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Abstract

Biometric system databases are vulnerable to many types of attacks. To address this issue, several bio-
metric template protection systems have been proposed to protect biometric data against unauthorized
use. Many of biometric protection systems require the biometric templates to be represented in a bi-
nary form. Therefore, extracting binary templates from real-valued biometric data is a key step in such
biometric data protection systems. In addition, binary representation of biometric data can speed-up the
matching process and reduce the storage capacity required to store the enrolled templates. The main
challenge of existing biometric data binarization approaches is to retain the discrimination power of the
original real-valued templates after binarization. In this paper, we propose a secure and efficient biometric
data binarization scheme that employs multi-objective optimization using Nondominated Sorting Genetic
Algorithm (NSGA-II). The goal of the proposed method is to find optimal quantization and encoding
parameters that are employed in the binarization process. Results obtained from the experiments con-
ducted on the ORL face and MCYT fingerprint databases show a promising recognition accuracy without
sacrificing the security of the system.
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1. Introduction

The growing need of biometrics in access control

and verification applications makes security of bio-

metric data a pressing and important issue. Bio-

metric template protection schemes 1,2 have been

developed to ensure biometrics privacy and secu-

rity. The idea behind these schemes is to store

an encoded version for the biometric template (the

distinct traits extracted from biometric data) rather

than the original one by applying a transformation

function. Unfortunately, several biometric template

protection schemes, such fuzzy commitment 3 and

BioEncoding 4 schemes, require the input biomet-

ric data to be in a binary form. As a consequence of

this limitation, direct application of these schemes

is restricted to binary-valued biometric data such as

iris-codes 5.

In order to employ such biometric template pro-

tection schemes to secure other biometric traits
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which are usually represented as real-valued tem-

plates, such as face and fingerprint, these templates

have to be transformed first into binary form. That

is, creating such transformation, also known as bio-

metric binarization, is a fundamental and crucial

step in many biometric protection systems 6. In ad-

dition, the binarization process produces data rep-

resentation that usually takes less storage capacity

as well as reduced time for matching templates 7,

which is vital in situations where less computing

resources are available.

A typical biometric template binarization tech-

nique involves two stages, namely, quantization

and encoding. The goal of quantization is to divide

the original feature domain into intervals whereas

the goal of encoding is to assign a binary code

to each interval. The sheer volume of possible

ways of mapping is daunting. Because preserving

the discrimination power of the generated binary

string is important, both quantization and encod-

ing should provide optimal performance when us-

ing hamming distance classifier for comparing the

resulting binary strings.

The quantization could be user-specific process,

also known as supervised quantization, in which

the user feature distribution is used to determine

the genuine interval and the remaining intervals are

then constructed either using equal width or equal

probability approach. Alternatively, the quantiza-

tion could be user-independent process, in which

all intervals are blindly constructed based on spe-

cific number of intervals. Using user informa-

tion in the quantization process enhances the dis-

crimination power of the generated binary template

which is likely improves the recognition accuracy.

However, the user-specific information used in the

quantization must be stored in the system storage

in order to construct the same quantization inter-

vals in the verification stages which introduces pri-

vacy and security threats 6. On the other hand, the

user-independent approach is more preferable from

the privacy and security perspective. However, the

recognition accuracy is degraded.

In view of this trade off between performance

and security, we propose a new unsupervised bi-

narization method based on an optimization strat-

egy to search for the optimum quantization levels

and encoding functions for each feature dimension

to achieve balance between the security and the

recognition accuracy for the biometric system. The

goal of this optimization strategy is to maximize

the inter-class distance and minimize the intra-class

distance in order to retain the discrimination power

for the binary templates. Additionally, the pro-

posed strategy aims at maximizing the entropy of

the transformed binary template in order to satisfy

the security needs of the biometric systems.

In this work, the proposed binarization strat-

egy is formulated as a multi-objective optimization

problem. Classical single objective optimization

algorithms do not generate proper optimal solu-

tions in the presence of non-convex search spaces.

Besides, determining the appropriate weights that

can used to incorporate the conflicting objectives

into single objective function is not trivial 8.

In this paper, we make use of the Nondominated

Sorting Genetic Algorithm (NSGA-II) 9 which is

one of the most popular multi-objective optimiza-

tion algorithms. NSGA-II is an efficient multi-

objective evolutionary strategy that is able to deal

with many conflicting objectives and to handle both

maximization and minimization problems 8. The

recognition accuracy of the proposed binarization

method is evaluated and compared with conven-

tional schemes using the AT&T ORL face 10 and

MCYT-fingerprint public databases 11.

The rest of this paper is organized as follows. In

Section 2, we briefly describe the related works in

biometric binarization, also the fundamental con-

cepts of multi-objective optimization algorithms

are presented. The proposed optimization based

biometric template binarization method is intro-

duced in Section 3. Experimental results are pre-

sented in Section 4. In Section 5, we analyze the

security perspective of the proposed binarization

method when it is applied in a biometric template

protection scheme. Finally, Section 6 concludes

this paper and summarizes our results.
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2. Background

2.1. Biometric Template Binarization

Biometric binarization can be decomposed into two

fundamental components: biometric quantization

and intervals encoding. Fig. 1 shows the stages of

the biometric binarization process.

Fig. 1. Biometric binarization process.

As illustrated in Fig. 1, real-valued templates

are extracted from the raw biometrics through fea-

ture extraction stage. Then, the real-valued feature

space is quantized into a set of intervals accord-

ing to the used quantization design. Each feature

element inside interval is then mapped to a short

binary string using the encoding function. Eventu-

ally, the final binary-valued template is generated

by concatenating the binary code for each feature

dimension. In order to produce the same binary

string for a user in the verification stage, the bi-

narization parameters (quantization and encoding)

are stored as helper data in the biometric system.

Linnartz and Tuyls 12 proposed one-bit bina-

rization approach, in which the feature space is

modeled by a background probability density func-

tion and every feature dimension of the genuine

user is modeled by a user probability density func-

tion. The value range of features was quantized

into fixed intervals each one assigned ‘1’ or ‘0’.

The binarization methods proposed in 13,1 adapt

multi-bit approaches, in which multiple quantiza-

tion levels are used for every feature dimension to

produce larger size binary string.

To enhance the discriminative power of the gen-

erated binary templates, Teoh et al. 14,15 proposed

dynamic bit allocation approaches. The fundamen-

tal idea was based on assigning different number

of bits to feature dimensions according to their dis-

criminative power. Features with lower standard

deviation in its probability density function were

encoded with more bits. Alternatively, Chen et al. 7

proposed another dynamic bit-allocation approach

by considering the detection rate (DR) as their fea-

ture discriminative measure. Chen et al. 16 de-

veloped a similar dynamic bit-allocation approach

based on the area under the false rejection rate

(FRR) curve as a discriminative measure.

Discrete binary representation (DBR) has been

used in 17,2,7,13,1 to encode the label of quantization

intervals using binary values. However, DBR is un-

stable; it requires at least one bit changes at a time

to generate different sequences, which affects the

binary template 6. As an improvement, binary re-

flected gray code (BRGC) 18,15,16 was used for in-

tervals encoding. BRGC is more stable and suitable

than binary encoding. However, the non definite

intervals labels encoding in the hamming domain

is likely affect the classification performance 6.

Novel encoding functions have been proposed to

address the problem of BRGC, known as Partial

Linear Separable Sub Code (PLSSC) and Linear

Separable Sub Code (LSSC) 19,6,14,20. PLSSC

and LSSC are quite similar to the unary encoding.

Although LSSC produces high redundancy bits in

the generated binary code compared to PLSSC, it

achieves the optimum intervals labels encoding in

the hamming domain 19.

Although there are many biometric template bi-

narization methods, achieving balance between se-

curity and recognition accuracy for the biometric

system is not completely addressed. Therefore,

novel methods need to be proposed to convert the

real valued templates into robustness binary repre-

sentation without ignoring the security concerns.

2.2. Multi-Objective Optimization

Real world optimization problems often contain

multiple conflicting objectives. To solve a single-

objective optimization problem, one attempt is ap-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1118



E.Hamouda,et al

plied to obtain the best single global minimum or

maximum solution. Whereas, in multi-objective

optimization, there are a set of solutions supe-

rior than the other solutions when all objectives

are considered and inferior to the other solutions

when only subset of the objectives are considered.

These solutions are well known as pareto-optimal

solutions or nondominated solutions 21. In multi-

objective optimization problems, it is useful to have

knowledge about the alternative pareto-optimal so-

lutions to select one of these solutions 22. Clas-

sical optimization methods suggest utilizing the

multi-objective problem as single-objective opti-

mization by selecting one particular pareto solu-

tion at a time. However, such methods have to

be repeatedly applied in order to find a different

solution at each simulation run 9. A number of

multi-objective optimization algorithms have been

reported 22,9,23,24,25. The traditional evolutionary

algorithms are extended to produce a diverse set

of solutions with the ability to move towards the

pareto-optimal region in the search space 9. The

primary motivation for these algorithms is their

ability to find multiple pareto-optimal solutions in

a single run.

GA is one of the evolutionary computation

based algorithms that follows Darwin’s theory of

survival of the fittest. The idea of GA is based on

representing the solution space of a given problem

as a population of chromosomes (individuals) that

reproduce with each other. Over time, the best in-

dividuals survive and eventually evolve to do well

in the given environment 26. The standard version

of GA require the human user to specify 27:

(i) The chromosomes (individuals) representa-

tion.

(ii) The fitness measure for measuring the fitness

of individuals in the population.

(iii) Certain parameters for controlling the run.

(iv) The termination criterion and method for des-

ignating the result of the run.

Non-domination sorting genetic algorithm

(NSGA) 22 is an extension for the standard GA

for multi-objective optimization. Although it is

very effective algorithm, it suffers from high com-

putational cost, lack of elitism and the difficulty of

choosing the optimal value for the sharing parame-

ter. A modified version, NSGA-II 9 was developed

to provide a better sorting algorithm and incorpo-

rate elitism. Moreover, NSGA-II does not require

choosing a sharing parameter a priori 8. The basic

steps of NSGA-II are illustrated in Fig. 2.

Figure 2: Diagram of NSGA-II Algorithm

After the population is randomly initialized, the

individuals are ranked on the basis of nondomina-

tion into each front. Individuals in the first front F1

are entirely non-dominated set in the current popu-

lation. Individuals in the second front F2 are only

dominated by the individuals in F1. The process

continues until all individuals in the population are

ranked. All individuals in F1 are given rank (fit-

ness) of 1 and individuals in F2 are assigned rank of

2, and so on. To maintain the diversity of the popu-

lation, crowding distance is calculated for each in-

dividual. The crowding distance measure the simi-

larity between individual and its neighbors. Parents

are selected from the population by using tourna-

ment selection. An individual is selected if the rank

is less than the other or if the crowding distance

is greater than the other. The selected population

generates offspring using crossover and mutation

operators. The current parents and the generated

offspring are sorted again on the basis of nondomi-

nation and only the best N individuals are used for

the new generation, where N is the population size.
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3. Biometric Binarization using NSGA-II

The proposed method employs multi-objective op-

timization to search for the combination of both

quantization levels and encoding function such that

the discrimination among classes is maximized.

Fig. 3 illustrates the stages of the proposed bina-

raization process. The original crossover and mu-

tation process implemented in 9 are modified to

maintain the chromosome structure for the bina-

rization optimization problem, as will be discussed

later.

Fig. 3. Our proposed binarization Process.

As shown in Fig. 3, real-valued biometric tem-

plates are generated from the original biometric im-

ages through feature extracting stage for each en-

rolled user. Then, using a population of randomly

generated binarization schemes, the proposed op-

timization process starts the evolving stage in

order to eventually find the optimum quantiza-

tion/encoding combination and save it in the bio-

metric system database to be used later in the veri-

fication stage.

The proposed binarization scheme (chromo-

somes representation) consists of both the number

of quantization intervals and the encoding function

to be used to map the real-valued feature into a

binary representation. The quantization intervals

(qi ∈ {2, . . . ,Q}) and encoding function (ei) are

represented with discrete values. In this work, three

encoding functions are implemented to perform

the intervals label to binary mapping: {1:BRGC,

2:LSSC, 3:PLSSC}. As mentioned before, DBR

is non-stable encoding since it requires at least one

bit change at a time to generate different sequences

which in turn affects the classification accuracy

represented in the generated binary template. Fig. 4

shows an example of a binarization scheme applied

to a real-valued biometric template of size 4. De-

pending on the number of quantization intervals, a

sequence of thresholds is randomly selected within

the dynamic range [Li,Hi], where Li and Hi are the

minimum and maximum values for the feature di-

mension i, respectively. The three thresholds are

represented with t1, t2, t3 where t j ∈ [Li,Hi].

Fig. 4. A binarization scheme with four dimension.

3.1. Crossover and Mutation Operations

The crossover operation, C (ca,cb|α), is performed

with two randomly selected chromosomes, ca and

cb. A crossover probability α is used to regu-

late crossover operations. When crossover is de-

termined not to be conducted, the parent chro-

mosomes are duplicated to the offspring without

change. Varying the crossover probability α alters

the evolution speed of the search process. In prac-

tice, the value of α is close to 1. Although concep-

tually a crossover operation is performed between

two genes, a cutting point that separates the quanti-

zation and encoding compartments does not affect

the integrity of the chromosome. When the quan-

tization compartments are switched, the respective

arrays of thresholds are traded as well. An example

of crossover is shown in Fig. 5(a).

The mutation operation, M (ca|β ), involves al-

tering the value at a randomly selected component

within the chromosome. If the component gives

an encoding scheme, its value is replaced with a

different encoding schedule out of the list of op-

tions. If the component specifies the number of

quantization intervals, randomly change the num-

ber of intervals within a finite set of choices, that

is, 2 through Q. In addition, a set of thresholds is

generated accordingly to ensure the integrity of the
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chromosome. A mutation probability β is also used

to regulate the occurrence of mutation. Different

from the crossover probability, the mutation prob-

ability is usually fairly small, i.e., β � 1. Essen-

tially mutation operation could create completely

new species, that is, an arbitrary locus in the fitness

landscape. Hence, it is a means to get out of a local

optimum. Fig. 5(b) shows an example of mutation

operation.

(a) Crossover operation

(b) Mutation operation

Figure 5: Crossover and mutation operations.

3.2. Objective Functions

In the process of searching the appropriate quanti-

zation and encoding functions, our main objective

aims to maximize the discrimination power among

classes without scarifying the security concerns for

the biometric system, therefor, the biometric bina-

rization process is formulated as multiobjective op-

timization problem. The first objective is to mini-

mize the intra-class distance, while the second ob-

jective is to maximize the inter-class distance. Fi-

nally, maximizing the entropy for the generated bi-

nary template to maintain the security concerns.

given K classes and L examples in each class,

the intra class distance, denoted by Dη(x
(k)
i ,x(k)j ),

is the hamming distance of two binary templates

x(k)i and x(k)j , where i �= j, and i, j ∈ {1, . . . ,L},

and k ∈ {1, . . . ,K}. The inter class distance, de-

noted by Dτ(x
(k)
i ,x(k

′)
j ), is the hamming distance of

two binary templates x(k)i and x(k
′)

j from different

classes. By computing the intra class distances be-

tween pairs of binary templates, we can construct

normalized distance distribution. The problem then

becomes finding the optimal separation between

the two distributions by maximizing f1 which is

defined by equation( 1) and minimizing f2 which

is defined by equation( 2)

f1 = |μη −μτ | (1)

f2 =
√

σ2
η +σ2

τ (2)

where μη and μτ represent the means and σ 2
η

and σ 2
τ represent the variances of intra and inter

distributions, respectively.

It is well known that that the more bit redun-

dancy exist in bit string, the lower entropy for this

bit string. Although LSSC achieve perfect encod-

ing capability from the discrimination prospective

compared to PLSSC, LSSC has higher bit redun-

dancy compared to PLSSC 19. An important obser-

vation reported in 20: whenever the genuine interval

located in the middle intervals, PLSSC encoding

would be able to produce ideal separability quite

equivalent to LSSC encoding. The third objective

function f3 is designed to maintain maximum en-

tropy for the generated binary template. The func-

tion compute the randomness for the generated bi-

nary template which is vital for the security con-

cerns. f3 is defined by( 3):

f3 =−Hlog2(H)− [(1−H)log2(1−H)] (3)

where H is the ratio of 1’s in the binary tem-

plate. The maximum entropy when H = 0.5 ( same

amount of 1’s as 0’s ).

The objective functions for each chromosome

are computed using the concatenated binary code

generated by each feature dimension to avoid eval-

uating the performance of the binarization scheme

for each independent feature dimension (local

view) which is likely affect the overall perfor-

mance.
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4. Experimental Results and Discussion

This section summarizes the results obtained us-

ing the proposed binaraization method. Two exper-

iments are conducted to evaluate the binarization

scheme on face and fingerprint biometric data re-

spectively.

4.1. Data set and Experiment Settings

In the first experiment, we used AT&T (ORL) face

database 10, which consists of 40 individuals and

10 facial images per individual. Each image has

a resolution of 92 by 112 pixels. Sample images

of three different human subjects in the ORL face

database are shown in Fig. 6. The real-valued bio-

metric templates is extracted following the princi-

pal component analysis (PCA) 28.

Fig. 6. Sample images of three human subjects in ORL face

database.

To determine the optimum length for PCA com-

ponent, an evaluation experiment was done. In this

experiment, six images of each subject were ran-

domly selected and used as the training set. The

rest images were used as the testing set. The exper-

iments were repeated five times using random par-

titioning for the training and testing samples. Fig. 7

illustrates the average EERs for various number of

principal components used in Eigenface method for

face recognition 28. The error bars on top depict the

standard deviation. It is clear that the best dimen-

sion for PCA components, which yields the lowest

EER, is 20.

Fig. 7. Average EERs(%) of Eigenface method using dif-

ferent number of principal components.

In the second experiment, we used MCYT-

Fingerprint-100 database 11. MCYT fingerprint

database contains 12 different samples of each

fingerprint taken under different levels of control

(high, medium and low). In each capture session

each individual provides a total number of 480 fin-

gerprint images to the database using two different

devices/sensors. The file sizes and the image reso-

lutions are 89 kbyte and 300 by 300 pixels when

using capacitive device, and 102 kbyte and 256

by 400 pixels in case of using the optical device.

For the experiment, the fingerprint region in the

raw image are cropped and binarized to produce an

image with resolution 96 by 96 pixels, then, real-

valued templates are extracted using the following

three steps 29:

(1) Convolution of the cropped fingerprint im-

age with four Gabor filters using orientations

(0,p/4,p/2, 3p/4).

(2) Tessellation of the filtered images into equal-

sized square disjoint cells with cell size 12 by

12 pixels.

(3) Computation of standard deviation of the pixel

intensities for each cell to generate the Finger-

Code ( real-valued template ) for each filtered

image leading to a total of 256 elements.

To study the effect of our proposed binarization

method on MCYT Fingerprint, a subset of 20 sub-

jects (240 fingerprints images) has been randomly

selected. The fingerprint matching for the origi-

nal templates is based on the Euclidean distance

between the two corresponding templates. Sample

images of different fingers in the MCYT database
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along with the corresponding cropped binarized

images are shown in Fig. 8.

Fig. 8. Sample images of Fingers in MCYT database with

the corresponding cropped binarized images.

After the real-valued biometric template is pre-

sented, the evolution stage is initiated to search

for the optimum binaraization scheme for the real-

valued biometric template, five templates for each

subject are used for the evolving phase for the op-

timization process. Table 1 list the parameters used

to control the evolving phase. The selection policy

for selecting the individuals for the mating pool is

based on tournament selection of size five.

Table 1. Parameters used in NSGA-II run.

Parameters Values

Number of generations 30

Population size 100

Crossover probability 0.8

Mutation probability 0.05

Termination condition Number of generation=30

4.2. Binary Template Performance Analysis

This subsection evaluates the recognition perfor-

mance of the generated binary templates using our

proposed binarization scheme. We adopted the

equal error rate (EER) as a recognition perfor-

mance measure. EER is the rate where a recog-

nition system exhibits equal false acceptance rate

and false rejection rate. The lower EER indicates

greater performance of a biometric system.

Table 2 list the EER of our proposed method in

comparison with the original real-valued templates.

Note that the EER reported in this table is the aver-

age EER across all subjects. Given the maximum

number of quantization intervals, biometric data

was mapped to binary templates. In each repetition,

binary templates were created for each biometric

image using the maximum number of quantization

intervals of 10 and 20 , that is, q = 10 and q = 20.

As shown in Table 2, It is evident that regardless

the real-valued template size, the binary templates

generated with our proposed method on average

achieved better recognition performance compared

to the original for both face and fingerprint exper-

iments. For ORL face experiment, The ranges of

EERs for binary template are below 7 and in the

best case the EERs is 2.87. While, for MCYT fin-

gerprint experiment, The EER for binary template

are 4.51 and 4.70 using maximum number of quan-

tization intervals of 10 and 20, respectively.

Table 2. The average EER(%) for face and fingerprint data. q is
the maximum number of quantization intervals , N is the real-
valued template size.

Data Size Original
Binary Template

q=10 q=20

ORL 10
N=10 10.56 2.87 4.13

N=20 9.2 3.34 3.88

N=50 9.88 6.31 5.92

MCYT 11 N=256 6.78 4.51 4.70

To compare the proposed method with well

known unsupervised quantization methods which

are used in 20, Equal-width quantization with LSSC

encoding (EW+LSSC) and Equal-probability

quantization with LSSC encoding (EP+LSSC) are

selected. Both methods adapt static bit allocation

strategy which assigns fixed number of bits for

each feature dimension. The same experimental

settings are used for these schemes and the results

are shown in Tables 3 and 4 for face and fingerprint

data, respectively.
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Table 3. The average EER(%) using ORL face database. q is
the maximum number of quantization intervals , N is the real-
valued template size.

Method
N=10 N=20 N=50

q=10 q=20 q=10 q=20 q=10 q=20

EW+LSSC 12.89 12.54 12.63 11.4 10.76 10.2

EP+LSSC 11.34 12.16 12.86 11.34 10.86 9.86

Proposed 2.87 4.13 3.34 3.88 6.31 5.92

Table 4. The average EER(%) using MCYT fingerprint
database. q is the maximum number of quantization intervals.

Method q=10 q=20

EW+LSSC 6.86 6.93

EP+LSSC 6.02 5.91

Proposed 4.51 4.70

It can be seen from the previous compar-

ison, the proposed method improves the EER

performance of the generated binary templates

when compared with the unsupervised: Equal-

width quantization and Equal-probability quanti-

zation based on static bit allocation strategy and

LSSC encoding for both face and fingerprint bio-

metric data.

Another advantage of binary template is the re-

duced size. Recall the original face image is of 92

by 112 pixels and each pixel is represented with an

unsigned integer, that is, 8 bits. Thus, the mini-

mum size on storage or memory is 82,432 bits. As

shown in Table 5, When the maximum number of

quantization intervals is 10, the average binary tem-

plate length are 39, 79, and 198 bits in case of real-

valued feature size 10, 20, and 50 respectively. If

we double the allowed number of quantization in-

tervals, the binary template length increases and the

average length binary template length are 71, 145,

and 330 bits in case of real-valued feature size 10,

20, and 50 respectively. The improvement is appar-

ent in face data and also for fingerprint experiment.

Additionally, we evaluate the performance of

the proposed method in terms of computational

time. In Table 5 the average time used to produce a

binarization schemes is illustrated.

Table 5. The average used time in minutes and the average bi-
nary template length in bits. q is the maximum number of quan-
tization intervals , N is the real-valued template size.

Data ORL Face

N=10 N=20 N=50

q=10 q=20 q=10 q=20 q=10 q=20

Length 39 71 79 145 198 330

Time 9.9 11.8 18.4 25.2 45.8 60

Data MCYT Fingerprint

q=10 q=20

Length 971 1684

Time 135 178

Although the overall time used when q = 20 is

greater than that of q = 10, it is interesting to note

that in all experiments, the time cost is not pro-

portional to the number of quantization intervals.

Additional time was actually used to evaluate indi-

viduals fitness. While the population remains the

same and so is the number of generations, the aver-

age time varies slightly. This could be an advantage

of binary template. There is no doubt that generat-

ing binary template requires extra resources. How-

ever, this process is usually performed off-line and,

hence, is manageable.

5. Security Analysis

To analyze the security of our proposed binariza-

tion method, a well-known template protection

scheme known as fuzzy commitment scheme is se-

lected 3. Fig. 9 shows a fuzzy commitment scheme

with our proposed binaraization method. The in-

put is the real-valued feature vector R, which is

extracted from the raw biometric. Using the pro-

posed binarization method, a binary vector RB is

generated. The binaraization scheme is stored as

helper data H1 for each enrolled user. Instead of di-

rectly storing the binary vector as a reference tem-

plate for the enrolled user, an encoded version H2

is generated and stored as a helper data. The code-

word C corresponding to a randomly generated se-

cret K is XOR-ed with the binary vector RB to ob-

tain H2, where C is generated using error correction

code to deal with the bit errors in the binary vector

which is come from the normal measurement noise

in the biometric data. The enrolled user identity

h(K) is generated by hashing K. In the verifica-

tion phase this process is reversed using the stored
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helper data resulting into a candidate user identity

h∗(K). Only when the hamming distance differ-

ence dH(Re
B,R

v
B) � θ then h(K) ≡ h∗(K), thus the

input user is verified.

Fig. 9. The Proposed Binarization method in fuzzy com-

mitment Template Protection Scheme.

From the security perspective, our proposed

method is vulnerable to the threat of the unau-

thorized use for the binarization schema which is

stored as helper data in the system storage. If the

stored binarization scheme is compromised by an

attacker, the stored parameters should do not reveal

useful information about the original real-valued

biometric template R. Also, if the binary vector RB
is determined by a brute force attack, XOR opera-

tion with the stored helper data H2 will reveal the

original key K which in turn will be used to com-

promised the user identity h(k). This section ana-

lyzes the efforts needed by an attacker to retrieve

the output binary template or the input real-valued

biometric template using the compromised data.

Recall that a given NSGA chromosome repre-

sents the binaraization scheme. It consists of N
genes, N is the real-valued biometric template size

(number of feature dimensions). Each gene is con-

sidered as independent binaraization scheme for a

single feature dimension. The scheme consists of

the number of quantization intervals (Q) and the

corresponding threshold values (T ) to determine

the intervals boundaries. Also, the scheme con-

tains the used encoding function (E) which maps

each interval index into a binary representation.

The number of quantization intervals and encoding

function are represented with discrete integer val-

ues and the threshold values are represented with

real numbers (Fig. 4 shows an example of a bina-

raization scheme, N=4).

We have number of quantization intervals (Q)

where: Q ∈ {q1,q2, . . . ,qN} and qi ∈ {2, . . . ,max}.

The minimum number of quantization intervals is

2, two different experiments on face dataset with

max =10 and 20 are explored. Each experiment ap-

plied on real-valued biometric template size N=10,

20,50.

5.1. Analysis of Brute Force Attack

The more binary template length the more effort

needed by an attacker to guess the binary template.

The attacker needs maximum number of trails= 2M

to guess a binary template with size= M. In our

proposed method, the binary code length for each

feature dimension (mi) depends on the used en-

coding function (ei) in addition to the number of

quantization intervals (qi) for feature dimension i.
Since we have three possible encoding functions

(ei) ∈ {1 : BRGC;2 : LSSC;3 : PLSSC}, the binary

code length is computed by 20:

mi =

⎧⎪⎨
⎪⎩

log2qi ei = 1

qi −1 ei = 2

qi/2 ei = 3

(4)

The best case is to maximize the value of mi
in order to maximize the total binary code length

(M). According to equation 4, the maximum quan-

tization intervals and the encoding function which

yield the largest bit length allow maximum num-

ber of trails = 2max∗N to guess the binary template.

While in the worst case, the minimum quantization

intervals and the encoding function which yield the

least bit length allow maximum number of trails =

2N to guess the binary template. Empirically, the

least binary template size in our experiment was 30

bit in case of N =10 and the largest binary template

size was 375 bit in case of N =50.

5.2. Security Analysis of Genuine User
Intervals

Given a real-valued template R1 for a genuine user,

a fake real-valued template R2 could be used by
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the binarization method such that: B(R2)= B(R1),

where B is the binarization method, this is a type

of the preimage attack 30. The attacker can guess

the location (index) for the genuine quantization in-

terval for each feature dimension. As mentioned

before, the threshold values (T ) which is used to

determine the intervals boundaries are stored in

the binarization scheme for each feature dimen-

sion. Knowing the intervals boundaries, allow the

attacker to generate a fake real-valued template

which could go through the compromised binariza-

tion scheme to generate a genuine binary template.

Each feature dimension i has qi different quanti-

zation intervals, therefore, the attacker needs max-

imum number of trails is qi to guess the genuine

interval index for this feature dimension. By mul-

tiplying trails numbers for all dimensions, a maxi-

mum number of trails is ∏N
i=1 qi is needed to guess

all genuine interval indexes. In the best case, max-

imum number of trails is ∏N
i=1 max is needed to

guess genuine interval indexes. While in the worst

case, maximum number of trails is ∏N
i=1 2 is re-

quired to guess genuine interval indexes. We con

conclude that the larger real-valued biometric tem-

plate size (N), the more efforts needed to guess the

the genuine interval locations.

From the privacy perspective, if the same bi-

narization scheme is stored in different appli-

cations for each user, an adversary can track

users through applications which introduce privacy

threat. To overcome this threat, different binariza-

tion schemes should be generated for the user in or-

der to prevent any trial to track users through appli-

cations using the stored binarization schemes. Re-

initiating NSGA run ensure different binarization

schemes for the same user.

6. Conclusion

Biometrics has been widely adopted in various ap-

plications, therefore, its security and privacy can

not be ignored. Many template protection meth-

ods have been developed to ensure biometrics pri-

vacy and security using the transformed biometric

templates rather than the original ones. Extracting

binary biometric strings is a fundamental step in

biometric compression and template protection. In

this paper, we proposed a novel method to trans-

form the original templates into corresponding bi-

nary representation using multiobjective optimiza-

tion. NSGA-II is used to search for the optimal

configuration for the binarization scheme. The ob-

jective function is designed to maximize the inter-

class distance while minimizing the intra-class dis-

tance to enhance the discrimination power for the

new generated binary templates. Experimental re-

sults with the generated binary encoded templates

and a hamming distance classifier show superior

performance in terms of equal error rate comparing

to the original real-valued templates for both face

and fingerprint biometric data. Another advantage

of binary template is the significantly reduced size

compared to the original image.
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