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Abstract

This paper suggests an evolving approach to develop neural fuzzy networks for system modeling. The approach
uses an incremental learning procedure to simultaneously select the model inputs, to choose the neural network
structure, and to update the network weights. Candidate models with larger and smaller number of input variables
than the current model are constructed and tested concurrently. The procedure employs a statistical test in each
learning step to choose the best model amongst the current and candidate models. Membership functions can be
added or deleted to adjust input space granulation and the neural network structure. Granulation and structure
adaptation depend of the modeling error. The weights of the neural networks are updated using a gradient-descent
algorithm with optimal learning rate. Prediction and nonlinear system identification examples illustrate the
usefulness of the approach. Comparisons with state of the art evolving fuzzy modeling alternatives are performed to
evaluate performance from the point of view of modeling error. Simulation results show that the evolving adaptive
input selection modeling neural network approach achieves as high as, or higher performance than the remaining
evolving modeling methods.
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1. Introduction

Evolving fuzzy systems constitute a class of systems
whose structure and parameters can be adapted
concurrently in a stepwise manner using data streams.
Adaptation proceeds continuously and gradually by
means of incremental learning. Incremental learning
enables fast processing with low storage cost because
samples in data streams are processed only once and can
be discarded'. While learning enables continuous and
gradual knowledge update changing the structure and
parameters of models, it maintains the relevant
knowledge of objects learned so far’. A limitation of the
current evolving fuzzy modeling approaches concerns
the non-flexibility to select the input variables as the
system structure and parameters are adapted. Often, the
input variables are chosen using a priori knowledge or a
selection technique. Once chosen, the input variables
remain the same”.

A major issue in evolving systems research is how
to incorporate mechanisms for input variables selection
during the incremental learning process without causing
damages or discontinuities in the learning process™ *.
Ideas to introduce adaptive selection methods have been
presented in Refs. 5 and 6 for classification and in Ref.
7 for system identification.

More specifically, Ref. 5 proposes a classifier whose
input variables selection scheme is part of the learning
algorithm. This method creates and assigns relevance
weights to a set of candidate variables. The » most
relevant are selected as input variables. The relevance of
the input variables are updated at each learning step, but
once chosen, the number of model input variables
remains fixed.

Recently, a similar incremental scheme to select
input variable was proposed in Ref. 6 as part of the
learning algorithm of the evolving fuzzy classifier
FLEXFIS-Class®. The scheme also assigns relevance
weights in the range [0,1] to each input variable. Input
variables with higher discriminating power have their
values set close to 1, while the less relevant variables
have values close to 0. The weights are continuously
updated during the learning process.

An evolving fuzzy linear regression tree with input
selection was introduced in Ref. 7. The tree topology is
incrementally adjusted using a statistical test that
enables updating the number of tree nodes and of input
variables as new data are input.

This paper extends the X-eNFN-AFS (eXtended
Evolving Neural Fuzzy Network with Adaptive Feature
Selection) approach originally introduced in Ref. 9. The
X-eNFN-AFS expands the evolving neural network
constructed with neo-fuzzy neurons (NFN)' suggested
in Refs. 3, 11 and 12.

A neural fuzzy network assembled with neo-fuzzy
neurons and a scheme for adaptive input selection was
first introduced in Ref. 3. Called NFN-AFS (Neural
Fuzzy Network with Adaptive Feature Selection), the
input selection scheme starts with one or more input
variables and, using the input data stream and a statistic
test, decides if a new input variable should be added,
and if an existing variable should be maintained or
excluded. The number of fuzzy sets that granulate the
input variables domains is chosen a priori and kept the
same during operation.

Later, Ref. 11 developed an evolving fuzzy network
with neo-fuzzy neurons called eNFN (Evolving Neural
Fuzzy Network). The eNFN uses an incremental
learning procedure to add or delete membership
functions simultaneously with weights update. The
learning procedure uses input data to estimate current
modeling error and verify if adaptation should proceed
varying the number of membership functions for each
input.

Next, an evolving neural fuzzy network with
adaptive input selection eNFN-AFS (Evolving Neural
Fuzzy Network with Adaptive Feature Selection) was
built'?. Essentially, eNFN-AFS combines the two
previous approaches, namely NFN-AFS and eNFN. The
eNFN-AFS adaptation proceeds by including or
excluding input variables, and either add or exclude
membership Adaptation is  done
simultaneously with adjustments of the neural network
weights. eNFN-AFS granulates the input variables
domains choosing membership functions from a fixed
set of membership functions, one set of each input
variable.

Differently from eNFN-AFS, the X-eNFN-AFS
approach addressed in this paper uses input data to
granulate the input variables domains of a current and a
candidate model. Both, current and candidate models
have an associated set of membership functions for each
of the corresponding input variables and, similarly as in
the previous approaches, input variables selection is
done using the modeling error and a statistical test.

functions.
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Variable selection, input domains adaptation, and
weights are updated simultaneously.

The remaining of the paper is organized as follows.
After this introduction, Section 2 details the evolving
learning algorithm with adaptive input
suggested herein. Section 3 addresses prediction and
nonlinear system identification application examples,
and evaluates and compares the performance of X-
eNFN-AFS against state of the art evolving modeling
approaches. Section 4 concludes the paper with a
summary of its contributions and suggestions for further
studies.

selection

2. Evolving Neural Fuzzy Network with
Adaptive Input Selection

Figure 1 depicts the structure of the X-eNFN-AFS
neural network. The input variables at ¢ are x,y,..,x,,, the
individual outputs are denoted by y;,..,Vu, the network
weights are ¢;,..,¢:m, and the network output is j; .

Tl L ais

Figure 1. Structure of the X-eNFN-AFS neural.

The X-eNFN-AFS uses an incremental learning
algorithm to select the inputs, to evolve the network
structure, and to adjust the neural network weights
concurrently to produce an output. Computations in
each of these steps are recursive and there is no need to
store past data. The input selection step uses a
statistical test to decide if a new variable should be
added, or if an existing variable should be removed or
maintained. The network structure evolves by adding or

Adaptive Input Selection

deleting a membership function based using the input
data and the modeling error. The weights of the neural
network are updated using one-step gradient descent
algorithm with optimal learning rate. An overview of
the steps of the learning algorithm for X-eNFN-AFS is
as follows:

e Choose initial input variables and set current and
candidate models. This step is performed only once
to start the algorithm.

e Choose initial parameters of the membership
functions, i.e. their modal values b. This step is
performed only once from the lower (minxi) and
upper ( max xi) bounds of the input variables
domains.

e  Check if the input X, is greater than the upper
bound (max,,) or smaller than lower bound
( min y; ). Decide if the value of the bounds should
be updated.

e Compute the membership degrees yAl.j of input
X find the most active membership function and
update its modal value.

e  Compute the neural network output ;.

e Update the neural network weights g.. .

e Choose the best candidate model. Decide if the best
candidate model should replace the current model.

e Check whether the most active membership
function represents well the neighborhood of input
X,; . Decide if a new membership function should
be created to refine the neighborhood of x .

e Find the oldest inactive membership function.
Decide if this membership function should be
removed.

The details of each of these steps are given next.

2.1. Step 1: Initial Input Variables and Initial
Current and the Candidate Models

Variable selection requires pre-selection of a set of input
variables. One or more variables of this set are selected
to start learning. The initial set of input variables can be
constructed either from a priori knowledge, or
employing ranking methods'?.

Input variable selection considers the current model
and two candidate models. The first candidate model is
constructed adding new variables to the current model.
The second candidate model is constructed excluding
an existing variable from the current model. The idea is
to check if it is worth replacing the current model by
either a more complex (first) or simpler (second)
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candidate models, the one which improves modeling
performance.

Let n be the total number of input variables and a
be the number of input variables of the current model.
Thus, we can choose any of the remaining (n-—a)
variables and add them in the current model to assemble
a candidate model with (a+1) input variables. On the
contrary, any of the a variables of the current model
can be removed to obtain a simpler candidate model
with (a —1) input variables. Figure 2 illustrates the idea.
The set of input variables {x;, x,, x3} hasn =3 elements.
The current model (highlighted in red) has two input
variables x;, and x,, and a=2. The first candidate
model has the variable x; as an added input. There are
two candidate models: the first has x, as input (x;
removed) and the second has x; as input (x, removed).

2.2. Step 2: Initialization Membership Functions

Initially the domain of each input variable is uniformly
partitioned using triangular membership functions.
Triangular membership functions are defined by their
modal values, and by the lower and upper bounds of
their support. We denote the modal value of the &-th
membership function (and refer to the membership
function itself) by bk . The lower bound of its support is
at the modal value of the (k —1)-th adjacent membership
function bkfl , and upper bound of its support is at the
modal of the (k+1)-th adjacent membership function
b, ., . The initial number of membership functions can
be chosen empirically, based on a priori knowledge, or
using a clustering technique'®. In this paper, initially
current and candidate models start with two
membership functions for each input variable. The
modal values of the initial membership functions are
chosen as follows:

b. . ,
ll=mlnxl.

(1

b. ,
i2=max X;

where i indexes the input variable, miny,; is the lower
bound, and max y; the upper bound of the i-th input
variable domain. Adding and/or removing membership
functions, depending on the input data and modeling
error, refine granulation of the input domain. The
procedures to add and to delete a membership function
are detailed in Sections 2.8 and 2.9, respectively.

Steps 1 and 2 are performed only once and starts the
X-eNFN-AFS learning and adaptation.

—E)—
/

current model
S
/

candidate models that include new
variables

—G—

candidate models that ™
exclude existing variables __.

2.3. Step 3 - Context Adaptation

X1

X2

X1

X2—

X3

X —

—

Figure 2. Candidate models.

In data stream-based applications there may be changes
in operating conditions that enable the emergence of
data whose values are outside the miny, and maxy;
bounds. Therefore, it is important to update the bounds
of the input variables. A simple way to update min y;
and max; is as follows:

If x,. <min_ , then
t X;j

min_ =x_.and b, =min__, (2)
Xj ti il Xj

If x,. > max__, then
1 Xj

maXXi =x, and bim,- = maXXi , 3)
in other words, the maximum and minimum bounds for
each input variable are updated as the algorithm
receives new samples that exceed current bounds. This
step is performed whenever new data are input.

2.4. Step 4 - Modal Value Update

This step updates the modal value of the most active
membership function enabled by current input x,, i =
1,..., n. It works as follows. For each input variable,
let b;k be the index of the most active membership
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function. The membership function indexed by b;k is
updated according to the following rules:

If b;k >l and b? =mj , then

P =0l +ﬁ[xn~—b0{f’ ]

ib; ib; ibj 4)
where g is a learning rate chosen empirically. A typical
value, the one adopted in this paper, is $=0.01.

If b? =lor b;k =m; , then
the modal value is kept the same because in this
case the modal values corresponds to upper and
lower bounds, respectively.

2.5. Step 5: Model Output

Each model (candidate or current) mirrors a set of zero-
order Takagi Sugeno (TS)" rule-based model, one for
each input variable. We detail only the procedure for the
current model for short. The procedure for the
candidate models is, mutatis mutandis, the same. The
output y; of the model at step ¢
individual outputs of the current model, i.e.:

is the sum of

a ®)
V=2 Vi

i=l
where a is the number of input variables for the current
model.

The domain of each input variable x; is granulated
using m; membership functions. Because partitions are
uniform, at most two of the membership functions are
active for a given input x; (Figure 3).

A, A,(m—Z) A:(mfl) A

im

0.5 e o o

Ming,, T mu.)',,'

Figure 3. Uniform partition and active membership functions.

The individual outputs y,; are computed using the
active membership functions only, that is:

Vo=t (Xt )dik; 144 +1 (5t ity +1 (6)

Adaptive Input Selection

where udip; (%) and udj;41(x;) are the activation
degree of membership functions Aik,- and Aik,- 4 ki
and k;+1 indexes the active membership functions, and

gik; and gjk;+1 are the network connection weights.

2.6. Step 6: Network Connection Weights Update

Only membership functions 4., and Ay, are active
for each input x; and onlly the éorresponding
connection weights are wupdated. The updating

mechanism uses a gradient-descent mechanism:
Uty = Dk ~ % O ~I)H Ay, (i) »
. (7
qiki+l - qikl'+l % (yt ~ )'UAikl' (xti) ?
where y, is the desired output, j; is the network
output, and «; is the learning rate. In this paper we
adopt a closed formula to compute the value of «; that

gives zero error at each learning step. The optimal
learning rate'* is:

1

at:n

Elﬂ"‘ik,-(xti)2+ﬂf4iki+l(xti)2 )
Steps 4, 5, and 6 are repeated for all candidate
models.

2.7. Step 7: Adaptive Input Variable Selection

Adaptive input variable selection is based on the F
test'®. The F test evaluates the quality of models,
considering their accuracy and number
parameters. Two models are evaluated, one simpler and
other more complex than the current model. Here,
model complexity refers to the number of input
variables and the number of membership functions of
the model. F test analyzes the cost-benefit between
more precise and more complex models.
The F test'® uses the following statistic:

of free

(RSS;—RSS.)(S-pe) )
F= ,
RSSc(Pc ~Pa )

where § is the number of samples used to estimate the
parameters of the models, RSS, and RSS,
respectively, the sum of squared residuals for the
current and candidate model, and p. and p, are the
number of free parameters of each model. The number
of parameters p is fthe number of input variables times

are,
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the number of membership functions. Assuming that
residuals distribution is normal, F follows a Fisher
distribution with ( P._P S—D, ) degrees of freedom.

In the F test the model parameters are estimated
using the same samples, but the number of samples used
to estimate the parameters may not be the same at each
learning step. This is because new candidate models are
created whenever the current model is replaced by a
candidate model. The new current model continues
with the same number of parameters and statistics, but
the new candidate models start from scratch. Therefore,
the number of samples used to estimate the current
model parameters will always be equal to or greater
than the number of samples used for the candidate
models.

A modification of the e F test suggested in Ref. 17 is
particularly attractive for incremental algorithms. In
Refs. 7, 17 and 18 the F test is used in incremental
linear regression tree learning. This variation of the F
test is used in this work to compare the current model
with the candidate models.

The statistic Fj,. (10) of the candidate model that
has a new variable added to the current model is
computed as follows:

(RSS,—RSS:)(Se—pe) (10)

me RSSc(Sc =Sa+Pa _Pc) ’

where S, e S, are the number of samples used to
estimated the parameters of the current and candidate
model, respectively. Fj;,. follows a Fisher distribution
with ( S-S+ pa—pc.Se—pc ) degrees of freedom.

The statistic F,y. (11) is used by the candidate
model that has a variable removed from the current
model. F,,. follows a Fisher distribution with
(Sc=Sg+Pe—pa-Sc—pc ) degrees of freedom.

(RSS4—RSS, )(Sc ~Pc) (11

exc ~ RSS(Se—Saspe—ra)

The Fj,. and F,, statistics requires p_values to be
found for all candidate models. The candidate with the
smallest p_value is the best candidate model, and it
replaces the current model only if its p_value is smaller
than a significance level y . Because the hypothesis test
is done A times using the same data, it is necessary to
consider multiple comparison approaches'’ such as the
Bonferroni scheme. Therefore, the significance level
must be divided by the number of tests, and a candidate
model replaces the current model only

Ifp_value <% (12)

where A is (n-a) for Fj,. and a for F,y.. Typical
values for the significance level y are 0.01 and 0.05.

The adaptive input variable selection algorithm can
be summarized as follows.

Procedure Input_Selection
nc: number of candidate models
For/=1:nc
compute Fl
compute p_valuel
end For
find candidate model with smallest p_value
CreateExclude=1
Model replacement test
If p value® <y/ 2
CreateExclude=0
replace the current model by the candidate model z
current model keeps statistics/parameters of z
set new candidate models
end If

2.8. Step 8: Creation of the Membership
Functions

Creation of membership functions aims to refine input
domains granulation, and to reduce the output error
uniformly. Granulation of input domains is performed
using the error caused by the currently active
membership functions. The mean value of the local
output errors of the rules corresponding to the active
membership functions are compared against the mean
value of the global modeling error. If the local mean
error value is greater than the overall mean error, then
the local region is refined adding new membership
function as follows.

For each new input x;, the mean value 4 and
variance 6 of the overall modeling error are found as
follows:

) — B(A —( - (13)
i Py ,B(ﬂgt_l &, =y

8t

.2 .2 A N 2 14
67 =U=pXGs _ + Bl ~ Gy =y ) (14)
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Similarly, for the input x; the local mean error
4 4 corresponding to the most active membership
1. * . .
function »; is computed recursively using:

B =i s =Bl —(, =¥ (15)
b b b1

To prevent excessively fine granulation, a threshold
7 is used to limit the smallest distance between the
mfdal values of adjacent membership functions. If
b, >1 and by #mj, then the distance is found using:

PR (16)
dist:(bzb,- +1 3blb,- -1 )

On the contrary, if the most active function is such
that b;k =1 or b;k =m; , then the dist is computed by (17)
and (18), respectively.

I (17)
distz(blbi +1-bib; )
2
(b -hin 1) (18)

The number of rules is not fixed a priori and it
depends of the learning process and data only. This
mechanism avoids complex models and overfitting.
Indirectly, the threshold z controls of the number of
rules. Limit 7 is computed using:
(max ; —min ;) (19)

r=—"-,

n
where 7 is a user-defined parameter. Typically
n €[5,25].
A membership function is created and added:
i, >i +6> and dist>r. (20)
ti 8t

Insertion of a new membership function requires

updating the granulation of the i-th input variable
domain. This can be done as follows:

* *
If b; >landbl. # ml.,then
the most active function is replaced by two new

membership functions whose modal values are
found from (21) and (22).

Adaptive Input Selection

b =b , +dist. (21)
1new; ib; -1
b =b , +2*dist. (22)
1new; ib; -1

If b;‘ =1, then
a new membership function is inserted between

the first and second, and its modal value is found
by:

b =b , +dist. (23)
new -
ib;
*
If bj =mj , then
the new membership function is inserted between
the last and the previous, with modal value
computed by:
b =b , —dist. (24)
new -
ib;
The procedure Create Function summarizes the
mechanism to create and add membership functions.

Procedure Create_Function
*
find b;

~ 2 A % .
compute , 07, , T,dist
If 0y >ji,, +62 and dist>t

Wby ~Het "%, _
create and add new function

update parameters
end If

2.9. Step 9: Exclusion of the Membership
Functions

This step is a mechanism to reduce the number of
membership functions using the concept of age'” *°. The
idea of age is used to determine for how many steps a
membership function has been inactive. The age of a
membership function is:

agej=t—aj, (25)

where a; is the step at which i-th membership function
turn active first and ¢ is the current step.

The scheme to exclude a membership function is as
follows. For each input variable i, find 4; , the index of
the least active membership function enabled by x;.
The membership function indexed by &; is excluded
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If agep; >wand m;>2, (26)
where  is a threshold. Typically, the value of w is
chosen between 50 and 250.

After a membership function is excluded, input
domains granulation is updated as follows:

If bi_ >land bi_ #m,, then

the function is excluded and the lower and upper
bounds of the adjacent membership functions
adjusted. Both, upper and lower bounds change
to keep partition uniform.

If 5 =1, then
the function is excluded and the modal values of

the adjacent membership functions are set as

min,y, .

If b; =m;, then
the function is excluded and the modal values of
the adjacent membership functions are set as

max . .
The procedure to exclude membership functions is:

Procedure Exclude Function

update age;

find &;

If ( agep > ) and (m;>2),
remove membership function indexed &;
update parameters

end If

Steps 8 and 9 are repeated for all candidate models.

2.10. X-eNFN-AFS Learning Algorithm

The steps the X-eNFN-AFS learning algorithm can be
summarized as follows.

Inputs x,, y;, v, S, 17, ®
Output j;
initialize bij
set initial current and candidate models
Fort=1,2,...
input x;, y
check context adaptation

Current Model

compute pAik; (i) » #Aie;+1(xti)
compute j;

compute a;

update b, qik; > 4ikj+1> RSSa s Sas Pa
Candidate Models

nc: number of candidate models

For /= 1:nc

compute pAik; (i) » Ai;+1(xi)
/

compute j;
compute o
t
update bl.,-, q{ , ql, , Rss! ) é, Pé
U ik ikl c
end For

//Procedure Input_Selection
If CreateExclude=1
nm : number of models (current and candidates)
For /=1:nm
Fori=1:n
Procedure Create Function
Procedure Exclude Function
end For
end For
end If
end For

3. Computational Results

In this section, the evolving neural fuzzy network with
adaptive input selection X-eNFN-AFS is evaluated and
compared with other six approaches representative of
the state of the art in evolving fuzzy systems modeling,
namely: DENFIS?', eMG?¥, eNFN'' eNFN-AFS'",
eTS*™ and xTS*. All approaches are evaluated using
prediction and nonlinear system identification examples.
Simulations process data as a stream. The parameters
and the structure of the models evolve as each data
sample is input.

The dataset is split into two subsets with 50% of the
samples each. The first subset is used to find the best
parameters of the models using exhaustive search
whereas the second is used to evaluate the performance
of the models. The best parameters, i.e., the parameters
values that produce the lowest modeling error, are used
for performance evaluation. The modeling error
measure adopted is the Root Mean Squared Error
(RMSE):
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! 27
1N 22
RMSE=| =% (v=31)" |
N1
where N is the number of samples, y; is the desired
output, and j, is the model output.

3.1. Predicting the Position of a Magnetic
Levitation Sphere

Performance evaluation is done using models to predict
the position of a sphere of a magnetic levitation system
(MagLev). The position of the sphere is one of the state
variables whose value depends on the voltage applied to
the coil that produces the magnetic field. The data set
used in simulations was extracted from an actual
magnetic levitation system® *°. The MagLev was run
for 60 seconds with a sampling rate of 10~ seconds (1
ms), resulting in a total of 60000 samples. Initially the
desired position is a sine function whose magnitude is
0.5 and frequency 0.5 Hz. At 1 = 17 seconds the desired
position becomes a square wave with 0.4 of the
magnitude and 0.5 Hz, a step function with magnitude
between -1 and -2 at # = 31 seconds, the sine function
again at ¢ = 41, and finally the square function after 7 =
51. The purpose to change the desired position as
described above is to evaluate the behavior of the
evolving model when operating condition changes.

The aim of the computational experiments is to use
the model to predict the position of the sphere one step
ahead. The model has the following form®:

j}t:f(dp[—S sMpt—5 smpt—4amp[—3)a (28)

where §; is the model output at ¢, dp is the desired
position, mp is the measured position.

A total of 60000 samples were produced, 3000 to
estimate the parameters, and 30000 to evaluate the
performance of all models. Models with adaptive input
selection eNFN-AFS and X-eNFN-AFS start with all
four inputs. DENFIS, eMG, eNFN, eTS, and xTS start
with and keep all four inputs dp,s, mp.s, mp.4, mp.s,
respectively. The actual position and the X-eNFN-AFS
prediction are shown in Figure 4.

Adaptive Input Selection

— Actual Position
--- X-eNFN-AFS Output

L L
5000 10000 15000 20000 25000 30000

t

Figure 4. X-eNFN-AFS prediction of the sphere position.

Figure 5 illustrates how the X-eNFN-AFS evolves
its structure and selects the input variables as each new
sample is input. The adaptive input variable selection
scheme of the X-eNFN-AFS

(dpy—5,mps_5,mps_4 ) as inputs.

selected

—#Rules
——~# Input Varibles

L I I I
5000 10000 15000 20000 25000 30000
t

Figure 5. Structure evolution and variable selection of X-
eNFN-AFS for the MagLev system.

The RMSE performance, the number of input
variables, and the number of rules of the modeling
approaches evaluated are summarized in Table 1. The
best performance is achieved by X-eNFN-AFS followed
by eNFN-AFS, eNFN and eMG. The performance of
the X-eNFN-AFS, eNFN-AFS, eNFN and eMG are
higher than DENFIS, eTS and xTS by one order of
magnitude. The best values of the models parameters
found through exhaustive search are shown in Table 2.

Table 1. Sphere position prediction performance.
Input Number

Model Variables  of rules RMSE
DENFIS 04 13 1.5815
eMG 04 11 0.0832
eNFN 04 09 0.0737
eNFN-AFS 03 06 0.0731
eTS 04 02 1.7912
X-eNFN-AFS 03 08 0.0711
xTS 04 02 1.7892
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Table 2. Best model parameters: sphere position

prediction.
Model Parameters
DENFIS dthr=0.1, mofn=4
eMG 1=0.05, w=20, a =0.01,
-1
Linit=10 111
eNFN £=0.01, »=100,7=10,
eNFN-AFS $=0.01, ©=100,7=10, y = 0.05

eTS r=0.04, Q=750
X-eNFN-AFS  3=0.01, @=100,7=10, y = 0.05
xTS Q=750

3.2. System Identification

In this section the evolving modeling approach is
evaluated using a system identification problem. The
nonlinear system'"** to be modeled is:

m

2 Vi

__ i=l .
V= m 5 +ut_l 5 (29)
4% (i)

i=1
where wu;=sin(271/20), y;=0 for j=l,..,m to m=10.
The aim is to use the model to predict the current output
¥ using past inputs and outputs. The model has the

following form®:

9= (V1Y 1=205V1-95V1-101-1 ) (30)
where j; is the model output at 7.

Here a total of 3300 samples, 1650 to estimate, and
the remaining 1650 to evaluate the performance of all
model. Figure 6 illustrates the actual and X-eNFN-AFS
model outputs.

! — Actual Output
2 | ---X-eNFN-AFS Output
15 A hoA 7

1 4

p | L il I L]
(] 200 400 600 800 1000 1200 1400 1600

Figure 6. Nonlinear system identification.

Figure 7 shows how the structure of X-eNFN-AFS
modifies as data are input. The adaptive input selection
scheme of  X-eNFN-AFS selected (y4-1,

Vt-2s Vt-3:Vt—5:Vt—6:Vt—T:Vt-8-Yt-10) as input
variables.

—#Rules
——-# Input Varibles

_________________

L L | L L L L
200 400 600 800 1000 1200 1400 1600
t

Figure 7. Structure evolution and variable selection of X-
eNFN-AFS for nonlinear system identification.

Table 3 shows the RMSE, the number of input
variables, and the number rules after simulation ends.
The X-eNFN-AFS has similar performance as eMG,
eNFN and eNFN-AFS, and better performance than
DENFIS, eTS and xTS. The best parameters of the
models are given in Table 4.

Table 3. Modeling performance for nonlinear system

identification.
Input Number
Model Variables  of rules RMSE
DENFIS 11 13 0.2080
eMG 11 10 0.1244
eNFN 11 107 0.1210
eNFN-AFS 08 65 0.1401
eTS 11 09 0.8303
X-eNFN-AFS 08 59 0.1234
xTS 11 03 0.8316

Table 4. Best model parameters: nonlinear system

identification.
Model Parameters
DENFIS dthr=0.1, mofn=4
eMG 21=0.05, w=10,2=0.01,
-1
Zinit=10 111
eNFN £=0.01, @=100,7n=15
eNFN-AFS B=0.01, ®=100,7=10,y = 0.05

eTS 7=0.04, Q=750
X-eNFN-AFS  $=0.01, ©=100,7=10, y = 0.05
xTS Q=750

4. Conclusion

This paper has suggested an approach for adaptive
modeling with input variable selection using neo-fuzzy
neural network called X-eNFN-AFS. The X-eNFN-AFS
uses a learning procedure that simultanecously selects

Co-published by Atlantis Press and Taylor & Francis
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the input variables, adapts the granulation of the
input variables domains, and updates the parameters of
the neural network. The approach uses current and
candidate models of distinct complexity, input data, and
the statistic F test to select model inputs.
Prediction and nonlinear system
application problems were used to evaluate and
compare the X-eNFN-AFS against current state of the
art evolving modeling approaches. Simulation results
indicate that the X-eNFN-AFS has comparable or better
performance than the remaining evolving models.
shall consider the dependencies
between input variables, extend the network for multiple
outputs, and investigate mechanisms to reduce the
complexity of the input selection algorithm.
Mechanisms to automatically select user-defined
parameters to turn X-eNFN-AFS more autonomous are
also important for future work.

identification

Future work
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