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Abstract

Moore’s interval arithmetic always provides the same results of arithmetic operations, e.g. [1,3]+[5,9] =
[6,12]. But in real life problems, the operation result can be different, e.g. equal to [4,7]. Therefore, real
problems require more advanced arithmetic. The paper presents (on example of the division) an arithmetic
of intervally-precisiated values (IPV-arithmetic) and its main advantages. Thanks to it, it is possible to
process different tasks that people solve intuitively. The most important advantages are: existence of
inverse elements of addition and multiplication, holding the distributivity law and the cancellation law of
multiplication, possibility of achieving not only the solution span [x,X] but also the full, multidimensional
solution and its cardinality distribution without using Monte Carlo method, possibility of achieving unique
and complete solution sets of equations with unknowns, possibility of calculations with uncorrelated
IPVs, possibility of calculations with fully correlated and partly correlated IPVs, possibility of uncertainty
decreasing of original data items occurring in problems. All these advantages are illustrated and visualised

by examples.

Keywords: Interval arithmetic, Interval-precisiation arithmetic, Granular computing, Interval equations,

Computing with words

1. Introduction

An interval arithmetic defines basic operations on
intervals: addition, subtraction, multiplication and
division. Elaboration of its basic concepts and rules
is assigned to R.E. Moore, who published his first
book ! on this subject in 1966 and the latest 2 in
2009. This arithmetic was called interval one, be-
cause with its use one can e.g. add two quantities
a and b, which values are not precisely but only ap-
proximately known and their approximation or the
precisiation has a form of an interval, e.g. a = [1,3]
and b = [3,5]. The name interval arithmetic and
other notions introduced by Moore (that are widely
used in books about this arithmetic) are rather im-

proper according to authors because they lead to a
little incorrect understanding of this arithmetic and
to incorrect approaches to calculation methods elab-
orated by many scientists. In books on interval arith-
metic there are used such notions as an interval addi-
tion, an interval subtraction, etc. However, in reality
we do not want to add intervals but add e.g. two not
precisely known values a and b, which were precisi-
ated in the interval form on the basis of technical
measurements or expert evaluations (the word pre-
cisiation was used by L. Zadeh in his publications
on Computing with Words 3).

As it will be shown, this new understand-
ing of intervals has a great meaning and leads
to a new arithmetic that is proposed to be
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called the arithmetic of intervally-precisiated val-
ues (shortly IPV-arithmetic) or alternatively the
arithmetic of intervally-approximated values (IAV-
arithmetic). The IPV-arithmetic seems to be a less
important area of mathematics and many scientists
and engineers do not use it or even do not know
about its existence. However, the IPV-arithmetic has
become a very important branch of mathematics in
consequence of awareness of the fact by many engi-
neers and scientists that for achieving more credible
and more informative problem solutions any avail-
able information piece about the problem should
be used. Not only numerical and precise (x =
1.7562883) but also all approximate data pieces as
e.g. y is small or z € [13,15] should be used. This
aim is realised by a popular and rapidly developing
Grey Systems Theory 4, a theory that undoubtedly
can become ‘mathematics of the future’. A very
similar aim also has Granular Computing °.

Interval precisiations are probably the most fre-
quently precisiation forms used in practice. Any
technical measurements or evaluations (human mea-
surements) generated by human experts can be for-
mulated as intervals and a width of such interval
depends on the measuring device characteristic. In
practice, all or almost all continuous variables, as
e.g. temperature, are measured with an error. Thus,
they never can be known precisely. Only discrete
variables as e.g. sum of money in a wallet can be
measured precisely. In scientific research, in engi-
neering, in economy, in medicine and in other ar-
eas of human activity, mathematical models contain
variables and coefficients. At present, usually only
precise knowledge of variables and parameter val-
ues is assumed in problem solving. However, such
calculated results often considerably differ from real
observations. The reason of this state of matter is ig-
noring data uncertainty and applying in mathemat-
ical models only variables, which are known ‘pre-
cisely’ (though, frequently the precision is an illu-
sion only). If variables, which values are known
approximately, are not taken into account, then di-
mensionality of a model will be reduced and this re-
duction can result in great quantitative and qualita-
tive errors (e.g. the real modelled system is nonlin-
ear and its dimensionally reduced model is a linear

one). In practice, most variables and model parame-
ters are known only approximately so arithmetic of
IP-values can have application almost everywhere.

As an example let us consider a model called
Wenger-Bach formula ¢ describing a dependence be-
tween a ship-rudder angle 6[°] and its rotational ve-
locity r [°/s] at small deflections from a constant ship
speed:

F(t) + (Til + T%) 1) + ﬁ (P (t)+r(t))

_ % (5é()+8()) . M

Exemplary values of coefficients can be:

T, = —1183.7[s],
Ty = 100.1[s],

T2 = 31.5[8],
K =0.084[1/s],

and then the final model looks like:
#(£)43090.12-1075 (1) = 2.68- 107 - ((t) +r(1))
= -23.02-107°-8(1) —0.23-107>-8(r). (2)

In the formula (1), Ty, T», T3, K are coefficients
specific for the considered ship. Meaning of vari-
ables r and ¢ is explained in Fig. 1.

A X,

origine of ship-body axes

earth fixed axes

Fig. 1. Coordinate system of a ship movement, 6[°] — rud-
der angle, r[°/s] — rotational speed of the ship

Coefficient values in the model (1) are constant
numbers only then, when the ship is moving with
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a constant forward velocity and ship loading con-
ditions (draught, longitudinal list and side list) and
all other sea conditions (waves, stream, etc.) are
identical as during ship identification experiments.
If the above conditions are different, model coeffi-
cients will change their values. Thus, the ship model
(1) can be called idealistic or academic or labora-
tory one, because the real, actual ship model always
differs from it. Model coefficients vary in certain
intervals in real conditions. Therefore, the realistic
model (3) taking into account the coefficient vari-
ability should be used in the ship movement analy-
sis.

.. 1 1 .
F(t) + ([E,Tl] + [Q,E}) (1)

—1 }"3 r
+ [Q,Tl][Q,TZ]( (Z)+ (Z))

- (BT 0+50) @)

There can be given a large number of exam-
ples that illustrate the necessity of using mathemat-
ics of IP-values instead of the classical mathematics
of precise numbers. Such mathematics is also nec-
essary in various new science branches as e.g. an
artificial intelligence.

An important area of the artificial intelligence
is a fuzzy arithmetic 7%° in which an interval-
based calculation method called an ¢-cut method
is used. Next example is a probabilistic arithmetic
10.1L12 31 which operations on distributions require
application of the interval arithmetic. The inter-
val arithmetic has also been used in the case of
word-models in methods of Computing with Words
3I3I415,16,17.18,19 Tt is a very important branch of
an artificial intelligence that conditions creation of
the automatic thinking similar to the human one
20 The arithmetic of intervally-precisiated values
is necessary for almost all problems with an uncer-
tain, approximate information. However, at present
the mostly used interval arithmetic type (examples
can be books 2*721:22) s first of all the Moore arith-
metic 1>>. This arithmetic can solve many prob-
lems and has found many applications 23242326 Tt
can be used anywhere where it is effective, however

it has its own limitations. The consequence of this
were attempts of improving it with different meth-
ods 21:27,28

Next, few drawbacks of the Moore arithmetic
will be shortly presented.

1. The excess width effect.

2. The dependency problem.

3. Difficulties in solving of even simplest inter-
val equations.

4. Problem of the interval equation’s right-hand
side.

5. Absurd solutions and request to introduce
negative entropy into the system.

Because of the volume limitation of this paper,
these drawbacks will not be discussed here — their
explanation can be found for example in 21?728 and
in many other. In the next part of the paper there
will be presented a multidimensional arithmetic of
IP-values. Its concept was elaborated by Andrzej
Piegat. Some basic concepts of this arithmetic were
partly presented in 27:30:31:32:33.34.35 and in this paper
we will focus on a division of IPVs.

2. Main concepts of the RDM-arithmetic

If the precise value of a variable x is not known but
there is known an interval [x,X] which contains this
value, then a new variable o can be introduced that
satisfies a condition « € [0, 1] and the original value
x can be expressed in the form:

x:)_C+OCx()_C—)_C), aXG[O,l]. 4)
An interval X = [x,X] can be described as:
X={x:x=x+oa(x—x), oec[01]}. ()

If e.g. x € [3,5] then such information can be
expressed as:
x=3+20, o, €[0,1].

The o, variable will be called RDM-variable
(RDM: Relative-Distance-Measure). The interval
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notation is illustrated in Fig. 2.

ax(f_i)
a,=0 y a,=1
\ *——>
X X x X
2a,
0,=0 o, =1
L 4 Y *——>
3 X 5 X

Fig. 2. Illustration of the meaning of the RDM-variable o
in the case of a normal interval [x,X], X > x.

The aim of introducing RDM-variables is not to
make unnecessary parametrisation of intervals but
to introduce the Cartesian coordinate-system in the
interval arithmetic, similarly as in the conventional
crisp arithmetic, where it has been used since cen-
turies. Thanks to the introduction of the RDM-
variable an inside of the interval is not ‘anony-
mous’ and each value of the inside is determined
by a corresponding value of the variable ¢. Also,
thanks to RDM-variables, the IPV-arithmetic be-
comes free from last 4 drawbacks of the Moore
arithmetic quoted before.

The RDM-arithmetic has almost the same math-
ematical properties as the conventional arithmetic *
If A,B,C are intervals, some of the most important
properties of the RDM-arithmetic are listed in points
1-7.

1. A+ B=B+A,AB = BA — commutativity laws
of addition and multiplication.

2. A+(B+C)=(A+B)+C,A(BC) = (AB)C -
associativity laws of addition and multiplica-
tion.

3. For each A in R there exists —A in R such that

A+ (—A)=(—A)+A=0. —A is the additive
inverse of A.
4. A(B+C) =AB+ AC - left distributivity law,

(B+C)A = BA+ CA - right distributivity law.

5. ForeachAinR,0 ¢ A, there exists A~! = 1/A
in R such that AA~' = A(1/A) =1. A~ is the
multiplicative inverse of A.

6. A+C =B+C = A = B — cancellation law of
addition.

7. CA =CB = A = B — cancellation law of mul-
tiplication.

In the case of the Moore’s arithmetic, only first
and second low hold 2! It causes that transforma-
tions of formulas cannot be made and for this reason
more complicated algebraic and mathematical prob-
lems cannot be solved.

It is very easy to prove that particular laws hold
for the RDM-arithmetic. In formulas of the laws,
RDM-models of intervals A,B,C should be inserted
and the laws equations should be examined 3*. For
example, let’s prove the left distributivity law:

A(B+C)=AB+AC
Proof. Let’s describe intervals A, B, C in the RDM-
notation:

A={a:a=a+o(a—a), oa,<€]0,1]}.
B={b: b=b+op(b—b), o c[0,1]}.
C={c:c=c+al(c—c), o €[0,1]}.
A(B+C) = [a,al([b,b] + [c,7])
={a(b+c): alb+c)=[a+ou(@a—a)llb+a(b—D)
+c+a.(c—c)], g, o, € [0,1]}
—{a(b+¢): alb+c) = lat au@—a)]lb+ (B b))
+la+ ou(@—a)llc+ 0 (T — ¢)], 0, 0, 0 € [0,1]}
={ab: ab=a+ au(@—a)llb+ on(b—Db)], 0,05 € [0,1]}
tac: ac=la+ ou(@—a)c+ (-0, oot €

= [a,a][b,b] + [a,d][c,c] = AB+ BC

The distributive law holds because the interval
A is described with the same RDM-variable in both
components on the right side of the law equation. O

The main advantages of the RDM-arithmetic ale
listed below.

(a) Complicated problems can be solved, thanks to
possibility of an equation’s transformation.

(b) Almost all laws of the arithmetic of crisp num-
bers hold for the RDM-arithmetic.
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Some Advantages of the RDM-Arithmetic of Intervally-Precisiated Values

(¢) The RDM-arithmetic provides complete, multi-
dimensional problem-solutions from which var-
ious simplified representations as a cardinality
distribution, a span of solution (Moore’s solu-
tion), a center of gravity can be derived.

In the RDM-arithmetic, it is possible to take into
account dependencies between intervals. In real
problems they are very common. Such depen-
dencies are easily described by RDM-variables.

(d)

Last two advantages can be illustrated by a fol-
lowing example. In the classic interval arithmetic,
as a result of subtracting two identical intervals we
have:

Y=X-X=[xX-[x¥=x-%3—x. (6
IfA =[1,4]:
A—A=[1,4—[1,4 =[-3,3].

In the RDM-arithmetic, we can introduce two
RDM-variables o, oty € [0,1]:

Y =X—X=(x+04(F—x) — (x+0oa(®—x))

= (o1 — 02) (¥ — x).

(7

The result is a function of two RDM-variables
oy and o Y = f(o, o). We can calculate from
it many parameters, eg. an interval lower and up-
per bound. The function value is the smallest for
o, =0 and o, = 1 — in that way we can get the
lower bound of the resulting interval which is equal
x —X. The function value is the greatest for o, = 1
and o,y = 0 —in that way we can get the upper bound
of the resulting interval which is equal X — x.

If, however, we know that in the formula we have
the same interval X, we can assume that ¢,y = 0t =
o,. Then:

Y=X-X=@x+ou(¥—x)—(x+oux-x))=0,
®)
what is consistent with common sense, but unattain-
able for the classic interval arithmetic.
All advantages of the RDM-arithmetic are illus-
trated in examples in next sections. Examples in the
paper are mainly focused on the division of IPV’s.

3. Division of intervally-precisiated values

According to the Moore arithmetic, a division of in-
tervals A /B = X should be realised with the formula
(9) that is based on and results from a multiplication
of intervals (10).
la.@)/[b.b) = a.a)-[1/B,1/b],  0¢b]
If we denote 1/b = d and 1/b = d then the for-
mula (10) can be used for the division.

®)

W

[a,a] - [d,d] = [min{a

max{a

Ql
Q|

|2
1

Fig. 3 presents a functional surface of the divi-
sion of IP-values a and b: a/b = x. Contour lines of
constant values of division results a/b = x = const
can be projected from a 3D-space onto a 2D-space
A X B, what is shown in Fig. 4.

Let us notice that the functional surface of the di-
vision, Fig. 3, consists on an infinite number of point
solutions in form of triplets {a,b,x}, x = a/b. The
‘solution’ (9) and (10) provided by the Moore arith-
metic is only information about the widest interval
[x,X] contained in the full, 3-dimensional solution set
shown in Fig. 3. Thus, the Moore ‘solution’ can be
called a representation of the full result of the divi-
sion of two IP-values a and b.

The RDM-arithmetic interprets the division of
two intervals A = [a] and B = [b] as the division
of two crisp but only approximately known values
a and b, where a € [a,a] and b € [b,b]. Values a and
b can be fully independent, partially dependent (e.g.
b > a) or fully dependent (e.g. a=b, a+b =1,
etc.). Generally a dependence of a and b means that
a restriction R is imposed on pairs (a,b) describing
which pairs (tuples) are allowed to occur. Approxi-
mately known IP-values @ and b are described with
use of RDM-variables ¢, and ¢, so to any restric-
tion R(a,b) corresponds a restriction R(o, 04) ex-
pressed in terms of RDM-variables.

Definition of the division of intervals A = [a] and
B = [b] under restriction R, which corresponds to
division of approximately known values a and b, is
expressed by (11).

'Q,Q'E, 'd,
_ (10)
'dv -d 'dv

IS}
Q
Q
Q|

)
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functional
division-surface x = a/b

contour line
a/b = x=1=const

Fig. 3. Functional surface of the division a/b = x for a > 0 and b > 0, where x means a division result.

contour line
x=4/3 ab=x=1=

x=3/4

x=1/2

x=1/4

const

b

w
P e

Fig. 4. Contour lines of constant values of the quotient
a/b = x in the 2D-space A x B.

Let us notice here, that formula (11) is 3-
dimensional (variables: x, oy, 0p) which corre-
sponds to the 3-dimensional division surface shown
in Fig. 3. Formula (11) shows that in the RDM ver-
sion of the division not only borders g, @, b, b are
taken into account (as in the Moore version) but also
insides of intervals. It is possible thanks to continu-
ous RDM-variables o, and oy and it extends possi-
bilities of the interval arithmetic. It is also very im-
portant, that the Moore representation [x,X] can be
easily determined from simple examination of func-
tion (11) which will be shown further on.

Division can concern not only two intervals A
and B but also three intervals: A/(BC) or more. In
this case, 3 RDM-variables o, ¢, 0, are used and
the division formula (11) extends to (12).

e . — =x= —
BC be b+ (b~ b)ay]lc+ (€ —c)oe]”
R R(a,b,C) R((Xa, Olp, (XC)

Oy, Olp, O € [0,1]
(12)

The division result (12) exists in 4-dimensional
space O, X 0p X o x X. If the partial result X; =
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A/B is known, then it can be used for calculation of
the final result X, = A/(BC) according to formula

(13).
A _(A) X
BC_<B>/ e

On the basis of the 4-dimensional result (13) its
simplified representations, as e.g. the span [x;,%]
(1-dimensional representation) or cardinality distri-
bution can be determined.

There is a convention of denoting intervals by
capital letters in the interval arithmetic literature 2.
In examples presented in the next part of the pa-
per, small and capital letters will be used for various
problem variables (IP-values) and intervals will be
denoted in brackets: [x].

Now, let us consider an example of the IPVs di-
vision: a/b = x.

=X (13)

Example 1: Possibility of achieving not only the
solution span [x,X] but also the full solution and its
carddinality distribution.

A truck driver has travelled distance d [km] from
City 1 to City 2 several times. Real travel dis-
tances have been one time shorter, other time
longer because of road repairs and detours. Gen-
erally, the travelled distance has been in the inter-
val d € [750,800] km. The average travel speed
also has changed and has been in the interval v €
[53.333,62.500] km/h. How great has been travel
time x [h]?

The problem can be expressed in the form of
equation:

[d]

M

Equation (14) can be transformed with use of the
Moore arithmetic into:

d,d]
v, ]

_ [750,800] . _
" [53.333,62.5] XX, (14)

[d]  [750,800]
o= 365 = 750,800] - [0.016,0.01875]
= [12,15] = [x,%].

(15)

Solution (15) obtained by the Moore arithmetic
is 1-dimensional and therefore its informative value
is limited. Now, let us solve this problem with the

RDM-arithmetic. RDM-variables ¢ and ¢, are in-
troduced in (16). Travel time, as variable we are
looking for, is denoted by x.

d =750+500y, oy €[0,1]
v=>53.3334+7.1667a,,, a, € [0,1]
d d+ o(d—d) 750+ 500y

v vto(—v)  53.333+7.1670,

(16)

Variables d and v are independent, so no restric-
tions R on pairs (d,v) are imposed.

Values of variables d, v, x for various border val-
ues of oy and «, are given in Table 1. The prob-
lem of the IPVs division d /v = x is presented in the
2D-space D xV in Fig. 5. Let us notice that the
solution d/v (16) is a 3-dimensional set of triplets
{og, 00, x}, x=4d/v.

Table 1. Values of variables d, v and x = T for various bor-
der values of RDM-variables o € [0,1] and o, € [0, 1] where x
means the travel time between City 1 and City 2.

Oy 0 0 1 1

o 0 1 0 1

d d =750 d=750 d=2800 d =800

v v=>5333 7$=625 y=5333 Tv=625
x=T | d/v=1406 d/v=12 d/v=15 d/v=128

The result obtained by the Moore arithmetic x €
[12,15] is not the exact result of the division d /v = x
that is given by (16) and shown in Fig. 5. It is only
the widest interval contained in the exact multidi-
mensional result (16). It can be called a representa-
tion of the exact result. Other representation can be
a cardinality distribution card(x) of particular possi-
ble values x = d/v. Lengths L; of contour lines x =
const can be interpreted as occurrence cardinalities
card(x) of particular values of x 3!.

Caution!  Contour lines of the division are
not parallel — see Fig. 4. The length L; of the
first contour line from Fig. 5 is determined by
formula (17) and the second line L, by formula
(18). In the considered case, lengths of contour
lines are almost equal. Fig. 6 presents the nor-
malised cardinality distribution card(x) of the divi-
sion result of two IPVs d/v = x from Example 1.
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contour line

d[km] A T=EAV=15 g 2140625 d/v =12.8 = const
/ /7
/ 4 /
/// ,// ///
d=800 I / ’
// ,’ //
/ ; /s x=dnh=12
// / ,/ s
/ / s
// //L // ///
ag A /// /// 1 /’/L2 ///
’ // /7
/ ! /// //
da=750 | / % % input-knowledge space DxV
/ 4 ’ Vd 9
S J/ W L tuples (d,v)
/ 7/ 7
/ 7/ 7
’ 7 7
L 1 t 1 >
53.3333 56.89 58.6 a, 62.5 v [km/h]
v v

a, = 0 a, = 1

Fig. 5. llustration of the IPVs division d /v = x with use of the RDM-arithmetic, oy € [0,1], ¢, € [0,1].

Li=\@-dP+0d/d-y? (7

Ly=\/@—dp+(F-defd?  (8)

A card(x)
1 L
05}
1 1 L >
115 12 12.5 13 135 14 14.5 15 x
d d d _ d
xX= = x= = x= = x= —
v v v v
x=12.8 x = 14.0625

Fig. 6. Distribution of the normalised cardinality card(x) of
possible results x € [x,x] = [12, 15] of the IPVs division d /v
from Example 1, k, — normalising coefficient.

Summary of the example.
Results provided by the Moore arithmetic and the
RDM-arithmetic can seem identical. However, this
is not true. The Moore arithmetic doesn’t distinguish
that one and the same value of the division result x
can be generated by different tuples (d,v). E.g. the
value x = 12.8 can be generated by d/v =750/58.6
or by d/v =800/62.5 and by many other tuples. It
can be seen in Fig. 5. Because of this, the Moore
arithmetic generates only the information about the
widest interval [12,15] contained in the full solu-
tion (16) — especially it can not produce such dis-
tributions of the cardinality card(x) as shown in
Fig. 6. Such distributions can have a great mean-
ing in the case of complex problems that are mod-
elled by complicated mathematical formulas or by
complicated schemes of information processing, e.g.
Gantt schemes, PERT-schemes, etc.

Now, let us consider a backward calculation
problem in the case of the interval division presented
by Example 2.

Example 2: Possibility of achieving unique and
complete solution sets of equations with unknowns.

A driver has travelled distance d from City 1 to
City 2 several times. His route has been one time
shorter, other way longer: d € [750,800] km because
of road repairs and detours. Travel times also have
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Some Advantages of the RDM-Arithmetic of Intervally-Precisiated Values

varied: T € [12,15] h. How great has been the car
velocity x [km/h]?

Equation (19) is to be solved to find an answer to
this question.

750, 800]

[x,X]

=[12,15]  (19)

Solving this equation with the Moore arithmetic
we can obtain the representation being the widest in-
terval contained in the exact solution.

[x,%] = [50.000,66.667]

Now, let us see what result we obtain with the
RDM-arithmetic. The variable d can be expressed
with use of the RDM-variable o, € [0,1] and the
variable T with use of o7 € [0, 1]:

d=d+oy(d—d)=1750+500y,
T=T+or(T—T)=53.333+9.16707,
o4 €[0,1], oy €0,1].

Equation (19) can be also expressed with use of
RDM-variables as:

d d—d _
__Fad—(d_):z—i-(XT(T—I%
X
dtogd—d) 7504500y

T Tvor(T-T) 53333+9.167a7r  (20)
o4 € [0,1], oy €10,1].

Equation (20) is the full and exact, multidimen-

sional solution of the problem. Tab. 2 shows values

of variables d, T and x = d/T for various border
values of RDM-variables o and og.

Table 2. Values of variables d, x, T for various border values of
RDM-variables o, and or.

oy 0 0 1 1
or 0 1 0
d d =750 d =750 d =800 d =800
T T=12 T=15 T=12 T=15
x=d/T | d/T =625 d/T=50 d/T=6667 d/T=53.33

Fig. 7 shows the 3D-illustration of the problem
solution (20). The solution granule of the problem
is more precisely shown in the 2D-space (D x X) in
Fig. 8.

Fig. 8 shows the difference between the solu-
tion representation obtained by the Moore arith-
metic [x,X] = [50.000,66.667] and the solution of
the RDM-arithmetic, where the solution is the set
{(d,x)} of tuples (d,x) which satisfy conditions (20)
or (21).

(d,v): d=750+500,, oyc€]0,1]

x>d/15, x<d/12 @h

Fig. 8 clearly shows an imprecision of the Moore
representation [x,x] = [50.000,66.667] in relation to
the full solution obtained by the RDM-arithmetic.
No 1-dimensional representation of type [x,X] pro-
vide such information as the solution obtained by
the RDM-method. In case of doubts, whether the
RDM-solution is really correct, it can be checked
with the method of testing points. The point TP1 in
Fig. 8 has coordinates (d,x) = (800,50). It can be
easily checked on the basis of the original equation
[750,800] /[x,x] = [12,15] that the quotient d/x =
800/50 = 16 is not contained in the interval [12,15].
Similarly, the test point TP2 (d,x) = (750,50) can
be checked, Fig. 8. It can be easily seen that the
value of the quotient d /x = 750/50 = 15 lies on the
right edge of the interval [12,15] of the considered
equation.

A very interesting problem is the division of
identical IPVs. It will be considered in Section 4.

4. Division of ‘identical’ intervally-precisiated
values

If we divide two identical numbers using a classic
arithmetic, we always obtain a result equal to 1 in-
dependently what specific problem we solve.

35—7g

3°5 -7 a

Dividing two same intervals with an application

of the Moore arithmetic, we always obtain a certain

interval including 1 as a result, and it is never a de-
generated interval equal to [1,1], for example:

A 13 [
A3 [3’3} | )

Using the Moore arithmetic, independently what
specific problem we solve, we will always obtain the

=1 (22)
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input-knowledge granule
tuples (d,T)
solution granule in 3D-space

—————— fragment of the division surface: d/x = T
triples (d.x,T)

1
"""""" 62.5 66.67

»

-~ -7 x [km/h]

800 o~ . l output (solution) granule in 2D-space
tuples (d,x)

Fig. 7. Visualization of the IPVs division operation d/x = T (backward-calculation type) in the
3D-space D x X x T.

d [km]

d[km] p RDM solution granule in space D x X
tuples (d,x)
_ TP1
d =800 L] \
contour line
T=12
o A T =d/x =15 = const
d=1750 &
TP2
" conventional solution R
50 53.33 62.5 66.67 x [km/h]

Fig. 8. Nonrectangular solution granule of the equation d/x = T in the 2D-space (D x X); TP1 and
TP2 — test points.
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same result [1/3,3]. It means, that like in a classic
mathematics a general formula for interval dividing
exists, as equations (9) and (10). Instead, the RDM-
arithmetic shows that an infinite number of results
can be obtained from division of same IPVs! It is
very astonishing and inconsistent with an intuition.
Let’s consider 3 following examples of dividing of
same IPVs [9,11]/[9,11] occurring in different prob-
lems. It confirms that operations on uncertain data
are more complicated than we thought.

Example 3: Possibility of calculations with uncou-
pled (uncorrelated) IPVs.

A container with an irregular shape contains a mate-
rial which volume V [m?] is evaluated as V € [9, 11]
m3. A specific volume of this material V), [m?3/ton]
depends on a humidity degree and varies in the range
Vyp € [9,11] m*/ton. The material is hard and its spe-
cific volume doesn’t depend on its volume contained
in the container. What is the weight W [ton] of the
material?

In the case when the material volume V and the
specific volume Vj, is known with a perfect preci-
sion, the material weight can be calculated with an
idealistic equation (24).

14

W=—

v, (24)

Because our knowledge is approximate, the
Moore arithmetic can be applied and for positive
IPVs we achieve the widest interval (25).

_o,11]
09, 11] _[

Vv,V
Virs Vo)

9 11

. wl= o

] . (25

Now, let’s apply the RDM-arithmetic to solve
above problem. The volume V of the material is
known only approximately so it can be represented
with the RDM-variable oy € [0,1]:

V:K+aV(Z—V):9+2aV, Otvé[o,l]. (26)

The specific volume Vy, is also known only
approximately and it can be represented with the
RDM-variable oy, € [0,1]. Values of V [m®] and
Vip [m3/ton] are different in the general case al-
though they are located in the same interval [9,11].

A probability of an event that both variables are
equal (for example V = 9.783265831... and V;, =
9.783265831...) is infinitely small. As it was given
in the problem description, the specific volume Vj,
doesn’t depend on the volume V of the material in
the container, hence RDM-variables are different:
Oy 7é Oy,

The weight W [ton] can be calculated from the
formula:

. 9420y

= — € 10,1 € 10,1]. (27
9_'_206‘/”77 Oy [7 ]7 OCV;,, [7 ] ( )

Equation (27) expresses the exact, multidimen-
sional solution of the problem. In the case of the
division, extreme weight W values must be located
at the boundaries of the problem knowledge granule
which are defined by boundary values of variables
oy and ay,,, Tab. 3. The result of the IPVs division
is presented in Fig. 9.

Table 3. Values of the weight W for boundary values of RDM-
variables o and o,

(07] 0 0 1 1

or 0 1 0 1

w |1 911 11/9 1

It can be seen from Fig. 9 that minimum weight
has the value W = 9/11 and maximum: W = 11/9.
Thus, the result W € [9/11,11/9] is consistent with
the result obtained with the Moore arithmetic. How-
ever, the RDM-arithmetic enables obtaining not only
the range [9/11, 11/9] of possible solutions but
also the cardinality distribution card(x)presented in
Fig. 10.

Let’s consider a problem of the division of same
IPVs [9,11]/[9,11] in an another example.

Example 4: Possibility of calculations with fully
correlated IPVs (thanks to existence of multiplica-
tive inverse element).

Little Johnny raises money for the piggybank. How-
ever he doesn’t know how much money he has. He
evaluates that the amount S is [9,11]$. Johnny’s fa-
ther promised that he will add into the piggybank the
same amount S that is collected, as a reward. After
checking the box, the father made his promise. How
many dollars did he give as a reward for every dollar
collected by Johnny?
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Vm?]

solution segment

W=11/9 W=11/10 W=1=const

ay=0 11

input knowledge granule

[V, VIx[Vy. Vi ]

contour line

ay W=10/11 = const

W=11/10

W=9/11
W=10/11

Qvsp = 0

Fig. 9. Ilustration of the solution of the same IPVs divi-
sion problem from Example 3 projected onto the 2D-space
V X Vyp. Variables V and Vy, are completely independent.

card(W)

0.8}

0.6

04+t

0.2}

W [ton]

0.9 1 11

9/11 =0.82 11/9=1.22

Fig. 10. Normalised cardinality distribution card(W) of the
division of same IPVs [9,11]/[9,11] from Example 3.

For each person the task is very simple. The an-
swer is: for each collected dollar Johnny got 1 dollar
as a reward. The correct interval arithmetic should
also give the same result which is consistent with the
human common sense.

We know that collected amount of money S,
known only approximately, is included in the inter-
val § € [9,11]$. The reward R is exactly equal to the

amount S, so:

R=S, Re[9,11]5.

The IPVs division can be realised to calculate
how great reward falls on each collected dollar. It
can be done with the Moore arithmetic:

[9,11]
9,11]

[Ri,R] = =[9/11,11/9].  (28)

—

It can be seen that the Moore arithmetic is not
able to give an exact and obvious answer in this ex-
ample.

Let’s apply the RDM-arithmetic now. The value
of the amount S collected by Johnny can be repre-
sented with the RDM-variable o5 € [0, 1].

S=9+20ag, os € [0,1] (29)

The reward R is exactly equal to the amount §
(R = S) so these variables are completely depen-
dent. This equation is a restriction imposed on pos-
sible pairs (R,S). Any value the amount S would
take, the reward R will be always the same. So,
RDM-variables o5 and og must be also equal and
it means that only one RDM-variable can be used:
o = 05 = OR.

Now, formulas for variables S and R have form:

S=94+2a

R=9+2a, (30)

o €[0,1].

The division of not exactly known but identical
values S and R is given by the formula:

R 942«
1= < =1

S 9420

ac0,1]. @)

The division result is presented in the 2D-space
R x §, Fig. 11. Solution presented in Fig. 11 has the
cardinality distribution card(x) shown in Fig. 12.
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RI[$] &
segment of possible solutions
tuples: R/S =1 .
a=0 11 contour line
R/S =1 = const
a
a=1 9
R=1
9 o 11 S[$]
a=0 a=1

Fig. 11. Illustration of the solution of the same IPVs di-
vision problem from Example 4. Variables V and V), are
completely dependent.

A card(Ry)

1 Y | >

9/11 = 0.82 1 11/9=122 R,

Fig. 12. The cardinality distribution card(R;) of the result
of the same IPVs division obtained in Example 4.

Now, let’s consider another example of the divi-
sion of same IPVs [9, 11]/[9, 11].

Example 5: Possibility of calculations with par-
tially correlated IPVs.

A delivery truck transports a material with a spe-
cific volume Vj,, approximately known, V;, € [9,11]
m?/ton. The value Vip depends on the moisture con-
tent of the material. The driver leaves the factory if
the truck is loaded at least over the volume V =9
m?, if it is at least sufficiently filled up. The truck

can carry not more than 11 m> of a material and the
permissible weight of a cargo is 1 ton. How much
material W [ton] does vehicle transport?

If the total volume V of the cargo and the specific
volume V), is exactly known then the weight W can
be calculated with the idealistic formula:

Vv

W=_—. 32
v, (32)

As, values V and Vy, are known only approxi-
mately the Moore arithmetic can be applied:

N VA I CATI B I
W7~ o = i = (9

} . (33)

Now, let’s solve this example with the RDM-
arithmetic. The approximately known volume value
V can be expressed with the variable oy € [0,1] as a
formula:

V:Z+Otv(z—7):9+2av, Olv€[0, 1]. (34)

Also Vj, can be expressed with the variable
ay,, € [0,1] as a formula:

Vip =Vap+aw, (Vip —Vip) =9+201,,, av,, €[0,1].
(35)

The weight W can be calculated as:
Vv o 9+2(X‘/

W=—=—"—, oyecl01], ay, €10,1].

Vip 9+20€vsp velo] Vip 0.1]
(36)

As the weight W can’t be greater than 1 ton we

have:
9420y

=——— <1, 37
9+2(ngp 37

and the consequence of the formula (37) is the in-
equality:
ay < oy, . (38)

Formula (38) expresses a restriction imposed on
pairs (V,Vj,) and correspondingly (aw, ow,,).

The final, multidimensional problem solution is
described by the formula:
% - 9+20€V

W=—=_—""V
Vp 9420, (39)

oy < ay,,, o €1[0,1], oy, €[0,1].
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The set of possible solutions is presented in
Fig. 13. The solution granule described by the for-
mula (39) and visualised in Fig. 13 has the cardinal-
ity distribution card(x) presented in Fig. 14.

Vm?]

solution segment W= 1
tuples (V,V):
ay=0 11 V/Vg=W=1 = const

solution granule

W=21/22

W=10/11

/ W=19/22
ay=1 9

W=9/11
W=1 W=10/11

9 vy 11 Vi [m’/ton]

ayy =0 aysp =1

Fig. 13. Visualisation of the solution granule of the same
IPVs division from Example 5. Variables oy and aw,, are
partially dependent: ay < oy,

sp*

4 card(W)

0.5}

W [ton]

9/11=0.82 0.9 1 11 11/9 =1.22

Fig. 14. Cardinality distribution card(W) of the solution of
the same IPVs division from Example 5 as representation
of the full solution (39).

It must be noted that the correlation of variables
V and Vy, from Example 5 described by formulas
(37) and (38) was caused by the limited load capac-

ity of the truck: W =V /V;, < 1 t. Such correlation
is only one of an infinite number of possible partial
dependencies. Theoretically, the maximum load ca-
pacity of the truck can have different values, for ex-
ample: W < 1.1t, W < 1.2, etc. It means that the
quotient [9,11]/[9,11] can have an infinite number
of solutions.

As a summary, Fig. 15 presents 3 solutions from
an infinite number of possible ones obtained in Ex-
amples 3, 4 and 5. Solutions were obtained with
the application of the RDM-arithmetic (and one for
comparison with the Moore arithmetic). Fig. 16
presents cardinality distributions of results of the
‘same’ IPVs division task obtained in Examples 3,
4 and 5.

As Fig. 15 and Fig. 16 presents, the RDM-
arithmetic allows for more informative solutions
than the Moore arithmetic which loses a lot of infor-
mation details. The RDM-arithmetic enables for use
of the additional knowledge about divided (added,
subtracted, multiplied) variables, for example about
dependencies between them. It means, that thanks
to the RDM-arithmetic we can ‘see’ much more than
thanks to the Moore arithmetic. Divisions of ‘identi-
cal’ IPVs presented in Examples show that we can’t
apply unified, general formulas for calculations with
uncertain data as the Moore arithmetic suggests. In-
tervals should not be ‘anonymous’! Arithmetic op-
erations on IPVs should be carried out taking into
account dependencies between variables in a given,
particular problem. Thus, there can be infinitely
many results of ’identical’ intervals division.

5. Data precisiation

In the last example, there will be presented the pos-
sibility of data precisiation (uncertainty decreasing)
of original data items occurring in problems. In this
case, a restriction is imposed not only on divided
variables a and b, but also on the division result x. It
will be shown, that this restriction allows for greater
precisiation of the problem.

Example 6.

A container of irregular shape contains a material
which volume V [m?] was evaluated as V € [7,9] m>.
The material was weighed on an imprecise scales
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solution granule
w=ne w=1

Moore arithmetic

9 b __
w=1! "W=9/11
| |
| 1
! !
9/11 =0.82 1 119=122 w 9 11 Vy
a) Example 3,4,5 b) Example 3
R v :
segment of solutions r solution granule
11 w=1 m W=1
9 9 !
W=1 w=1 1W=9/11
|
9 s 9 v,
c) Example 4 d) Example 5

Fig. 15. Solution granules of the ‘same’ IPVs division task obtained in Examples 3, 4 and 5 with the
Moore arithmetic (a) and with the RDM-arithmetic (b,c,d).

card(W)
1
05
Moore arithmetic
> W [ton]
9/11=0.82 1 119=122 w - :
9/11=0.82 09 1 11 11/9=1.22
a) Example 34,5 b) Example 3
card(W)
1
card(Ry)
0.5
1
I ! ) ) W [ton]
9/11=0.82 1 11/9 = 1.22 R 9/11=0.82 09 1 11 11/9 = 1.22
¢) Example 4 d) Example 5

Fig. 16. Solution representations of the division of ‘identical’ IPVs from Examples 3, 4 and 5 with
the Moore arithmetic (a) and with the RDM-arithmetic (b,c,d) expressed as cardinality distributions.
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with the result W € [6,8] tons. It is known from a
Material Encyclopedia that this material has a spe-
cific volume V;, € [0.8,1.0] depending on a humid-
ity degree. How can data items be precisiated with
IPV-arithmetic?

Particular items are coupled by formula:

= =10.8,1.0]. (40)

According to the Moore arithmetic, the quotient
V /W is equal [7/8,9/6] = [0.875,1.5]. However, it
is known from the Encyclopedia that possible do-
main of Vj, equals [0.8,1.0]. To investigate this
problem, let’s express uncertain values of W, V,
Vip using RDM-variables as: V =7+ 2ay, W =
6+ 20, Vsp = 0.84+0.20,,, o, 0, o, € [0,1].

Then, (40) is transformed into:

% - 7+2(X\/
w - 6+2(XW
o, oy, oy, € 1[0,1].

sp

Vip = =0.8+0.20y, ,

(41)

From the contour plot in Fig. 17 we can see that
RDM-variable ranges should be reduced:

e ogy €[0.5,1] (not [0,1]),
« oy €0,0.5] (not [0, 1))

New ranges can be also easily calculated from (41).
Taking into account the lowest values of V (V =7)
and the greatest value of W (W = 8), we can find the
lowest value of ay,,. So, the new range:

e oy, €[0.375,1] (not [0, 1]).

sp

- . . . . . .
1.45 1.4 1.35 12

091 =
1.25 :

0.8+ -
1.3

0.7¢ 1.2 1
1.05

0.6 195 1.15

11 4
oy O05f |
13
04k 1.2 1.05 4
1.15 11
0.3h .25 . 957
02} / ]

1.2 1.05 possible values

0.1F of ayy, A
1.1
118 0.9

L 1 L L L { L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 17. Contour plot of the function Vy, = f(aw,av).

The identified possible domains of RDM-
variables o, ogy, 0, correspond to possible do-
mains of weight W, volume V and specific volume
Vip:

« W€ [7,8] (not [6,8]),
« V e[7,8] (not [7,9)),
. Vy, €[0.875,1] (not [0.8, 1)),

Fig. 18a shows a cube of the uncertainty of orig-
inal data items and Fig. 18b shows a triangle of
the possible uncertainty achieved thanks to the IPV-
arithmetic.

Example 6 has shown two interesting things.
Firstly, according to the Moore arithmetic, a divi-
sion result of two IPVs is always the same, e.g.
[7,9]/[6,8] =[7/8,9/6] = [0.875,1.5]. However in
real life problems, a division result can be different,
e.g. [7,9]/[6,8] =[0.8,1.0]. This phenomenon is in-
consistent with the standard interval arithmetic, but
such unintuitive problems can be calculated with the
[PV-arithmetic.

Secondly, the IPV-arithmetic based on RDM-
variables allows for decreasing of the uncertainty of
original data about the problem, because it is able
to use dependencies existing between problem vari-
ables. As Example 6 has shown, the uncertainty re-
duction can be considerable. Thus, imprecise mea-
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surements or expert evaluations can be precisiated
without additional measurements.

Avsp original uncertainty
Vi A space
i~ TTTTTTTTTTTT NG
[} S [} D
[} \\\ [} by -
) ~So | SO
! SN L s
: Lo !
1 1 !
1 1 !
1 1 !
1 1 !
1 1 !
1 1 !
1 1 :
ay | _L |
_______________ ~So )
14 0 S
9 0.8 S~ >
1 a
a) v
6 8 w
Gvsp reduced uncertainty
Qay
\%
Ay
b) 7
6 7 8 w

Fig. 18. Visualisation of the original uncertainty space in
Example 6 (a) and the reduced space achieved thanks to the
IPV-arithmetic (b).

6. Conclusions

Real problems are sometimes much more compli-
cated and unintuitive than we can imagine. Their
solving requires advanced and effective tools for
processing of uncertain data items. An interval is
the basic model of an uncertain value and an inter-
val arithmetic is used in higher forms of uncertainty
processing, e.g. in the fuzzy arithmetic of type-1 and
type-2, in the intuitionistic fuzzy arithmetic and the
probabilistic arithmetic. The standard interval arith-
metic is not able to solve more complicated prob-

lems.

The paper has presented the IPV-arithmetic, its
main mathematical properties and advantages on ex-
amples of division operation. All advantages were
illustrated by examples of real problems. By intro-
ducing the internal RDM-variable ¢ of the interval
(which is a model of an uncertain value) it was pos-
sible to obtain a deeper knowledge about the prob-
lem solution than in the case of application of the
Moore arithmetic. The RDM-arithmetic is free from
many drawbacks of the Moore arithmetic. It enables
solving of complicated problems thanks to possibil-
ity of equation transformations, including solving of
interval equations. The greatest advantage of the
RDM-arithmetic, in Authors opinion, is possibility
of taking into account dependencies between inter-
vals and possibility of uncertainty decreasing (very
surprising feature), what was illustrated by examples
presented in the paper.

The correct solution of more complex mathemat-
ical problems, eg. problems described by a sys-
tem of equations, differential equations or others, re-
quires consideration of dependencies (relationships)
existing between the values of the variables in the
calculation. The Moore arithmetic does not give
us such a possibility so here comes the opportunity
for effective application of the RDM-arithmetic de-
scribed in the paper.
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