · · ,Di, · · · ,Dk} is an α-resolution de-

duction from S to lattice-valued Horn g-clause Dk if

it satisfies the following condition

(1)Di ∈ S, i = 1,2, · · · ,k ; or

(2)there exist m and j, such that Di =
Rα(Dm,D j)(m < i, j < i).

Theorem 4. (soundness) In lattice-valued propo-
sitional logic system L P(X), let S be a set of
lattice-valued Horn g-clauses α ∈ L, and ω =
{D1, · · · ,Di, · · · ,Dk} an α−resolution deduction
from S to lattice-valued Horn g-clause Dk. If Dk is
α −�, then S � α , i.e., if Dk = α , then S � α .

Proof. Since {D1, · · · ,Di, · · · ,Dm} is an

α−resolution deduction from S to lattice-valued

Horn g-clause Dm and Dm = α , according to Theo-

rem 3, then

S � S∧D1 ∧·· ·∧Di ∧·· ·∧Dm.

Moreover, Dk = α , then

S∧D1 ∧·· ·∧Di ∧·· ·∧Dm � α.

i.e., S � α . Therefore, the theorem holds.

Theorem 5. (completeness) Let S be a set of lattice-
valued Horn g-clauses in lattice-valued proposi-
tional logic system L P(X), α ∈ L. If S � α , then
there exists an α-resolution deduction from the set S
of lattice-valued Horn clauses to α −�.

Proof. Due to the form of lattice-valued Horn g-

clauses, we can regard them as general g-clauses.

Moreover, in a resolution process, the resolution is

implemented as the rule of Definition 17 in order to

obtain the resolvent. Analogous to theorem 11.3.2

in the reference [10], the theorem holds.

4. An α-resolution algorithm for a set of
lattice-valued Horn g-clauses in L P(X)

According to the α-resolution method for lattice-

valued Horn g-clauses in lattice-valued proposi-

tional logic system L P(X), we can construct an α-

resolution algorithm for designing an applied auto-

mated reasoning program.

Let S = {H0,H1, · · · ,Hi, · · · ,Hm} be a set of

lattice-valued Horn g-clauses in L P(X), GHi a set

of g-literals in Hi, |GHi | is the number of g-literals.

If Hi is a center g-clause, then we denote the cor-

responding resolution g-clause by CHi . If g is a g-

literal, then we denote the resolution g-literal by hg
such that g∧h � α .

An α-resolution algorithm for lattice-valued

Horn g-clauses is constructed as follows:
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Step 1. set H0 as a top lattice-valued Horn g-clause

such that S−{H0} is α-satisfiable;

Step 2. set i = 0;

Step 3. take a g-literal g in GHi , search the lattice-

valued Horn g-clause CHi in Si such that

hg ∈CHi and g∧hg � α;

Step 4. set CHi as the resolution g-clause, and obtain

the resolvent Di = Rα(Hi,CHi),

a. if Di = α −�, then the algorithm is ter-

minated, go to Step 6;

b. if Di 	= α −�, then add the resolvent Di
to the set Si, go to Step 5;

Step 5. i++, Hi = Di, Si = Si−1 ∪{Di}, go to Step

3;

Step 6. the algorithm is terminated.

Example 8. Let L = (L9×2,∨,∧,′ ,→
,(Ab,F),(Ab,T )) be lattice implication alge-

bra and LV (9×2)P(X) lattice-valued propositional

logic system based on L . Suppose that S =
{H1,H2,H3,H4,H5} is a set of lattice-valued Horn

g-clauses, and

H1 = (p → q)′ ∨ (s → (So,T )),
H2 = ((Al,T )→ p)′ ∨ (p → q),
H3 = p,
H4 = (p → q)′ ∨ ((So,T )→ s),
H5 = (t → (Qu,T ))′ ∨ s,

where p,q,s, t are the literals in LV (9×2)P(X).
According to the α-resolution method, let

(Ex,T ) be a resolution level α , H3 the top gener-

alized clause. By using the present algorithm, a res-

olution deduction process is as follows:

(1) Since p∧ ((Al,T ) → p)′ � α , then the resolu-

tion of H3 and H2 is represented as

p ((Al,T )→ p)′ ∨ (p → q)
α ∨α ∨ (p → q)

,

and the resolvent of H3 and H2 is

Rα(H3,H2) = α ∨ (p → q).

Rα(H3,H2) is denoted by D1.

(2) Since (p → q)∧ (p → q)′ � α , then the resolu-

tion of D1 and H1 is represented as

α ∨ (p → q) (p → q)′ ∨ (s → (So,T ))
α ∨α ∨α ∨ (s → (So,T ))

,

and the resolvent of D1 and H1 is

Rα(D1,H1) = α ∨ (s → (So,T )).

Rα(D1,H1) is denoted by D2.

(3) Since (s → (So,T ))∧ s � α , then the resolution

of D2 and H5 is represented as

α ∨ (s → (So,T )) (t → (Qu,T ))′ ∨ s
α ∨α ∨ (t → (Qu,T ))′ ∨α

,

and the resolvent of D2 and H5 is

Rα(D2,H5) = α ∨ (t → (Qu,T ))′.

Rα(D2,H5) is denoted by D3.

(4) Since (t → (Qu,T ))′ ∧ ((So,T )→ s) � α , then

the resolution of D3 and H4 is represented as

α ∨ (t → (Qu,T ))′ (p → q)′ ∨ ((So,T )→ s)
α ∨α ∨ (p → q)′ ∨α

,

and the resolvent of D3 and H4 is

Rα(D3,H4) = α ∨ (p → q)′.

Rα(D3,H4) is denoted by D4.

(5) Since (p → q)′ ∧ (p → q) � α , then the resolu-

tion of D4 and D1 is represented as

α ∨ (p → q)′ α ∨ (p → q)
α ∨α ∨α ∨α

,
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and the resolvent of D4 and H1 is

Rα(D4,D1) = α.

Hence, we obtain the following formula from the

above resolution process.

H1∧H2∧H3∧H4∧H5∧D1∧D2∧D3∧D4∧D5 �α.

Therefore, S � α , and there exists an α-

resolution deduction from S to α −� with the top

lattice-valued Horn g-clause H3.

5. Conclusions

In this paper we establish α-resolution method for

lattice-valued Horn generalized clauses and con-

struct an α-resolution algorithm in lattice-valued

propositional logic system L P(X). At the same

time, we also give the soundness theorem and com-

pleteness theorem. Lattice-valued Horn generalized

clause, which is an important type of generalized

clauses, can express some special information in real

world. In the future work, The practical application

of these results to complex systems will be investi-

gated and reported in order to support the reasoning

system in intelligent information process. Moreover,

α-resolution method for lattice-valued Horn gener-

alized clauses can be studied in lattice-valued first-

order logic system L F(X).
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