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Abstract

Dynamic Optimization Problems (DOPs) have attracted a growing interest in recent years. This interest
is mainly due to two reasons: their closeness to practical real conditions and their high complexity. The
majority of the approaches proposed so far to solve DOPs are population-based methods, because it is
usually believed that their higher diversity allows a better detection and tracking of changes. However,
recent studies have shown that trajectory-based methods can also provide competitive results. This work
is focused on this last type of algorithms. Concretely, it proposes a new adaptive local search for con-
tinuous DOPs that incorporates a memory archive. The main novelties of the proposal are two-fold: the
prioritized tracking, a method to determine which solutions in the memory archive should be tracked first;
and an adaptive mechanism to control the minimum step-length or precision of the search. The experi-
mentation done over the Moving Peaks Problem (MPB) shows the benefits of the prioritized tracking and
the adaptive precision mechanism. Furthermore, our proposal obtains competitive results with respect to
state-of-the-art algorithms for the MPB, both in terms of performance and tracking ability.

Keywords: Dynamic Environments; Dynamic Optimization Problems; Trajectory-based Methods; Priori-
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1. Introduction

Many real-world optimization problems present

some sort of dynamism in one or more of their com-

ponents. Modelling them as static problems can re-

sult in an oversimplification of the reality that leads

to low quality and little robust solutions. In this way,

Dynamic Optimization Problems (DOPs) were pro-

posed to deal with this dynamism and to provide

models closer to real-world conditions. The excel-

lent results of these approaches in many fields [1,36]

have attracted a growing attention of the research

community in the last decade. The interested reader

is referred to [9, 29, 34] for recent reviews in DOPs.

When solving DOPs, three conditions are usually

assumed: changes in the problem are gradual, they

can be detected, and after a change, the problem re-

mains static for a certain period. Due to the gradual-

ness of the changes, the information acquired while

solving the current static period of the problem can

help to accelerate the search of the new optima af-

ter a change. Under these conditions, restarting the

search from scratch after each change would waste

information and worsen the performance.
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Most of the approaches proposed for DOPs

are population-based methods [4, 29] because their

higher solution diversity has proof to provide good

results in detecting and tracking changes. Among

the population-based methods proposed for DOPs

we can find Evolutionary Algorithms [10,12,28,29,

38], Particle Swarm Optimization [4,20,21,35], Ant

Colony Optimization [23,24], Harmony Search [33],

multi-agent metaheuristics [30, 31] or Portfolio Al-

gorithms [8] to cite but a few. However, in re-

cent years, there is a growing literature showing that

trajectory-based methods, coupled with appropriate

diversity mechanisms, can also provide very com-

petitive results [14, 17, 22, 25].

In this work, we would like to deepen in this last

type of approaches, to show that they not only pro-

vide competitive results, but also offer a good track-

ing ability. To this end, we propose a new adaptive

local search for continuous DOPs. This method con-

sists on a hill climbing that adapts the step length

along the search and that stores the best solutions

found in a memory archive. The search process

of the proposed technique oscillates between two

phases: tracking and exploration. The first one starts

just after a change detection and aims at tracking the

optima found in the last static period. To this end,

the search is re-initialized from the solutions stored

in the memory archive. The exploration phase be-

gins when all solutions in the memory archive have

been tracked. Its goal is to find new local optima by

restarting the local search from random points.

Although there exist other works where

trajectory-based methods with memory archives

have been proposed [17, 25, 26, 37], our method

presents two main novelties: the prioritized track-

ing and a mechanism to adjust the resolution or the

minimum step-length of the search. The majority

of the methods proposed so far in DOPs incorpo-

rate some sort of technique to facilitate the tracking

of the optima after a change occurs (generating or

maintaining diversity, keeping solutions in an exter-

nal memory or dividing the population into several

sub-populations). However, as far as we know, they

do not incorporate mechanisms to establish what

solutions or optima should be tracked first. This

would allow providing good solutions for the new

environment in a shorter time. This is the purpose

of the prioritize tracking. In our proposal, before

the tracking phase begins, the solutions stored in

the memory archive are ranked in order to prioritize

the exploration of the most promising areas in first

place.

As mentioned before, the other novelty of our

proposal is a mechanism to adjust the resolution

of the search. This mechanism aims at balancing

the maximum precision of the local search as func-

tion of the effort required to track the optima found.

Concretely, it increases the precision (it reduces the

minimum step-length) when the optima are easily

tracked, in order to find solutions as close as possible

to the exact position of the optima; and it decreases

the precision otherwise, to avoid wasting time on ap-

proaching to the exact position of the optima found

and foster the exploration of new ones.

The experimental study of this paper is done over

the well-known Moving Peaks Benchmark (MPB)

[6] and its goals are two-fold: 1) assessing the bene-

fits of the prioritized tracking and the precision bal-

ance mechanisms, and 2) comparing the proposal

with other state-of-the-art algorithms for the MPB.

The paper is structured as follows. The next sec-

tion discusses the related work. Our proposal is pre-

sented in Section 3 where we show its general work-

ing as well as the prioritized tracking and precision

balance mechanisms. Section 4 contains the ex-

perimental framework of this paper, describing the

MPB problem, the implementation details, the per-

formance measures and the non-parametric tests em-

ployed for statistical assessments. The analysis of

the results and the comparison with the state-of-the-

art algorithms are given in Section 5. Finally, Sec-

tion 6 points out the main conclusions drawn from

this work.

2. Related Work

In this section, we will review the literature re-

lated to our proposal, concretely those works where

trajectory-based algorithms have been used as the

main method to address DOPs.

One of the first in which a trajectory-based

method was applied to DOPs can be found in [37].
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Here, Zeng et al. proposed a method where several

local searches explore and track the different optima

of the problem. The best solutions found in each

stage are stored in a memory archive to accelerate

the searching process after a change. The working

of the local searches is divided in two phases. In the

first one, they explore new local optima whereas in

the second one, they try to find solutions as close as

possible to these optima.

Another interesting trajectory-based method for

DOPs was presented in [27]. In this paper, Moser et

al. use Extremal Optimization to search promising

starting points for a Hill Climbing method. The so-

lutions refined by the Hill Climbing are also stored

in a memory to facilitate the tracking of the op-

tima after changes. Moser together with Chiong

presented an improved version of this algorithm in

[26]. Basically, they combined the same initial-

ization scheme with two others more sophisticated

local searches, obtaining very good results for the

MPB problem.

Multi-search methods (several trajectory-based

methods combined in parallel) are another of the

approaches successfully applied in DOPs. Lepag-

not et al. proposed in [15] and [16] a multi-agent

system where each agent implements a local search

to explore the search space. A central coordina-

tor controls the position of the agents and stores in

an archive the best solutions found so far by them.

These solutions are then used to relocate the agents

when they get trapped in a local optimum. A new

version of this algorithm was published by the same

authors in [17], where the local searches imple-

mented by the agents and some components of the

cooperation scheme were improved.

A similar approach was presented in [14]. In

this paper, Gonzalez et al. proposed a cooperative

strategy composed by a set of agents that implement

a Tabu Search, and a coordinator, that controls the

location of the agents. The coordinator uses a rule

base to decide when and where relocate the agents.

The same authors use this method in others works to

evaluate the performance of different control rules

for the coordinator [13], and to study the influence

of the number of agents and the neighbourhood sam-

pling strategy [22].

Finally, a recent application of a trajectory-based

method to DOPs can be found in [25]. The proposal

consists on a local search algorithm called S3 that

also keeps the best solutions found so far in a mem-

ory archive. When a change occurs, this method also

uses the solutions stored in the archive, but it ap-

plies first a exponential crossover in order to help

the search to escape from possible local optima.

Although the algorithm proposed in this paper

shares some of the common components of the ap-

proaches mentioned above as an external memory

archive, its design presents important novelties with

respect to them. As pointed out before, the main dif-

ference are the mechanism to prioritize the tracking

of the optima, and the method to adjust the resolu-

tion of the local search. Next section describes the

proposal and these new mechanisms.

3. Description of adaptive local search

The method proposed in this paper consists on a lo-

cal search for continuous DOPs with adaptive step

size that incorporates specific mechanisms to deal

with dynamism (e.g. fitness change detection), pri-

oritized tracking of local optima and an adjustment

method to balance the maximum precision of the

search. For a better understanding, in Section 3.1

we give the general concepts and workflow of the

method; in Sections 3.2 and 3.3, the details of the

prioritized tracking and the precision adjustment

mechanisms, respectively; and finally, in Section

3.4, the complete working of the algorithm.

3.1. Basic concepts and general workflow

Given that the method presented in this paper deals

with continuous DOPs, an important issue to address

in trajectory-based algorithms is the step length δ .

In our proposal, the step length can also be seen as

the neighbourhood size, since it establishes the area

around the current solution that will be sampled in

order to find better solutions. If δ is too small, the

method will waste objective function evaluations in

very short steps. On the contrary, if too long, it may

have difficulties to converge to good solutions. For

this reason, it is desirable a large step length at the

beginning of the search, for a better exploration, and
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Fig. 1. Workflow of the adaptive local search

then, reducing it progressively to give more accu-

rate steps. Having this idea in mind, the local search

proposed starts with a step length δ = δinit , and ev-

ery time the exploration of the neighbourhood of the

current solution does not lead to an improvement, δ
is halved. The minimum step length is delimited by

the parameter δmin. This parameter determines the

resolution or maximum precision of the search. As

explained later in this section, δmin is adjusted after

each change in the fitness function.

Let us suppose that we are dealing with a max-

imization problem. When δ reaches a value lower

than δmin, we can assume that the search is placed in

a local maximum, given that the method cannot find

better solutions in a very small neighbourhood area.

The local maxima found by the method along the

search process are stored in a memory archive Ac,

because of two reasons: 1) to avoid previously ex-

plored regions, and 2) to facilitate the tracking of the

new positions of these local optima. When a change

in the objective function is detected, the archive Ac
is copied to another memory archive, called Atr. Ac
only stores the local maxima found in the current

static period of the fitness function.

Algorithm 1: exploreNeighbourhood(x,δ ,maxNeighs)

1 counter← 0;

2 xnew← x ;

3 repeat
4 xneigh← generate a random solution in the

hypercube with side length 2δ and center in x;

5 if f (xneigh)> f (xnew) then
6 xnew← xneigh ;

7 break;

8 end
9 until counter � maxNeighs;

10 counter← counter+1;

11 return xnew

Figure 1 displays the general workflow of the

method. The algorithm starts with an initialization

phase and after that, it enters into the main loop un-

til the stopping condition is fulfilled. In the first step

of this loop, the algorithm explores the neighbour-

hood of the current solution x. Algorithm 1 shows

the pseudocode of the method employed by the lo-

cal search to this end. As we can see, it generates

points uniformly distributed in the area delimited by

the hypercube with side length 2δ and centre in x.

The exploration stops when it finds a solution xneigh
better than x or it samples a maximum number of
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Algorithm 2: relocateSearch(Atr)

1 if Atr �=∅ then
2 xnew← first local optimum in Atr;

3 Atr← Atr−{xnew};
4 else
5 xnew← generate random initial solution;

6 end
7 return xnew

neighbours (maxNeighs), returning xneigh or x, re-

spectively.

Coming back to Figure 1, after the neighbour-

hood exploration, the algorithm checks whether the

returned solution x′ is better than x. If so, it sets the

current solution to x′ and it updates the best solu-

tion found so far xbest in case f (x′) > f (xbest); oth-

erwise, δ is halved, since no improvement has been

achieved.

In the next stage of the workflow, the method

tests whether the step length δ is lower than δmin or

whether x is close to a local maximum stored in Ac.

When any of these conditions is fulfilled, the algo-

rithm checks if x is not close to a previously found

local maximum in Ac (the euclidian distance is not

lower than a prefixed value rlm). This indicates that

the method has found a new optimum, and x is added

to the memory archive Ac.

After that, the algorithm restarts the search from

another solution in order to find as many local op-

tima as possible. Algorithm 2 describes how the new

starting point of the search is selected. The ratio-

nale behind this relocation policy is simple. Right

after a change, the method should start to explore

regions near the solutions stored in Atr (local max-

imum found in the last static period) since the new

local optima will be probably close to them, given

the gradualness of the changes. When all of these

regions have been explored, restarting the search

from random points will allow finding new local

optima. More formally, if Atr �= /0, x is set to the

first solution in Atr, which is then removed from

Atr; and otherwise, x is located randomly. It is im-

portant to note that the solutions in Atr are sorted

in order to prioritize the tracking of some optima

over the others, as we will see later in Section 3.2.

Algorithm 3: readjustDelta()

1 if the method is in tracking phase then
2 δnew← δtrack;

3 else
4 δnew← δinit ;

5 end
6 return (δnew)

The period in which the local search is restarted

from the solutions in Atr or from randomly gener-

ated solutions are called the tracking and the explo-

ration phases, respectively. Depending on whether

the method is in one phase or the other, the appro-

priate initial setting for the parameter δ varies. In the

tracking phase, a small value for δ is preferred since

we can expect the new local maxima to be close.

However, in the second phase, it is better a bigger

step length to increase the exploration and acceler-

ate the convergence to new promising regions. Al-

gorithm 3 displays the procedure used to readjust δ
after the relocation of the search. δtrack and δinit are

the adjusted values for δ in the tracking and explo-

ration phases, respectively.

Finally, in the last stage of the main loop, the

local search checks whether a change in objective

function has occurred or not. Concretely, the method

revaluates a randomly picked local maximum from

Ac if Ac �= /0, or it revaluates xbest , otherwise. When

a change is detected, the method readapts certain pa-

rameters (we will explain this adaptations later), set

Atr to Ac, and resets Ac. After that, it relocates the

search following the same procedure shown in Al-

gorithm 2 and it updates xbest .

In the next two subsections, we will describe how

the method prioritizes the tracking of the optima and

it adapts the parameter δmin in order to balance the

precision of the search.

3.2. Prioritized tracking mechanism

3.2.1. Motivation

Apart from tracking as much local optima as possi-

ble, it is also important to track first the most promis-

ing local maxima to provide good solutions as soon

as possible after a change. The question that arises

now is what criterion follow to prioritize the explo-

ration of the solutions stored in Atr once a change is
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detected. The intuitive approach would be to select

each time the best solution according to the new fit-

ness. However, the information from the past envi-

ronment can also be useful since, due to the gradual-

ness of the changes, a good optimum in the previous

period has a high probability of being good in the

current one.

To illustrate this fact, we performed some exper-

iments using the Moving Peaks Benchmark with the

standard configuration shown in Table 1 (see Section

4.1 for the formal definition of the benchmark and its

standard configuration). Although this benchmark

has not been defined yet, to understand this analy-

sis, the reader only needs to know that the problem

considered here consists on ten local maxima whose

positions vary in each change; and that the param-

eter s, called shift severity, establishes how strong

these changes are (the higher the value, the stronger

the severity of the changes).

Concretely, the experimentation done with this

problem aimed at simulating the ideal situation in

which we find all local optima and we have their po-

sitions stored in the memory archive Atr. Then, right

after a change, in order to find the new global max-

imum as soon as possible, we have to decide which

of the solutions in Atr track first: the one with the

highest fitness before or after the change.

To this end, we run the Moving Peaks Bench-

mark 30 times, with 100 changes per run, and

considering six different severities of change (s =
1, . . . ,6). Let us assume that the positions of

the 10 local optima at the stage t (static period

between the (t − 1)-th and the t-th changes) are

{p1(t), . . . , p10(t)}, and their fitness values are given

by { f (p1(t), t), . . . , f (p10(t), t)}. In each stage, we

measured the portion of times that the i-th local op-

tima is the global one in both the current and the

previous stage, that is:

∃i s.t. f (pi(t−1), t−1)> f (pk(t−1), t−1)

and

f (pi(t), t)> f (pk(t), t),∀k �= i,k = 1, . . . ,10

Furthermore, we also measured the portion of

times in which the index of the position pi(t − 1)
with the highest fitness in the current stage t, also

corresponds with the index of the best optimum in

this stage, that is, the portion of times in which the

next two conditions are fulfilled:

∃i s.t. f (pi(t−1), t)> f (pk(t−1), t)
and

f (pi(t), t)> f (pk(t), t),∀k �= i,k = 1, . . . ,10

The portions measured correspond to the ex-

pected success rate we would have at predicting the

starting point that would lead to track the global op-

tima. The first measure corresponds with the ex-

pected success rate if the fitness in the previous stage

is used as predictor, while the second one, with the

expected success rate if the reevaluated fitness is

considered.

Figure 2 displays the mean success rates, av-

eraged over all changes and runs, for six different

severities when the former (red-triangle series) and

the current (black-circle series) fitness are consid-

ered as predictors, respectively. We can observe

here that the success rate for the former fitness is the

same regardless the severity of the changes. How-

ever, when the current fitness is considered, the ac-

curacy of the predictions shows an important vari-

ation, obtaining good results for low severities but

worsening as the severity increases. This fact indi-

cates that when the severity is low, using the current

information to choose the best solution to track is

better. This happens because the landscape of the

problem changes slightly. On the contrary, when the

severity is high, the landscape changes sharply and

the current fitness can make very noisy predictions.

Therefore, in this case, the previous information is a

better indicator.

Another possibility consists on ranking the solu-

tions in Atr by aggregating their current and former

fitness. A simple way of doing it is given in Equa-

tion 1. The parameter α determines to what extent

the previous fitness ( f (pi(t−1), t−1)) and the cur-

rent one ( f (pi(t−1), t)) are consider to rank the so-

lutions. A higher value of α gives a bigger impor-

tance to the former fitness, whereas a lower value

gives it to the current one.

fagg(pi(t−1), t) =α f (pi(t−1), t−1) (1)

+(1−α) f (pi(t−1), t)
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Fig. 2. Success rate of the prediction of the best global op-

tima in the Moving Peaks Benchmark when the fitness of

the local optima in the previous stage (former fitness series)

and the fitness of their positions in the current stage (current

fitness series) are considered

The success rates achieved with this aggregated

measure for different severities of change are shown

in Figure 3. We can observe that the combination

of current and former information allows improving

the success rates obtained using only the previous

(α = 1) or the current (α = 0) fitness. This happens

especially for intermediate severities (s = 2,3,4),

when α is set properly. The best value for α grows

almost proportionally to the severity, indicating that,

as the severity increases, it is better to give more im-

portance to the former fitness.

3.2.2. Design of the prioritize tracking

The expression shown in Equation 1 is the approach

used by the local search to establish the best archived

solution to track first. In order to adjust the parame-

ter α to the features of the problem being solved, we

employ the Equation 2. The functions max and min

are used to delimit the value of α between 0 and 1.

Kα is a parameter to set and ŝ is an estimation of the

severity of the changes.

α = max(0,min(Kα · ŝ,1)) (2)

This severity may be determined by different

factors. One of the most common approaches to

Fig. 3. Success rate, as a function of the parameter α , of the

prediction of the best global optima in the Moving Peaks

Benchmark using a linear combination described in Equa-

tion 1, for different severity values.

establish the severity of the changes in continuous

DOPs is by the shift length of the position of the

optima. For this reason, we designed the next proce-

dure to calculate ŝ. During the tracking phase, every

time a solution in Atr is selected as restarting point,

such position is stored in the variable xinit . Then,

when a local maximum is found, we assume that it

is the new position of the optimum that was located

in xinit at the former stage. Therefore, measuring

the Euclidian distance between these two points, we

have an estimation of the shift length for this opti-

mum. The procedure to update ŝ along the search

process is described in Algorithm 4. x corresponds

to the position of the new local maximum found.

The procedure employed to sort Atr using Equa-

tions 1 and 2 is displayed in Algorithm 5. The func-

tion f f (lm) returns the fitness of the solution lm be-

fore the change, that is, f f (lm) = f (lm, t−1).

Algorithm 4: updateSeverityEstimation(xinit ,x,ŝ )

1 if the method is in tracking phase then
2 d← euclideanDistance(xinit ,x);

3 ŝnew← updateAvgSeverity(d, ŝ );
4 else
5 ŝnew← ŝ;

6 end
7 return (ŝnew)
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Algorithm 5: sortTrackingArchive(Atr,ŝ )

1 α = max(0,min(Kα · ŝ,1));
2 for lm ∈ Atr do
3 fagg(lm)← α f f (lm)+(1−α) f (lm);
4 end
5 sort Atr according to the fagg(lm) values ;

6 return (Atr)

3.3. Precision balance mechanism

As stated before, the parameter δmin establishes the

minimum step length of the local search. Once the

algorithm has “fallen” in the basin of attraction of a

local optimum, the value of this parameter will de-

termine the precision with which the method will

try to approach to exact position of the maximum.

A low value for δmin will allow to get closer to the

local optimum, obtaining a better refinement of the

solutions found, but at the expense of dedicating a

greater number of function evaluations in each local

optimum. On the contrary, a high value for δmin will

make the method spend less function evaluations in

each local maximum (the parameter δ will reach the

value δmin in a lower number of cycles), at the ex-

pense of having worse approximations to the local

maxima, and therefore, less quality solutions. When

the number of local optima in the problem or the ef-

fort required to track them is low, the method can

“afford” a better refinement, whereas in the opposite

case, it is desirable to sacrifice this refinement in or-

der to track a higher number of local optima or to

find new ones.

Having this idea in mind, we have developed a

mechanism to adapt the parameter δmin on the ba-

sis of the effort required by the method to track all

optima. This effort is measured by the portion of

time required by the local search to track all the so-

lutions stored in Atr. Algorithm 6 shows the work-

ing of this mechanism that is run just after a change

is detected. First, it calculates the ratio between

time spent (measured in evaluations) in the track-

ing phase, et p, and the time (number of evaluations)

since the last change, elc. If this ratio is bigger than

a certain threshold μtr, it means that the algorithm is

spending too much time in tracking local optima. In

this case, the mechanism double the parameter δmin

Algorithm 6: readjustResolution(et p, elc, δmin)

1 rtr← et p/elc
2 if rtr > μtr then
3 δ new

min ←min(δmin ∗2,δmin)
4 else
5 δ new

min ←max(δmin/2,δmin)
6 end
7 return (δ new

min )

to reduce the time dedicated to refine the search in

each local maximum. When the ratio is lower than

μtr, δmin is halved to improve the refinement of the

found solutions. The range of values for δmin is lim-

ited to avoid too big and too small step lengths. In

this way, δ lb
min and δ ub

min establish the lower and upper

bounds for δmin, respectively.

3.4. Overall working of the method

To conclude the description of the proposal, we

show its overall working in Algorithm 7. The only

aspect that we have not explained yet in this pseu-

docode is the motivation of the ‘if condition’ dis-

played in line 29. This conditional sentence aims at

avoiding an excessive waste of function evaluations

checking changes in the objective function. ecurr is

the current number function evaluations performed

by the local search, elastCheck is the number of evalu-

ations at which the last change check was done, and

EchangeCheck is a parameter that establishes the min-

imum number of evaluations required to allow an-

other change detection.

4. Experimental Framework

This section is devoted to describe the experimental

framework used in this work. Concretely, in Sec-

tion 4.1 we will give the details of the problem used

as benchmark, in Section 4.2 the performance mea-

sures, in Section 4.3 the non-parametric statistical

tests used to assess the significance of the compar-

isons, and in Section 4.4 the implementation details

and the parameter configuration of the adaptive local

search.
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Algorithm 7: Pseudo-code for the complete working of the adaptive local search

1 δ ← δinit ;

2 x← generate random initial solution;

3 xbest ← x;

4 ecurr← 0;

5 while not stopping condition do
6 x′ ← exploreNeighborhood(x,δ ,maxNeighbours);
7 if f (x′)> f (x) then
8 x← x′ ;

9 if f (x)> f (xbest) then
10 xbest ← x ;

11 end
12 else
13 δ ← δ

2 ;

14 end
15 if δ < δmin∨ x is close to a local optimum in Ac then
16 if x is not close to a local optimum in Ac then
17 Ac← Ac +{x} ;

18 ŝ← updateSeverityEstimation(xinit ,x,ŝ );
19 end
20 if Atr =∅∧ the method is in tracking phase then
21 update et p;

22 finish tracking phase;

23 end
24 x← relocateSearch(Atr);
25 δ ← readjustDelta();
26 xinit ← x;

27 end
28 update ecurr;

29 if (ecurr− elastCheck)> EchangeCheck then
30 elastCheck← ecurr ;

31 if the fitness function has changed then
32 Atr← Ac;

33 Ac←∅;

34 δmin← readjustResolution(et p, elc, δmin);

35 if Atr �=∅ then
36 Atr← sortTrackingArchive(Atr, ŝ );
37 start tracking phase;

38 end
39 x← relocateSearch(Atr);
40 δ ← readjustDelta() ;

41 xbest ← x, xinit ← x ;

42 end
43 end
44 end
45 return xbest
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4.1. Moving Peaks Benchmark

The Moving Peaks Benchmark (MPB) was origi-

nally proposed in [6], and it is one of the most known

benchmarks for DOPs. It is a maximization problem

consisting in the superposition of m peaks, each one

characterized by its own height (h), width (w), and

location of its center (p). The fitness function of the

MPB is defined as follows:

f(x, t) =max
i

(
h(t)i−w(t)i

√
n

∑
j=1

(x j− p j
i (t))2

)
(3)

where i = 1, . . . ,m and n is the dimensionality of

the problem. The highest point of each peak corre-

sponds to its center. Therefore, the global optimum

is the centre of the peak with the highest value for h.

The dynamism is introduced by periodically chang-

ing all or some of the parameters of each peak i after

every ω function evaluations:

hi(t +1) =hi(t)+hs·N(0,1) (4)

wi(t +1) =wi(t)+ws·N(0,1) (5)

pi(t +1) =pi(t)+vi(t +1) (6)

vi(t +1) =
s

|r+vi(t)|((1−λ )r+λvi(t)) (7)

where hi(t), wi(t) and pi(t) are the height, width and

position of the i− th peak at the time t. Changes

to both peaks width and height depend on the pa-

rameters ws and hs, respectively, which control the

severity of the changes. The variation of the peak

position depends on a shift vector vi(t + 1), which

is a linear combination of a random vector r and the

previous shift vector vi(t) for the peak, normalized

to the value of the parameter s called shift severity.

The parameter s determines the length of the peak

shifts in each change. The random vector r is cre-

ated by drawing uniformly distributed random num-

bers for each dimension and normalizing its length

to s. Finally, the parameter λ establishes the lin-

ear correlation with respect to the previous shift. A

value of 1 indicates “total correlation” and a value

of 0 “pure randomness”.

Table 1. Parameter configuration for the MPB problem

Parameter Value

number of peaks (m) 10

change frequency (ω) 5000 evaluations

height severity (hs) 7.0

width severity (ws) 1.0

peak shape cone

basic function no

shift length (s) 1.0

number of dimensions (n) 5

correlation coefficient (λ ) 0

range for variables’ domain [0, 100]

range for h j(t) [30.0, 70.0]

range for w j(t) [1, 12]

initial values for h j(t) 50.0

To facilitate the comparison with other peer

methods, we set MPB parameters to standard val-

ues which are shown in Table 1. Unless otherwise

stated, the parameters will remain the same in all

the experimentation done.

4.2. Performance Measures

In order to make our results comparable with other

closely related works, we have selected the next per-

formance measures:

• Offline error (eo f f ) [7]: this measure is the aver-

age of the error of the best solution found by the

algorithm since the last change, for every func-

tion evaluation, and for all changes. Given that

the changes in the environment are produced at a

fixed rate, its formula is:

eo f f =
1

NrNcNe

Nr

∑
i=1

Nc

∑
j=1

Ne

∑
k=1

( f ∗i j− fi jk) (8)

where Nr in the number of runs, Nc is the total

number of changes in the environment, Ne = ω is

the number of function evaluations of the change

frequency, f ∗i j is the fitness value of the optimum

solution in the i-th run and j-th change, and f best
i jk

is the fitness of the best solution found by the

method since the beginning of the j-th change of

the i-th run, up to the k-th fitness evaluation.

In this work, each run uses a different random

seed, and we have chosen Nr = 50 and Nc = 100.
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• Best error before change (ebbc) [7]: this measure

is the average of the best error at the fitness eval-

uation just before a change occurs. Following the

former notation, this measure is defined as:

ebbc =
1

NrNc

Nr

∑
i=1

Nc

∑
j=1

( f ∗i − fi jNe) (9)

• tRatio: this measure aims at quantifying the track-

ing ability of the algorithm. Corresponds to the

average ratio of peaks tracked by the method over

all runs and changes:

tRatio =
total different peaks tracked

m ·Nr ·Nc
(10)

A peak is considered to be tracked if the algorithm

finds a solution at a distance lower than 0.1 from

the peak.

• gRatio: this measure aims at determining how

well algorithm tracks the global optima. It is de-

fined as the portion of times the best local max-

imum is tracked (following the same criterion as

above) over all runs and changes:

gRatio =
total times best peak is tracked

Nr ·Nc
(11)

4.3. Non-parametric tests

Given that we are dealing with stochastic meth-

ods, we need to use statistical tests to assess if the

differences in performance that appear among the

studied algorithms are significant or not. In this

article we follow the guidelines proposed in [11],

where non-parametric statistical testing is suggested

in situations like the one faced in this contribu-

tion (several instances/problem configurations, algo-

rithms and parameter settings).
In this work, we have employed two types of

non-parametric tests, matched and unmatched. The
unmatched non-parametric tests were used to check
whether exist or not significant differences between

Table 2. Parameter setting for the adaptive local search

Parameter Value

max. number of neighbours (maxNeighs) 10

initial value for δ (δinit ) 20

value for δ in tracking phase (δtrack) 0.5
constant to adjust α (Kα ) 0.15

threshold for tracking ratio (μtr) 0.7

upper bound for δmin (δ ub
min) n ·10−1

lower bound for δmin (δ lb
min) 2n ·10−4

dist. for closeness to local opt. in Ac (rlm) 10

min. evals. for checking changes (EchangeCheck) 10

two or more methods in one specific MPB configu-

ration. The matched non-parametric tests were ap-

plied to make the same assessment over a set of

problem configurations.

Concretely, as unmatched and matched non-

parametric tests, in this order, we have applied

Kruskal-Wallis and Friedman’s tests for multiple

comparisons among a set of methods; and Mann-

Whitneys’s and Wilcoxon’s tests for pairwise com-

parisons. Regarding many-to-many and one-to-

many comparisons, we have used the Holm’s post-

hoc test procedure for the adjustment of the p-

values. To carry out the unmatched and matched

tests, we employed the R package Agricolae†and the

software tool KEEL [2], respectively.

4.4. Implementation Details

Table 2 displays the parameter settings of the pro-

posed adaptive local search for the experimentation.

These parameters have been set according to previ-

ous studies and experiments.

For the MPB benchmark, we employed the orig-

inal implementation provided by J. Branke‡. The

method has been implemented in Java 8 and its

source code can be downloaded at the link available

in the footnote§.

5. Experimental Results

The experimentation done in this work has the fol-

lowing objectives:

†http://cran.r-project.org/web/packages/agricolae/index.html (Accessed September 2015)
‡https://code.google.com/p/moving-peaks/source/browse/trunk/MPB/(Accessed September 2015)
§http://research.mobility.deustotech.eu/media/publication_resources/alsptde_source.zip
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1. Analyse the benefits of the prioritized track-

ing.

2. Study the benefits of the precision adjustment

mechanism.

3. Compare the performance and tracking ability

of the proposal with state-of-the-art methods

for the MPB.

The remaining part of this section is devoted to

analyse the results of this experimentation.

5.1. Benefits of the prioritized tracking

In this subsection we will study the effects of the pri-

oritize tracking in the proposed method. To this end,

we considered the next four variants of the adaptive

local search:

• NPT: no prioritized tracking is employed. The

solutions in Atr are tracked in a FIFO order, ac-

cording to when they were found (first found, first

tracked).

• PTC: prioritized tracking using the current fitness

to order the solutions in Atr.

• PTF: prioritized tracking using the former fitness

to order the solutions in Atr.

• PTC+F: prioritize tracking using the Equations 1

and 2 to order the solutions in Atr.

Aiming at measuring the benefits of prioritized

tracking without any distortion, in this experiments,

the mechanism to adjust the parameter δmin was not

activated. We tested the four variants over six MPB

configurations with different shift severity values

(s = 1, . . . ,6). Table 3 shows the mean ranks re-

turned by the Kruskal-Wallis test for the global per-

formance of the method over the six configurations

of the problem, for each of the four measures out-

lined before. For eo f f and ebbc, the lower the mean

rank the better, whereas for tRatio and gRatio the

higher the better. This test established that the null

hypothesis can be rejected at a confidence level of

0.95 for the eo f f measure only. The superscripts of

the values indicate whether there exist differences

among the methods at a significant level of 0.05,

Table 3. Mean ranks returned by the Kruskal-Wallis non-
parametric test for the global performance of NPT, PTC, PTF
and PTC+F over the MPB with six different shift severities
(s = 1, . . . ,6). The superscripts indicate if there are differences
among the methods at a significant level of 0.05 (Holm’s proce-
dure). Different and equal superscripts in the same row indicate
significant and non-significant differences for that measure, re-
spectively. Best mean rankings are highlighted in bold.

Measure NPT PTC PTF PTC+F

eo f f 1014.9a 541.3b 462.3c 383.5d

ebbc 609.9a 588.7a 611.0a 592.5a

tRatio 596.0a 603.5a 602.8a 599.7a

gRatio 591.6a 603.8a 602.2a 604.5a

applying Holm’s p-value corrections for many-to-

many comparisons. If two values in the same row

present a different superscript, their difference in

performance is significant respect to that measure.

Otherwise, the null hypothesis of similar perfor-

mance cannot be rejected.

The data of the table show that the prioritized

tracking only has significant effects in terms of of-

fline error. These results indicates that, globally,

the prioritized tracking improve the efficiency of the

method (eo f f ) but not the efficacy (ebbc) or the track-

ing ability (tRatio and gRatio). In other words, for

these MPB configurations, the proposed mechanism

allows tracking faster the best optima but not find-

ing better solutions before changes nor more local

maxima. In any case, the efficiency represents one

of the most important aspects in this type of prob-

lems, since one of the main goal of DOPs methods

consists on providing good solutions as soon as pos-

sible after a change. For this reason, the offline er-

ror and offline performance are the measures most

widely used in DOPs.

Focusing on the (eo f f ) mean ranks, the three

types of prioritized tracking significantly outper-

forms the variant of the proposal without this mech-

anism. Among the three types of prioritized track-

ing, PTC+F is the best method, which shows that

the combination of current and past information

provides more accurate predictions of the expected

quality of the local optima in the new environment.

Table 4 displays the eo f f , ebbc, tRatio and gRa-
tio obtained by these four algorithms in each of the

six MPB configurations considered. The Kruskal-

Wallis test for multiple comparisons determines that
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Table 4. eo f f , ebbc, tRatio and gRatio obtained by NPT, PTC,
PTF and PTC+F over six MPB configurations with different
shift severities (s = 1, . . . ,6). The superscripts of the values pro-
vide the same information explained in Table 3.

s NPT PTC PTF PTC+F

1 eo f f 1.27a 0.44c 0.56b 0.43c

ebbc 0.14a 0.14a 0.14a 0.13a

tRatio 0.97a 0.97a 0.97a 0.97a

gRatio 0.97a 0.97a 0.98a 0.98a

2 eo f f 1.85a 0.54b,c 0.66b 0.50c

ebbc 0.15a 0.10a 0.14a 0.09a

tRatio 0.96a 0.97a 0.97a 0.97a

gRatio 0.97a 0.98a 0.97a 0.98a

3 eo f f 2.22a 0.78b 0.77b,c 0.66c

ebbc 0.14a 0.12a 0.17a 0.13a

tRatio 0.96a 0.96a 0.96a 0.96a

gRatio 0.97a 0.97a 0.97a 0.97a

4 eo f f 2.58a 1.07b 0.81c 0.76c

ebbc 0.15a 0.18a 0.15a 0.15a

tRatio 0.95a 0.95a 0.95a 0.95a

gRatio 0.97a 0.97a 0.97a 0.96a

5 eo f f 2.75a 1.32b 0.92c 0.87c

ebbc 0.20a 0.17a 0.16a 0.18a

tRatio 0.93a 0.93a 0.93a 0.93a

gRatio 0.96a 0.96a 0.96a 0.96a

6 eo f f 3.01a 1.63b 1.08c 1.02c

ebbc 0.23a 0.23a 0.23a 0.23a

tRatio 0.90a 0.91a 0.91a 0.91a

gRatio 0.94a 0.95a 0.95a 0.94a

there are significant differences (p-value < 0.05)

among the algorithms only in terms of offline er-

ror, for all severity values. The superscripts provide

the same information as above but restricted to the

corresponding severity configuration of the problem.

The first issue to highlight is the strong improvement

achieved by the prioritized tracking in terms of eo f f ,

regardless the shift severity, and being significant in

all cases. Comparing PTC and PTF, as expected,

the first one obtains better results for low severity

values (s = 1,2; being significant for s = 1) while

worse for higher values (s = 3, . . . ,6; being signifi-

cant for s = 4,5,6). The mechanism that combines

both fitness, PTF+C, leads to the lowest eo f f in the

six MPB configurations. The null hypothesis of sim-

ilar performance can be rejected for PTC when the

shift severity is higher or equal to four, whereas for

PTF, when it is lower or equal to two. Regarding the

remaining performance measures, as we said before,

the difference among the methods are not significant

Table 5. Mean ranks returned by the Kruskal-Wallis test
for the global performance of FRlb, FRub and AR over the
MPB problem with eight different number of peaks (peaks =
{5,10,20,30,40,50,100,200}). The superscripts of the values
provide the same information explained in Table 3.

Measure FRlb FRub AR
eo f f 689.4a 618.1b 494.0c

ebbc 673.5a 633.2a 494.8b

tRatio 449.8b 677.0a 674.7a

gRatio 529.2b 615.7a 656.6a

in any case. Therefore, the results confirm the ben-

efits of the prioritized tracking in terms of eo f f ,

and the better accuracy of PTF+C, versus PTC and

PTF, in determining the local maxima that should be

tracked first.

5.2. Benefits of precision adjustment mechanism

This second subsection studies the benefits of the

mechanism developed to adjust the precision or res-

olution parameter δmin (described in Section 3.3).

As stated above, it controls the minimum step length

in order to balance the maximum precision of the

search according to the effort required to track the

local optima. Concretely, it increases δmin when the

effort required is low, to favour the refinement of

solutions, and it decreases it when high, to favour

the exploration of new optima. The experimenta-

tion was designed in order to assess if the mecha-

nism meets its target or not. More specifically, we

compared three versions of the adaptive local search.

Two, (FRlb) and (FRub), where the resolution pa-

rameter δmin was fixed to its lower and upper bounds,

δ lb
min and δ ub

min, along the whole search process, re-

spectively. In the other one (AR), δmin is adjusted

according to the mentioned procedure. The three

variants were tested over eight configurations of the

MPB with 5, 10, 20, 30, 40, 50, 100 and 200 peaks.

Table 5 displays the mean ranks provided by the

Kruskal-Wallis test for the global performance, over

the eight MPB configurations, of the three variants

of the adaptive local search considered in this exper-

imentation, with respect to the measures eo f f , ebbc,

tRatio and gRatio. This test reports that at least two

methods present significant different in performance

(p-value < 0.05) for all measures. The reader should
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take into account again that for eo f f and ebbc, the

lower the mean rank the better, whereas for tRatio
and gRatio, the higher the better. The best mean

ranking in each case is highlighted in bold. The su-

perscripts have the same meaning as before.

The mean ranks shows clearly the benefits of the

adjustment resolution mechanism in all performance

aspects considered. AR significantly improves FRlb
and FRub in terms of eo f f and ebbc which indicates

that the mechanism enhances the efficacy and effi-

ciency of the method. Regarding the tracking ability,

AR performs significantly better than FRlb, the vari-

ant with a higher refinement balance, and very simi-

lar to FRub, the variant with a higher exploration bal-

ance. Therefore, the proposed adjustment method

allows improving the efficacy and efficiency of the

local search, keeping a good tracking ability.

We will now continue analysing the results ob-

tained in each MPB configuration separately. Ta-

ble 6 contains the eo f f , ebbc, tRatio and gRatio ob-

tained by the three methods in each of the eight

MPB configurations studied. The superscripts keep

showing the statistical significance of the difference

among the methods. Let us compare first FRub
and FRlb. Looking at the eo f f and ebbc values,

FRlb shows a better performance when the number

of peaks is low (m = 5,10,20; being significant in

all cases) but worse when the number of peaks is

high (m = 30,40,50,100,200; being significant for

m � 40). Regarding the tracking measures, tRatio
and gRatio, the results are rather similar, excepting

that the null hypothesis can and cannot be rejected

for m = 20 and m = 30, respectively. These data

confirm what pointed out above: when the effort re-

quired to track the optima is low (small number of

peaks) a higher precision is preferred (the method

can “afford” a better refinement of the solutions).

In the opposite scenario (high number of peaks), a

lower precision helps to find and track more local

optima. Focusing on the results of AR, this method

achieves a good precision balance in all cases. It ob-

tains virtually the same performance than FRlb and

FRub in configurations with low (m � 20) and high

(m � 40) number of peaks, respectively; and it im-

proves them significantly when the number of peaks

is intermediate (m = 30).

Table 6. eo f f , ebbc, tRatio and gRatio obtained by FRlb, FRub
and AR over 8 MPB configuration with different number of
peaks (peaks= {5,10,20,30,40,50,100,200}) when the mech-
anism to adjust the resolution parameter δmin is activated and
not. The superscripts of the values provide the same informa-
tion as explained in Table 3.

peaks(m) Measure FRlb FRub AR

5 eo f f 0.41b 0.72a 0.41b

ebbc 0.10b 0.50a 0.10b

tRatio 0.99a 0.93b 0.99a

gRatio 0.99a 0.92b 0.99a

10 eo f f 0.41b 0.73a 0.41b

ebbc 0.10b 0.50a 0.10b

tRatio 0.97a 0.91b 0.97a

gRatio 0.97a 0.92b 0.97a

20 eo f f 0.56b 0.76a 0.53b

ebbc 0.30b 0.50a 0.20b

tRatio 0.87b 0.87b 0.89a

gRatio 0.90a,b 0.88b 0.91a

30 eo f f 0.91a 0.80a 0.69b

ebbc 0.60a 0.60a 0.40b

tRatio 0.65b 0.82a 0.81a

gRatio 0.68b 0.84a 0.83a

40 eo f f 1.06a 0.81b 0.79b

ebbc 0.80a 0.60b 0.50b

tRatio 0.50c 0.76a 0.74b

gRatio 0.54b 0.79a 0.77a

50 eo f f 1.18a 0.82b 0.84b

ebbc 0.90a 0.60b 0.60b

tRatio 0.41c 0.71a 0.68b

gRatio 0.47b 0.75a 0.73a

100 eo f f 1.45a 0.88b 0.92b

ebbc 1.20a 0.70b 0.70b

tRatio 0.21c 0.45a 0.43b

gRatio 0.25b 0.50a 0.48a

200 eo f f 1.57a 0.95b 0.99b

ebbc 1.30a 0.80b 0.80b

tRatio 0.10b 0.23a 0.23a

gRatio 0.13b 0.27a 0.26a

In the next part of this subsection, we will get

more insight into the reasons behind the good per-

formance of the resolution adjustment mechanism.

Figures 4 A, B and C show the evolution of the mean

ratio between the number of peaks tracked in each

static period and the total number of peaks in the cor-

responding configuration, for FRlb, FRub and AR,

respectively. The data are averaged over the 50 runs.

To establish when a peak was tracked, we used the

same criterion than for tRatio. The static period and
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A) FRlb

B) FRub

C) AR

Fig. 4. Evolution of the mean ratio between the number of peaks tracked in each static period and the

total number of peaks in the corresponding MPB configuration (
peaks tracked

m ) for FRlb (A), FRub (B)

and AR (C). The static period and the mean ratio are represented in the x and y axis, respectively. The

eight series corresponds to the eight MPB configurations with different number of peaks (m).
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Fig. 5. Evolution of the adjustment of the parameter δmin along the search process depending on the

number of peaks (m) of the MPB configuration. The x-axis represents the static period of the objec-

tive function and the y-axis depicts the value for this parameter. The series indicate the corresponding

MPB configuration.

the mean ratio are represented in the x and y axis, in

this order. The series corresponds to the eight MPB

configurations with different number of peaks m.

Let us focus again on FRlb and FRub. For a

low number of peaks (m = 5,10,20), we can ob-

serve that, although the evolution of the mean ra-

tio at the first stationary periods is similar, as search

progresses, FRlb is able to track nearly all optima.

However, FRub stagnates at around a 90% of the op-

tima. Its low precision does not allow it to reach all

local maxima at a distance lower than 0.1 (distance

to consider a peak as tracked). For a high number

of peaks (m � 30), the situation is the opposite. The

mean ratio for FRlb gets stagnated in the first static

periods of the search at a much lower value than the

one obtained by FRub. When FRlb finds a certain

number of peaks (around 20 peaks according to the

mean ratio and the value of m), it is not able to track

more. This happens because it spends all the static

period trying to get solutions closer to the exact po-

sition of these optima.

On the contrary, the plot for AR shows that this

method tracks as many optima as the best of the

other two variants, in each of the MPB configura-

tions. For 5, 10 and 20 peaks, its behaviour is vir-

tually the same than that of FRlb whereas, in the

remaining configurations, the same goes for FRub.

Comparing AR with FRub, we can also see that the

growth of the curve is slightly slower for AR. This

indicates that AR needs some time to adjust the pa-

rameter δmin to the appropriate value.

This fact is illustrated in Figure 5, that displays

how the proposed mechanism adjusts the value of

δmin along the search process. The x-axis represents

the static period of the objective function and the y-

axis depicts the value for this parameter. The series

indicate the corresponding MPB configuration. The

plot shows that for m = 5 and m = 10, the mecha-

nism sets δmin to the minimum value (δ lb
min), to in-

crease the precision of the search. For m = 20,

m= 30 and m= 40, it progressively adjusts the reso-

lution to intermediate values between δ lb
min and δ ub

min.

Finally, for m = 50, m = 100 and m = 200, δmin is

continually increased (with different velocities) up

to it reaches δ ub
min. In short, this graphic illustrates

how the proposed mechanism adjusts the maximum
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Table 7. Acronym, bibliographic reference and description of the state-of-the-art algorithms consid-
ered in the comparison

Acronym Reference Description

CPSO [35] Clustering particle swarm optimizer for locating and tracking multiple optima

mCPSO [5] Multiswarm with charged particles as well as exclusion and anti-convergence mechanisms

mQSO [5] Multiswarms with quantum particles as well as exclusion and anti-convergence mechanisms

SOS+LS [3] Self-Organizing scouts algorithm coupled with local search

DynPopDE [12] Differential Evolution for dynamic environments with unknown numbers of optima

ESCA [21] Multi-population hybrid between a Particle Swarm Optimization method and a Evolutionary Algorithm

CPSOR [19] General framework of multipopulation methods with clustering for undetectable dynamic environments

CHPSO [32] Hybrid adaptive collaborative approach based on particle swarm optimization and local search

AMSO [20] Adaptive multi-swarm optimizer for dynamic optimization problems

MLSDO [17] Multiple local search algorithm for continuous dynamic optimization problems

DynS3 [25] Adaptive local search with memory archive for continuous dynamic optimization problems

precision of the local search depending on the effort

required to track the local optima.

5.3. Comparison with the state-of-the-art
algorithms

Once we have seen the benefits of the prioritized

tracking and the mechanism to balance the precision

of the search, in this section we aim at comparing

the competitiveness of our proposal versus state-of-

the-art algorithms for the MPB, both in terms of per-

formance and tracking ability.

Table 7 shows the acronyms, references and de-

scriptions of the state-of-the-art algorithms selected

for this comparison. These algorithms have been

chosen because they are known to be high perfor-

mance methods for the MPB and they have been

tested using the same standard configuration for

this benchmark (see Table 1). The first nine al-

gorithms are population-based. Concretely, CPSO,

mCPSO, mQSO, CPSOR and AMSO are multi-

swarm algorithms, that is, Particle Swarm Optimiza-

tion (PSO) methods whose population (swarm) is

divided into various sub-populations; SOS+LS is a

Self-Organizing Scouts algorithm coupled with a lo-

cal search; DynPopDE is a multi-population differ-

ential evolution; ESCA is a multi-population hy-

brid between a PSO method and a Evolutionary

Algorithm; and CHPSO is a PSO algorithm com-

bined with a local search. Finally, we also consid-

ered two recently proposed trajectory-based meth-

ods: MLSDO, a cooperative strategy with multiple

local searches, and DynS3, an adaptive local search

with memory archive. The interested reader is re-

ferred to the citations provided in Table 7 for further

details about these state-of-the-art algorithms.

To compare the performance of our proposal

against these methods, we have used the measure

eo f f because it is an standard in DOPs. We have

not consider the ebbc because it was not available

for MLSDO and DynS3. The results for the first

eight population-based algorithms (CPSO, mCPSO,

mQSO, SOS+LS, DynPopDE, ESCA, CPSOR and

AMSO) were taken from [20]. The authors of this

work assert that they re-implemented and repro-

duced the original results of these methods over the

same MPB configurations used here. The results for

CHPSO, MLSDO and DynSE were taken from their

original works ( [32], [17] and [25], respectively).

We are aware that comparing the algorithms us-

ing the results reported in their respective papers

can bias the comparison, because the sequence of

changes in the objective function may be different.

To minimize this problem, we have carefully cho-

sen those algorithms and results where the experi-

mentation was done according to the same standard

configurations of the MPB and the same experimen-

tation settings used in this article (50 runs per al-

gorithm and MPB configuration). This comparison

methodology has been recently used in other works

as [17, 25, 32, 33]. Furthermore, some preliminary

experiments with our method showed that, under the

same MPB configuration, when different batched of

50 runs were compared among them, the variations

in performance were very low.
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Table 8. eo f f and standard deviation obtained by our proposal (ALSPT) and the considered state-of-
the-art algorithm in the MPB with different shift severity values (s = 1 . . .6).

Algorithm s = 1 s = 2 s = 3 s = 4 s = 6 s = 6

ALSPT 0.43±0.19 0.50±0.13 0.66±0.24 0.77±0.22 0.83±0.19 1.09±0.26
CPSO 4.5±0.26 5.4±0.24 6.1±0.19 6.7±0.21 7.2±0.15 7.6±0.2
mCPSO 8.6±1.1 9.1±0.91 10±0.69 12±0.63 13±0.77 14±0.61

mQSO 2.8±0.19 3.3±0.14 3.8±0.14 4.4±0.14 5±0.14 5.5±0.13

DynPopDE 2.3±0.79 2.5±0.49 2.9±0.62 3.8±0.61 4.4±0.54 4.7±0.58

ESCA 15±1.8 13±1.1 13±0.94 13±0.92 13±0.78 13±0.78

CPSOR 2.6±0.2 3.7±0.19 4.5±0.24 5.5±0.26 6.1±0.21 6.6±0.25

AMSO 1.4±0.11 2.2±0.13 2.9±0.18 3.4±0.19 3.8±0.16 4.2±0.15

CHPSO 0.64±0.02 0.92±0.01 1.22±0.02 1.50±0.02 1.82±0.01 -

MLSDO 0.36±0.08 0.60±0.07 0.92±0.10 1.22±0.12 1.62±0.13 2.01±0.19

DynS3 2.32±0.01 2.84±0.01 3.45±0.03 4.00±0.04 4.62±0.04 5.33±0.04

Table 9. eo f f and standard deviation obtained by our proposal (ALSPT) and the considered state-of-
the-art algorithm in the MPB with different number of peaks (m = {5,10,20,30,50,100,200})

Algorithm m = 5 m = 10 m = 20 m = 30 m = 50 m = 100 m = 200

ALSPT 0.40±0.15 0.43±0.19 0.55±0.13 0.71±0.17 0.84±0.14 0.92±0.11 0.98±0.10
CPSO 4.2±0.32 4.5±0.26 4±0.16 3.5±0.16 3.5±0.13 3.2±0.13 2.5±0.091

mCPSO 7.3±1.2 8.6±1.1 8.6±0.96 6.4±0.72 6.4±0.74 6.4±0.46 6.0±0.85

mQSO 2.6±0.24 2.8±0.19 3.4±0.24 3.8±0.46 3.7±0.19 4.2±0.33 4.3±0.39

DynPopDE 2.0±0.68 2.3±0.79 2.3±0.27 1.9±0.28 2.1±0.24 2.2±0.33 2.0±0.21

ESCA 13±1.8 15±1.8 11±1.5 9.9±1.1 10±1.6 11±1.3 8.5±0.7
CPSOR 2.9±0.34 2.6±0.2 2.6±0.3 2±0.14 2.4±0.12 2.5±0.1 2.3±0.097

AMSO 1.6±0.28 1.4±0.11 2±0.19 1.5±0.1 2±0.16 2.1±0.16 1.9±0.17

CHPSO 0.44±0.02 0.64±0.02 0.91±0.01 0.99±0.01 1.03±0.01 1.04±0.01 1.01±0.00

MLSDO − 0.36±0.08 − − − − −
DynS3 − 2.32±0.01 2.65±0.03 3.03±0.03 3.27±0.02 1.98±0.01 2.11±0.01

Table 10. eo f f and standard deviation obtained by our proposal (ALSPT) and the considered state-
of-the-art algorithms in the MPB with different dimensions (n = {5,10,20,30,50,100}

Algorithm n = 5 n = 10 n = 20 n = 30 n = 50 n = 100

ALSPT 0.43±0.19 1.63±0.92 3.16±1.43 4.03±1.79 5.52±1.77 12.79±2.81
CPSO 4.5±0.26 8.9±0.53 17±1.4 25±2.4 89±5.1 −
mCPSO 8.6±1.1 21±2.3 70±15 1.9 ·102±17 2.7 ·102±20 −
mQSO 2.8±0.19 7.4±0.36 14±0.52 17±0.31 33±0.92 −
DynPopDE 2.3±0.79 8.4±1.4 13±2.1 13±2.4 18±1.4 −
ESCA 15±1.8 17±4.1 47±6.9 72±20 1.2 ·102±10 −
CPSOR 2.6±0.2 9.6±1 37±5.6 70±15 1.4 ·102±4.4 −
AMSO 1.4±0.11 4.2±0.5 6.5±1.4 8.1±1.3 25±3.7 −
CHPSO 0.64±0.02 3.32±0.06 5.04±0.07 − 9.95±0.11 −
MLSDO 0.36±0.08 − − − − 14.00±2.33

DynS3 2.32±0.01 − − − − 28.04±0.10
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Table 11. Average rankings provided by the Friedman’s
non-parametric test for ALSPT, CPSOR, AMSO and CH-
PSO considering the results over 17 MPB configurations
(s = {1,2,3,4,5}; m = {5,10,20,30,50,100,200}; n =
{5,10,20,30,50}), and adjusted p-value according to the
Holm’s post-hoc procedure using ALSPT as control algorithm.

Algorithm Avg. Ranking p-value adj. Holm

ALSPT 1 -

CPSOR 4 0.0
AMSO 3 0.00008

CHPSO 2 0.04

Tables 8, 9 and 10 show the eo f f measure and its

standard deviation obtained by the ten state-of-the-

art algorithms and our proposal in different configu-

rations of the MPB regarding shift severity, number

of peaks and dimension, in that order. Our proposal

has been identified by the acronym ALSPT (Adap-

tive Local Search with Prioritized Tracking). The

symbol ’-’ indicates that the corresponding eo f f has

not been reported. The best result in each MPB con-

figuration is highlighted in bold.

Let us starting comparing the methods for dif-

ferent shift severity values. Table 8 shows that AL-

SPT obtains the best offline error in all cases, except

for s = 1 where it is improved by MLSDO, the sec-

ond best performing method over these configura-

tions. These results also prove that ALSPT presents

a better tolerance to the increase of the shift severity,

since its performance experiences a much lower de-

terioration than the other algorithms. In our opinion,

this is due to the good adaptation of the prioritized

tracking to the shift severity of the changes.

Looking at Table 9, we can observe that our pro-

posal also improves the state-of-the-art algorithms

for all numbers of peaks but one (MLSDO in the

same configuration as above). In this case, CHPSO

is the method with the closest performance to AL-

SPT, especially when the number of peaks is high.

The results displayed in Table 10 show that our

proposal also provides a very good scalability in

terms of dimension. It always obtains the best of-

fline error when the dimension is equal or greater to

ten. Given that we only have available the average

performance of the state-of-the-art algorithms, fol-

lowing the guidelines given in [11], we have used

matched non-parametric test to assess the signifi-

Table 12. Average rankings provided by the Friedman’s non-
parametric test for ALSPT, MLSDO and DynS3 considering
the results over 7 MPB configurations (s = {1,2,3,4,5,6};
n = {100}), and adjusted p-value according to the Holm’s post-
hoc procedure using ALSPT as control algorithm.

Algorithm Avg. Ranking p-value adj. Holm

ALSPT 1.14 -

MLSDO 1.85 0.18

DynS3 3 0.001

cance of the differences in performance. Since the

results in all MPB configurations were not available

for all methods, and the ratio between samples (eo f f
values available) and algorithms is low, we have

splited the analysis in two parts. On one hand, we

have compared ALSPT with the three best perform-

ing population-based algorithms, CHPSO, AMSO

and CPSOR; and on the other hand, with the two

trajectory-based algorithms, MLSDO and DynS3.

Table 11 contains the results of the non-

parametric tests. The second column depicts

the average ranking provided by the Friedman’s

non-parametric test for ALSPT and the three

best performing population-based methods. The

third column displays the adjusted p-values ac-

cording to the Holm’s post-hoc test using AL-

SPT as control algorithm. This analysis have

been done over the 17 MPB configurations where

the results were available for all of them (s =
{1,2,3,4,5}; m = {5,10,20,30,50,100,200} and

n = {5,10,20,30,50}). Friedman’s test reported

that the null hypothesis of similar performance could

be rejected at significance level lower than 0.05. The

average rankings show that, globally, ALSPT ob-

tains better results than the three population based

methods. Furthermore, the Holm’s post-hoc proce-

dure establishes that the difference in performance

of ALSPT with respect to the three algorithms are

significant (p-value < 0.05).

Table 12 shows the same information for the

comparison among ALSPT, MLSDO and DynS3,

over the seven MPB configurations where the re-

sults for three algorithms were available (s =
{1,2,3,4,5,6} and n = {100}). The Friedman’s

non-parametric test also determines that the null hy-

pothesis can be rejected at a confidence level higher
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Table 13. tRatio and standard deviation obtained by ALSPT and four population-based state-of-
the-art algorithms considered in the MPB benchmark for different number of peaks. The standard
deviations for AMSO are not displayed because they were not available in the literature.

Algorithm m = 10 m = 20 m = 30 m = 50 m = 100 m = 200

ALSPT 0.97±0.03 0.89±0.05 0.81±0.05 0.68±0.03 0.43±0.01 0.23±0.001
CPSO 0.61±0.1 0.41±0.05 0.3±0.04 0.2±0.02 0.1±0.01 0.053±0.008

mQSO 0.18±0.1 0.099±0.05 0.086±0.04 0.06±0.03 0.03±0.01 0.016±0.007

CPSOR 0.73±0.1 0.48±0.1 0.42±0.09 0.3±0.06 0.16±0.04 0.086±0.02

AMSO 0.92± 0.68± 0.63± 0.41± 0.22± 0.12±

Table 14. gRatio and standard deviation obtained by ALSPT and four population-based state-of-the-
art algorithms in the MPB benchmark for different number of peaks.

Algorithm m = 10 m = 20 m = 30 m = 50 m = 100 m = 200

ALSPT 0.97±0.003 0.91±0.002 0.83±0.002 0.73±0.001 0.48±0.001 0.26±0.000
CPSO 0.71±0.3 0.61±0.2 0.48±0.3 0.3±0.2 0.2±0.2 0.13±0.2
mQSO 0.17±0.3 0.053±0.1 0.097±0.2 0.076±0.1 0.031±0.06 0.025±0.06

DynPopDE 0.63±0.4 0.47±0.4 0.38±0.4 0.25±0.3 0.12±0.2 0.064±0.1
AMSO 0.96±0.09 0.74±0.2 0.73±0.3 0.45±0.3 0.21±0.2 0.13±0.2

than 0.95. In this case, ALSPT also obtains the best

average ranking, although the Holm’s post-hot pro-

cedure reports that it is only significantly better than

DynS3. The reader should note that there are only

seven MPB configurations to compare three meth-

ods. Under such conditions (low ratio between the

number of algorithms and the number of datasets),

these tests require very strong differences in perfor-

mances to reject the null hypothesis.

To finish this section, we will compare ALSPT

with population-based state-of-the-art algorithms in

terms of tracking ability. For this analysis, we could

only consider those algorithms whose tRatio and

gRatio results were available. Regarding the tRatio
measure, its value was provided for CPSO, mQSO,

CPSO and AMSO. For the first three algorithms, we

took the results from the reference [18], whereas for

the fourth one, from the reference [20] (in this case

the standard deviations were not given in the paper).

As for the gRatio measure, the data were available

for CPSO, mQSO, DynPopDE and AMSO and all

were extracted from [18]. As stated before, we care-

fully checked that the MPB configurations and the

experimental settings were exactly the same.

The means and standard deviations of the tRatio
and gRatio obtained by our proposal and the state-

of-the-art algorithms mentioned above, in MPB con-

figurations with different number of peaks, are pre-

sented in Tables 13 and 14, respectively. The best

result in each case is highlighted in bold. Both

tables show that ALSPT tracks more local optima

and finds the global maximum more times than the

population-based methods, especially in those MPB

configurations with a high number of peaks. In this

case, we cannot apply non-parametric test to as-

sess the significance of the results, given that the

number of MPB configurations is very low with re-

spect to the number of methods compared. In any

case, the strong differences between ALSPT and the

other methods suggest that the differences are sig-

nificant. Our aim with this comparison is to show

that a trajectory-based algorithm can also provide a

very good tracking ability when it is endowed with

the appropriate mechanisms.

6. Conclusions

In this work we aimed at deepening in the use of

trajectory-based algorithms in DOPs. To this end,

we have proposed a local search technique with

memory archive, whose main novelties were two

adaptive mechanisms: one to prioritize the track-

ing of the solutions stored in the memory archive

to accelerate the finding of the best optima after the

changes; and another one, to balance the precision

or resolution of the search depending on the effort

required to track the optima.

The method was tested over the well-known
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MPB benchmark and compared versus state-of-the-

art algorithms for DOPs. From the analysis of the

results we have drawn the next conclusions:

• The prioritized tracking improved significantly

the efficiency of the method, that is, it allowed

finding the best local optima in a lower time. The

enhancement was achieved considering the fol-

lowing three types of prioritization: by the fitness

in the former static period, by the fitness in the

current one and by a linear combination of both of

them.

• When comparing the prioritization modes based

on the current and the former fitness, the first

one provided better results in MPB configurations

with low shift severity, whereas the second one, in

those with high shift severity.

• The mode based on a linear combination of

the current and former fitness offered more ro-

bust predictions about the best solutions to track,

which led to a significantly better offline error

than the other two modes when the global perfor-

mance was considered.

• The mechanism to balance the maximum preci-

sion of the local search improved the performance

of the method in all measures considered (eo f f ,

ebbc, tRatio and gRatio), especially when the num-

ber of local optima in the configuration of the

MPB is high.

• The trajectory-based algorithm proposed obtained

a lower offline error than the state-of-the-art al-

gorithms considered in nearly all MPB configura-

tions used in the experimentation.

• Our proposal showed a more competitive track-

ing ability than population-based state-of-the-art

algorithms for the MPB problem.

In our opinion, the results obtained in this work

show that trajectory-based algorithms deserve more

attention in DOPs since, when provided with the

proper adaptive mechanisms, they can lead to very

competitive results with respect to population-based

methods, even in terms of tracking ability.

Another interesting point of the research pre-

sented is that the two adaptive mechanisms proposed

can be also applied to multi-population algorithms.

For example, the prioritized tracking can be used to

determine the order in which the sub-populations are

evolved. Those sub-populations tracking the most

promising optima can be evolved first to provide

best solutions faster. On the other hand, some multi-

population methods use diversity measures to deter-

mine when to stop a subpopulation because it has

converged. The threshold that determines this con-

vergence plays a similar role than the parameter δmin
in our proposal. In this way, our mechanism to ad-

just the precision of the search could also be used to

adjust this threshold.
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