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Abstract

The modeling of biological phenomena and its adaptations to distributed computing are promising research areas. The 
computational modeling of neurobiological phenomena, such as cognition and consciousness, has potential for 
applications into bio-inspired distributed computing. The functioning of neurological structures is inherently distributed 
in nature having a closer match to distributed computing. This paper proposes a mathematical model of state of 
consciousness by following the functional neurophysiology as well as elements of distributed computing. The scopes of 
evolution of consciousness and memory are incorporated into the model. The nodal classifications and formation of 
structural hierarchy in distributed computing nodes by incorporating elements of cognitive model are investigated. 
Evaluation of the model is made by numerical simulation considering different choice functions. The results illustrate 
that, model of consciousness can be adapted to bio-inspired distributed computing structures and the gradual evolution 
of consciousness is deterministic under fair excitations from environment.  
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1. Introduction

There are two different approaches to understand and 
model cognitive functions and consciousness. The host 
biological systems are composed of complex network of 
neurons and other specialized neuro-anatomical structures. 
The consciousness is a neurobiological phenomenon of a 
living being. At the physical layer of consciousness, a 
biological system interacts with the environment through 
the sensors and it processes the input signals in brain to 
generate output. However, the modular cerebral network of 
brain often processes the inputs in the unconscious state 
[7]. Often, the conscious and abstract thinking happens at 
the global workspace (GW) level [2, 7]. It is observed that,
the individual neurons in neuro-network implement
computational mechanisms to achieve cognitive functions 
[26, 27, 29, 33]. As a result, the computational modeling of 
cognitive functions such as, learning, intentionality and 
consciousness based on neuro-network are conceived [28,
29, 31]. The computational models of machine 
consciousness as well as artificial cognitive functions are 
proposed following artificial neural network and
probabilistic reasoning employing Bayesian and hidden 
Markov models [30, 32, 34, 35, 36, 37]. Researchers have 
proposed that, neurobiological and physiological attributes 

are not the absolute parameters to explain consciousness. 
There exists a computational and information theoretic 
model to explain abstract thinking and consciousness. In 
general, the attributes of defining consciousness are vague 
and incomplete, which have resulted in incompleteness of 
computational models of consciousness [8]. The main 
reason is that, the models aim at human-centric 
consciousness definitions rather than trying to create a 
functional model of consciousness following 
neurobiological phenomena in general. The understanding 
and modeling of cognitive actions and consciousness 
require the quantitative and theoretical frameworks 
bridging the neurobiological functions and the 
computational as well as algorithmic functions [1]. The 
cognitive functions of brain generating consciousness are
inherently a distributed computing mechanism, because the 
information processing happens at different locations in 
brain due to an input [7]. This paper argues that, a brain 
can be viewed as a distributed computing machine 
comprised of nodes (representing parts of a brain) 
connected by network. This paper proposes a novel bio-
inspired distributed computational model employing states 
of consciousness. The model is composed of functional 
algebraic structures, where the nodes coordinate and 
implement information processing in distributed fashion
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generating conscious output or expression. Moreover, the 
nodes have memory and they evolve by storing 
information.

1.1. Motivation

The modeling of cognitive neuro-functions and their 
integration into computing platforms have given rise of 
machine intelligence having closer approximation to 
biological systems [2, 5, 7, 8]. There can be a wide array 
of applications of such systems in the domains of artificial 
intelligence, humanoid robotics, self-adaptive distributed 
computing and, intelligent human-computer interactions. 
Existing models of cognition and consciousness focus on 
human cognitive capabilities, which are vaguely defined 
[8]. On the contrary, the experimental data suggest that 
higher cognition capabilities differ from human to other 
species while basics remain the same and, a neuronal 
structure can be modeled by a tree-structure of 
computation [1, 14]. The basic form of consciousness due 
to environmental excitations is fundamental to living 
species of any order. Moreover, the state of consciousness 
is evolutionary in nature, where the state of consciousness 
is variable and it evolves towards a deterministic final state 
depending upon environmental inputs and memory.
Interestingly, the predictive coding model of neocortex 
exposes the existence of elements of distributed computing 
structures into the neocortical computation [12]. The 
majority of existing models of cognition follow concepts 
of artificial neural network, which are complex and cannot 
explain generalized notion of consciousness and evolution 
[7, 8]. The reductionism in information processing to 
understand consciousness is not an effective approach [25]. 
Hence, it is required that a more fundamental approach 
should be made to model state of consciousness of any 
species based on physiological neuronal functions. 

This paper proposes a novel computational model of 
deterministic consciousness following the functional 
attributes of neurobiological phenomena. The proposed 
model combines the distributed computing concepts to the 
functional attributes of neurobiology to understand the 
state of deterministic consciousness. The concepts of 
evolution and memory are incorporated into the model to 
understand the dynamics of state of deterministic 
consciousness. This paper explains how the model of 
consciousness states can be integrated into the distributed 
computing domain to establish bio-inspired distributed 
computing systems. It is illustrated that, distributed 
computing structures can adapt model of deterministic 
consciousness. The experimental evaluations are 
conducted through numerical computation aiming to 
quantify deterministic consciousness and to follow its 

dynamics. The proposed model and the results illustrate 
that, consciousness can be possibly quantified and the 
dynamical states can be traced if appropriate choice 
functions are selected matching neurobiological 
phenomena. The main contributions of this paper are:

Construction of a generalized computational model of 
consciousness by combining the functional 
neurophysiology and elements of distributed computing.

Incorporation of concepts of memory as well as 
evolution of deterministic consciousness based on 
environmental excitations.

Integration of basic model of deterministic 
consciousness into the bio-inspired distributed computing 
structures.

The rest of the paper is organized as follows. Section 2 
describes related work. Section 3 explains the construction 
of mathematical model of consciousness. Section 4
describes a set of analytical properties of the model and the 
adapted distributed computing structures. Sections 5 and 6 
describe experimental evaluation and comparative studies,
respectively. Section 7 concludes the paper.

2. Related Work

The physiological level of understanding of cognitive 
capabilities involves neuronal structures and signal 
transductions. The neural correlation models are proposed 
by researchers to explain the development of 
consciousness in brain [2, 11, 13]. The mind-brain 
relationship and the structural analysis are derived through 
experimentation involving EEG, fMRI and, PET [1, 2].
The idealized functional structure of brain is proposed for 
understanding of consciousness [2]. According to the study,
the cerebral hemisphere is activated by diffusion of 
signal/information from thalamus and ascending arousal 
system, which are critical to generate consciousness [21].
However, the physiological understanding of brain 
structures cannot explain the cognitive capabilities and 
consciousness in complete form. It has been proposed that 
neurological cognitive actions can be explained by 
following computational models such as, finite state 
automation as well as push-down stack [1, 9, 10]. 
Following this approach, a single neuron is modeled as a
tree-shaped computing structure [1]. The tree-model tries 
to map the physiological structure and functions of 
neurons into the computational structure. At the functional 
level, the predictive coding model of neocortex is proposed 
[12, 14]. The predictive coding model is a generalized 
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model and incorporates elements of distributed 
computation. The predictive coding model of neocortex is 
different from the traditional bottom-up neocortical 
computation model. In the bottom-up neocortical model, 
the two distributed neuronal nodes perform cognitive 
actions considering chained unidirectional information 
flow. It is observed that, at the algorithmic levels, the 
cognitive functions become computationally intractable 
although living species perform such functions without 
delay [15]. The reason is that, the living organisms often 
employ heuristics and greedy algorithmic models in 
problem solving.

The expression of intension is a cognitive function having 
neurological mechanisms. Researchers have proposed 
models to predict intention based on pattern matching and 
sequence analysis [5]. The simulation theory is proposed 
by researchers to explain intention prediction [18]. 
According to simulation theory, cross-simulation and 
cross-observation between two subjects can be performed 
making one subject aware of intension of another by using 
own state of cognition and consciousness. However, this 
model is based on empiricism.  

In general, the existing models of cognitive functions and 
consciousness can be broadly classified into six categories
[2, 4, 6], namely: (1) global-workspace model, (2) 
information integration model, (3) internal self-model, (4) 
higher-level representation theory, (5) theory of attention 
mechanisms and, (6) virtual machine formalism. The 
global-workspace model considers interconnection of 
distributed cerebral networks and its activation for certain 
duration of time. The consciousness model based on 
artificial neural network (ANN) is proposed following 
global-workspace concept representing abstract thinking 
[7]. On the other hand, the cognition capability of abstract 
thinking is modeled by Central-Representation architecture 
along with monitor system [16]. The CLARION system is 
a knowledge-based cognitive architectural model, which 
employs representational-difference approach along with 
distributed neural systems [38]. However, these models
are complex, computationally expensive and do not 
consider evolutionary consciousness [2, 7, 8]. The global-
workspace model is further refined into a self-model 
considering neurobiological functionalisms [23]. In a 
different approach to explain cognition and consciousness, 
an artificial machine oriented concept is proposed named 
as virtual machine (VM) model. The VM model of 
consciousness considers two levels such as, a physical 
(host) framework and a conceptual virtual machine 
executing on top of host [22]. The virtual machine 
formalism is further classified into two groups, namely: 
VM functionalism and phenomenal VM. Effectively, the 

VM model resembles to the finite state machine in 
computing paradigm. The main drawback of the VM 
model of consciousness is that, the model cannot specify 
some of the intermediate states of consciousness of living 
beings and has a rigid structure.

The realization of consciousness following machine model 
is proposed using symbolic tracking and information 
processing based on reduced set [24]. However, others 
have provided evidences towards a contradictory view,
where reductionism in symbolic tracker effectively 
degrades quality of consciousness model [25]. It is 
illustrated that, neurological phenomena of consciousness 
and experiences are not instantaneous neuronal activities 
and, the retention (memory) has a role into it [3]. 
Furthermore, the expression of experiences has a
computational basis, which can be modeled by 
mathematical frameworks [17, 19, 20].

3. Computational Modeling

It is necessary to transform the neuro-physiological 
structures as well as functions into the computational 
structures prior to construct a concrete model in order to 
understand the dynamics of deterministic consciousness 
and cognition. From the physiological as well as 
anatomical point of view, different sections of a brain are 
responsible to process different excitations from 
environment. The neuro-computational modeling and 
experimentations have revealed that, the information 
processing in brain is inherently distributed in nature [1, 7, 
38, 39, 40, 41]. However, there is a mechanism of 
coherency and coordination among the neuronal sections 
to produce a conscious output. In view of computation, a 
brain can be modeled as a tightly-coupled distributed 
computing system, where specialized neuronal sections are 
represented as the nodes connected to each other through 
neuro-network. In this paper, a map of the brain-model in 
view of distributed computing structures is formulated and 
the computational model of state of consciousness is 
constructed following functional neurophysiology. The 
computational structure of brain is illustrated in Fig. 1.

Fig. 1. Schematic representation of computational brain.
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According to Fig. 1, the functional neurophysiology of 
brain can be mapped into the graph model of distributed 
computing. The nodes in the graph accept inputs from the 
environment and produces conscious outputs. It is 
important to note that, not all nodes in the graph accept
inputs from environment directly. The functions of the 
nodes are classified into different sets and, the outputs
generated to the environment by the graph are coherent as 
well as conscious. The nodal structure of the 
computational model is illustrated in Fig. 2. In following 
subsection, a mathematical model of the consciousness of 
a computational brain is constructed.

Fig. 2. Internal computational structures of nodes.

3.1. Model of consciousness and state dynamics

Let, the set of random environmental sensory input to a 
conscious brain be given by IE = {XE (<e>, G*)} where, 
XE : (<e>, G* R and ien IE. Let, S Z be a set of 
excitation states in G = (N, LG), where N is a set of nodes 
representing regions in a brain controlling individual 
functionalities of a living body and LG N2. Suppose, I n
is a set of all inter-node input signals coming to n N
from other nodes (excluding environment) and, the entire
set of inputs to a node n is given by, I n = (I IE) I n. It 
is evident that set I n contains every possible input to a 
node in brain inclusive of excitations from the 
environment. The normal operation of a brain having 
consciousness is dependent upon two parameters: (1) all 
the nodes in G = (N, LG) are operational and, (2) inter-node 
signal propagation is normal. The state of consciousness 
can be dynamically varying over time and the dynamic 
state of consciousness can have two bounds, a maxima (v)
and a minima (u), where (u, v Z). The boundary state of 
consciousness u < 0 of a node n N is considered if the 
function of node is impaired due to some physical or 
environmental conditions. It is evident that, a person 
having normal state of consciousness produces output to 
environment due to an excitatory input to n by utilizing a 
subset of nodes Ne N \{n} together with the node n N.
Hence, the dynamic selections of Ne depending upon the 
types of environmental excitations and the inter-node 
information transactions to produce conscious output are
two important steps to consider. Let, n N, fn(.) be a
selection function at n depending upon the different types 
of excitations from environment. It dynamically 
determines the subset of nodes required to produce a 
conscious output due to a particular input either from 
environment or excitation from other nodes in a brain
having normal state of consciousness.

The excitation function due to an input to a node in brain 
having normal state of consciousness is defined as, : I n 

S such that, .( 1) = 1. There exists a k such that, (ix)
= kix and, k = 1 if ix I n, otherwise, 0 < k < max(S). The 
output of a node as well as the set of nodes (i.e. brain) due 
to an excitation is such that, G*, Gn G and, G* 

Gn . Thus, for the entire brain represented by G, G =
n = 1, |N| Gn. The inter-node excitation (information) 

transactions are controlled by a function t (.). Suppose, at 
time t, Ne = fn(.). Hence, the dynamics of state of 
consciousness of a node n N can be governed by a triplet 
function represented as follows ( h Ne, n [ u, v],

n(.) [0, 1] and, Y P(On) of node n):

                                                                       (1)

Definition of symbols:

G : a simple graph
P(.) : power set
<e> : environmental input row vector
(.) : excitation function
G : time-ordered set of output of G

XE : random environment variable
ien : input to a node n from environment

n : temporary local excitation at node n
n(.) : fuzzy membership function of node n

G* : previous set of output of G to environment
Gn : previous set of output of n to environment

On : set of output channels of node n
fn(.) : selector function for signal propagation

t(.) : transmission function at time t at any node
Int : inter-node signal generated by n due to excitation
g(.) : output generation function

n : conscious output generated at node n
(.) : transformation function at node n

n = ( n ( (I n)), Gn)
fn : ( (I n), n Y

t : (Int, h
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This indicates that, the natural dynamics of consciousness 
states at any time t are dependent upon the execution of
communication function t(.). In addition, the level of 
inter-node excitation (Int) generated in node n at time t is
equally important for inter-node coordination in generating 
conscious decisions. This is important to note that, in
I n such that j fn(.) then, n fj(.) for the corresponding I j.
However, it is not necessary to restrict the dynamics of 
consciousness states by imposing condition as, fn(.) = fj(.)
for an input from environment.

3.2. Generating conscious output

Suppose at time t, a certain excitation has entered into a
node n N of graph G. Thus, at time t+a, (a > 0), the row 
vector representing a state of consciousness is given by, (m
= |fn(.)|),

n t +a = ( n, 1, 2,……… m) (2)

The output due to excitation is generated at time t+b, (b >
a), from a conscious brain and, it is computed by a 
function n t +b = g( n t +a) depending upon n t +a such 
that,

                g : n R (3)

It is possible to limit the range of g(.) in a way so that at 
any time, n t [ r, r], r Z+.

3.3. Evolution of state of consciousness

The evolution of state of consciousness at time t is highly 
dependent upon the experiences during 0 < t 1 < t. Let, an
ordered pair n,t+i = <I n t, n t+i> represents experience in 
n for i > 0. Thus, the consciousness of a brain with merged 
experiences can be computed as a finite set, G = { n,t : n

N, t Z+} and, Gn = t Z+ n,t. Interestingly, this 
completely fits into the model of state of consciousness 
and the respective dynamics. 

3.4. Deterministic state of consciousness

Suppose in a biological system, all parts (i.e. nodes) of a 
brain are functional without physical impairment 
indicating t, t(.) = 1. The computed value of n t for 
different cases can occur in three ways as follows
(considering |u|= |v|= 1), (I) n t { 1, 0, 1}, (II) n t
( 1, 0) and, (III) n t (0, 1). An output n t = 1 indicates 
that, a deterministic positive conscious decision is made;

n t = 1 indicates that, a deterministic negative conscious 

decision is made and, n t = 0 indicates neutrality in 
conscious decision at time t.

The intermediate values of n t indicate indeterminism in 
conscious decision either with positive-bias or with 
negative-bias depending upon respective signs. It is 
important to note that, more than one value of n t can 
never occur simultaneously at any single point of time. 
Hence, if an output is generated following case (I), then it 
is a deterministic state of consciousness at that point of 
time. On the other hand, the occurrences of case (II) or
case (III) at output indicate indeterministic state of 
consciousness in decision.

4. Analytical Properties

In this section, a set of analytical properties of the 
proposed algebraic model is determined in order to gain 
insight to the functional dynamics. 

4.1. Composition of fn(.) and t(.)

The distributed nodes in the system determine 
consciousness through inter-nodal coordination as well as 
information transactions. Let, a functional composition is 
being denoted by tofn between the selector function and 
the transmission function at any node in G. If n N, tofn
= 1, then the graph G will produce deterministic 
consciousness every time.

However, if n* N, such that t-1ofn* = 0, then G will fail 
to produce deterministic consciousness at t. Evidently, the 
functional composition tofn is not a commutative 
composition. 

4.2. Cardinality variation

Suppose, m = |fn(.)| for some excitation at t to a node n in G.
Now, if it is assumed that n N, tofn = 1, then | n t +a |
= m +1, a > 0. Thus in general, | n t +a | = |fn(.) t | +1 iff 

tofn = 1.

4.3 Distributed global consensus

The regions of neuronal networks in brain compute and 
propagate signals from source region to destination region 
through a series of neuronal firings. The regions of brain 
can be segmented based on specific excitations and 
functions by employing fMRI technology [42]. The 
globally consistent conscious output is made by a 
distributed consensus by different regions in brain in 
coherence. The information propagation and formation of 
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regions are illustrated in Fig. 3. The coordination and 
consensus in local regions in brain are established through 
burst synchronization with theta frequency [43]. However, 
the coherence at global cortical level is achieved due to 
lateral inhibition.

Fig. 3. Schematic diagram illustrating information propagation.

Let, j = Gj(Nj, LGj) be a sub-graph of G representing a 
localized region and, for I n, G = j = 1, F j. The regional 
consensus is defined as a potential given by, C j =
(1/|Nj|) j d n, n Nj. The distributed global consensus 
about a conscious output due to an excitation is computed 
by a distributed consensus algorithm in different regions of 
brain represented by D(G , C j : 1 j F). An example of 
simplified definition of generating global consensus about 
consciousness is, D(.) = C F max(C j : 1 j F 1).

4.4. Effect of delay distribution

The neuronal interconnection between two neurons can be 
modeled as a channel for signal (message) propagation. In 
biological systems, a neurological signal between two 
nodes (neurons) either propagates with a delay of 
transmission, otherwise it decays over short time (i.e.
signal is blocked in channel). A channel function in G is 
defined as, C: Int I n and thus, (ib I n) = C(ia Int)
where, 0 C(.) max(S) and, (na, nb) LG. The delay-
density distribution of the channel is represented as dC(t)
such that, the strength of signal after propagation is ib =
ia t=0 0, dC(t) dt where, the signal propagation delay is .
This indicates that, a neuro-signal or message may be 
propagated unchanged or may be attenuated (blocked) 
depending on the delay-density distribution of a channel
between two nodes.

4.5. Computing structures and nodal classifications 

Evidently, the brain is a complex neuro-network having 
functions resembling elements of distributed computing. 
Thus, the bio-inspired adaptive distributed computing 
structures can be formulated by incorporating 

computational model of consciousness into the graph-
model of distributed computing. Following the distributed 
computational model of consciousness, the bio-inspired 
adaptive distributed computing structures can be 
constructed into two forms such as, structural forms and 
nodal classification forms. In the structural forms, the 
computation can be subdivided into two levels such as, 
Level I and Level II as illustrated in Fig. 4. The nodes in 
Level I are capable of carrying out computation and 
performing I/O to environment (i.e. users), whereas the 
nodes in Level II are capable of performing computation
only (i.e. backend nodes). In the nodal classification forms,
nodes can be portioned into various classes depending on 
their respective functions.

Fig. 4. Bio-inspired Distributed Computing Structures.

The nodes in Level I can be subdivided into three groups
based upon their I/O capabilities to the environment. The 
GL X nodes are capable of accepting inputs from 
environment without providing any direct output, GL Y 
nodes are capable of delivering outputs to environment but 
cannot accept any input and, GL Z nodes provide 
bidirectional I/O to/from environment. The nodes in Level 
II are the computational nodes having interconnection to 
nodes in Level I through the network topology. It is not 
necessary for the network topology to follow a complete-
graph model.

5. Experimental Evaluation

The evaluation of dynamics of state of consciousness has 
three components namely, state of deterministic 
consciousness, state of indeterminism and, the evolution of 
state of consciousness. The distributed computational 
model of consciousness is evaluated by discrete numerical 
computation and simulation. The numerical simulation of 
the model is implemented considering different choice 
functions in order to understand the performance. The set 
of experiments are classified into two broad groups: (a) 
nodal dynamics of state of consciousness without 
transformation of excitation and, (b) multi-nodal dynamics 
of state of consciousness with transformed excitation.  
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Furthermore, the experiments are carried out following 
two different combinations of inputs and memory 
capacities. In one case, the input vectors to the system are
always deterministic (i.e.{ 1, 0 , 1}). In another case, the 
input vectors are made combinatorial in the range [ 1, 1]. 
The input vectors are chosen with uniform randomness. On 
the other hand, a system can have memory (partial or 
complete) or it may not have any memory at all (i. e. zero 
memory system). The dynamics of a memory-less system 
and a system with memory would be different because of 
the effects of memory on the evolution of state of 
deterministic consciousness. 

5.1. The choice functions

The experiments are carried out utilizing different choice 
functions and their compositions so that, the state of 
dynamics of deterministic consciousness can be evaluated 
from base level to the gradually evolved state. In nature, 
the dynamics of deterministic consciousness appear to be
stable. In order to reduce rapid excitation and to reduce 
overshoot/undershoot of the system, a smooth fuzzy 
function is chosen. The definition of fuzzy membership 
function is as follows,

                                       0.5(1 + (x)2) if x I n
                  n( (x)) = (4)
                                        0, otherwise

The surface map of the unconstrained function for the 
varying gain within the limit for the corresponding varying 
input vectors is illustrated in Fig. 5.

Fig. 5. Dynamics of fuzzy function for 1 I n 1 and 0 < k < 2.

The characteristic variation of fuzzy function (y-axis) for 
unit gain (i.e. linear mapping of excitation) for the 
corresponding varying input vector (x-axis) is illustrated in 
Fig. 6. According to natural observations, the evolution of 
state of consciousness is gradual. In order to understand 
the gradual evolution dynamics of state of deterministic 

consciousness, a moderate transformation function is 
chosen.

Fig. 6. Characteristics of fuzzy membership function at k = 1.

A over amplified transformation function is avoided to 
eliminate instability in conscious behaviour. The 
transformation function at a node is chosen as, (x, y) = 
y(1+xy)0.5, where x = n(.), y = avg( Gn). The dynamics of 
transformation function is illustrated as a surface map in 
Fig. 7.

Fig. 7. Dynamics of transformation function, (x, y).

Furthermore, the transformation is constrained within the 
limits as, x [0, 1] and, the corresponding memory vector 
y [ 1, 1]. The characteristic map of constrained surface 
of the transformation function is illustrated in Fig. 8.
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Fig. 8. Characteristic map of constrained (x, y).

It is observable from Fig. 8 that, the high and uneven 
surface of amplification is avoided in the constrained 
transformation function, which would correlate to the 
gradual evolution of the deterministic state of 
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consciousness in a system. The channel delay-density 
distribution function is modeled as a product of 
exponential decay and trigonometric wave-deviation in 
narrow phase-range (dC(x) = 2e xcos x), where x is delay-
density variable. The characteristic map of channel delay-
density distribution function between two nodes is 
illustrated in Fig. 9. This indicates that, immediately after 
generation of a message by a node, the channel tries to 
carry the message at maximum potential to the destination 
node and the message decays over time if the integral 
delay increases in the channel. A full-cycle delay of signal
propagation will lead to complete decay of the 
corresponding signal within the channel.   
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Fig. 9. Delay-density distribution between nodes.

The inter-nodal channel delay-density distribution has an 
effect on the evolution of deterministic positive 
consciousness due to the information transformation 
within the channel. In the experimental setup, the 
following condition is maintained to reduce complexity of 
computation, lim 0+ 0, dC(t) dt 1 considering delay-
density as a time-variable following neuronal firing model.

5.2. Consciousness without memory

In this section, a memory-less system is considered, where 
the state of deterministic consciousness is instantaneous 
irrespective of dynamics of input vectors. The 
instantaneous state of deterministic consciousness is 
computed following continuous averaging method. Thus, 
in this experiment the parameters are chosen as, u = v = r =
1 and, g( n) = ( n + j =1, m j)/(m + 1). The indeterminism 
in the consciousness is evaluated by computing relative 
distance between a state of deterministic consciousness 
(positive or neutral or negative) and the computed output. 

The input vectors are varied into two classes such as, (C1):
deterministic input vectors (excitations are in { 1, 0, 1})
and, (C2): combinatorial (or fair) input vectors (where 
excitations are chosen in [ 1, 1] randomly). The 
comparative study of degree of variations of indeterminism 

and the corresponding deterministic consciousness are 
illustrated in Figs. 10-15, where the input vector size is 
monotonically increased for both classes of input vectors.
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Comparison of degree of indeterminism for combinatorial input vector
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Fig. 11. Variation of state of consciousness in C2 (size = 2).

Comparison of degree of indeterminism for deterministic input vector
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Fig. 12. Variation of state of consciousness in C1 (size = 3).
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Fig. 13. Variation of state of consciousness in C2 (size = 3).
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Comparison of degree of indeterminism for deterministic input vector
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Fig. 14. Variation of state of consciousness in C1 (size = 4).
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Fig. 15. Variation of state of consciousness in C2 (size = 4).

It is observable that, the conscious decision states are 
bounded in a relatively small linear domain in comparison 
to indeterminism. The dynamics of consciousness appears 
to be closer to linearity in majority cases (not all cases). 
However, the indeterminism in consciousness is highly 
non-linear and unpredictable (i.e. chaotic in nature). In 
addition, the chaotic variations of indeterminism in 
consciousness tend to increase with the increasing size of 
combinatorial input vector class (C2). The patterns of 
variations of deterministic consciousness appear to be 
unaffected to a high degree for the increasing size of input 
vectors of both classes. This is consistent with nature 
because, the system has zero memory in it and, the 
evolution of state of consciousness is stateless. 

5.3. Consciousness with memory

In this section, memory is incorporated into the system and, 
the dynamics of state of deterministic consciousness as 
well as indeterminism are evaluated.

The characteristic surface map of interplay of deterministic 
consciousness, indeterminism and memory size is 
illustrated in Fig. 16. It is observable from Fig. 16 that, on 
the negative consciousness surface, the indeterminism 
tends to increase minimally with the increasing memory 
size.

Fig. 16. Dynamics of consciousness and indeterminism with 
memory size.

However, the inherent indeterminism in positive 
consciousness is relatively higher than the surface of 
negative consciousness. Interestingly, the indeterminism in 
consciousness tends to decrease rapidly on the surface of 
positive consciousness when the memory in the system is 
increased to a large extent, which is consistent to the 
nature. In the next step, the comparative study of dynamics 
of deterministic consciousness is carried out separately 
considering C1 and C2 input classes. In the case of 
evaluating a system with memory, the input vector classes 
are further subdivided into three types such as, (1) fair 
input vectors (where input values can vary randomly in [ 1, 
1]), (2) positively-biased input vectors (where input values 
can vary randomly in [0, 1]) and, (3) negatively-biased 
input vectors (where input values can vary randomly in [ 1, 
0]).

5.3.1. System with memory and C1 inputs

In this experiment, the system with memory is considered 
and class C1 input vectors are chosen with fair, positively-
biased and negatively-biased values. Accordingly, the 
experiments are conducted in three categories and the 
comparative studies of the indeterminism as well as the 
state of deterministic consciousness are illustrated in Figs. 
17 - 19. It is observable that, the dynamics of state of 
consciousness and indeterminism in a system with memory 
is relatively symmetric as compared to the memory-less 
system.

On the other hand, the response of a system with memory 
with fair C1 input is relatively more symmetric than the 
response of the system with biased input vectors. In case of 
responses of a system with memory with biased input 
vectors, the states of deterministic consciousness and 
indeterminism converge to singular value on several 
occasions and next, diverge afterwards with increasing size 
of the vectors (appears to be chaotic). In case of fair input 
vector, the responses of a system having memory tend to 
converge initially within a limited size of input vector. 
However, the distances between deterministic 
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consciousness and indeterminism diverge when the vector 
size is further increased (residual indeterminism is 
enhanced).

Indeterminism in consciousness with memory for unbiased 
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Fig. 17. Variation of state of consciousness in system with 
memory (fair C1).

Indeterminism in consciousness with memory for positively-biased 
deterministic input 
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Fig. 18. Variation of state of consciousness in system with 
memory (+biased C1).

Indeterminism in consciousness with memory for negatively-biased 
deterministic input
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Fig. 19. Variation of state of consciousness in system with 
memory ( biased C1).

5.3.2. System with memory and C2 inputs

In this experiment, the state of consciousness of a system 
having memory is evaluated for C2 class input vector 
along with fairness as well as biasness. The responses of 
the system are illustrated in Figs. 20-22. It is observable 
that, symmetric response patterns in consciousness are 
broken when a system with memory is excited with fair C2 
class input vectors. In such case, the deterministic 

consciousness tends to be bounded within a narrow 
domain, whereas indeterminism appears to be chaotic.

Indeterminism in consciousness with memory for combinarotial 
unbiased input
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Fig. 20. Variation of state of consciousness in system with 
memory (fair C2).

However, the states of consciousness and indeterminism of 
a system having memory under positively-biased C2 class 
input vectors converge at the lower end of vector size (i.e. 
low inherent memory). Later, the bifurcation effect takes 
place in the state of consciousness as well as
indeterminism and, the system tends to achieve symmetry
for higher order of positively-biased C2 class vectors.

Indeterminism in consciousness with memory for positively-biased 
combinatorial input
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Fig. 21. Variation of state of consciousness in system with 
memory (+biased C2).

Indeterminism in consciousness with memory for negatively-biased 
combinatorial input
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Fig. 22. Variation of state of consciousness in system with 
memory ( biased C2).

On the contrary, the state of consciousness and 
indeterminism in a system having memory under 
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negatively-biased inputs diverge from an early stage (at 
lower vector size). The relative distance between 
indeterminism and the state of consciousness is relatively 
larger in case of negatively-biased input vectors than the 
other cases.

5.4. Consciousness with transformation

In this section, the experiments are carried out in a system 
with memory and, the non-linear transformation function 
is employed to the excitation. The dynamics of state of 
consciousness is computed for C2 class input vectors with 
fair and biased categories. The initial point of evolution of 
the state of consciousness of the system is considered to 
have median value. A relatively low amplification factor of 
excitation is considered to estimate natural dynamics.

5.4.1. Transformation with partial memory

On the first stage, the response of the system with partial 
memory is computed. In the case of partial memory, the 
system can store the previous state of consciousness 
indicating, y t+1 = avg( n t). However, the system cannot 
store the elements of previous set of input vectors 
throughout lifetime.

Indeterminism in consciousness with memory for transformed fair input 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

Sum of fair input vector

De
gr

ee
 o

f v
ar

ia
tio

n

Computed conscious decision
state
Degree of indeterminism

Fig. 23. Variation consciousness in system with transformed 
excitation (fair C2).

Evolution of consciousness in case of transformed fair input
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Fig. 24. Evolution of consciousness in system with transformed 
excitation (fair C2).

Thus, the initial values are set as, y 0 = 0.5 and, k = 1. The 
inter-nodal signal transaction values are computed as, Int =
0.5( (I n) + n) to eliminate over-excitation of
transmission. The variations of state of consciousness and 
corresponding degree of indeterminism for fair C2 class 
input vectors in a system having partial memory are 
illustrated in Fig. 23. It can be observed that in the system 
having partial memory, transformation and fair C2 inputs
exhibit symmetry in response. In this case, the state of 
consciousness is gradually evolved towards positive
determinism as illustrated in Fig. 24. It is evident from Fig. 
23 and Fig. 24 that, the indeterminism never reaches to 
zero and state of positive deterministic consciousness 
never reaches to unity.

However, if the input vectors are positively-biased, then 
the state of consciousness and degree of indeterminism of 
the system having partial memory tend to diverge as the 
input vector size in memory is monotonically increased.
This effect is illustrated in Fig. 25. The evolution of 
consciousness, in this case, follows a steady and slow
monotonic increasing path as depicted in Fig. 26.

Indeterminism in consciousness with memory for positively-biased 
transformed input
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Fig. 25. Variation consciousness in system with transformed 
excitation (+biased C2).

Evolution of consciousness in case of transformed 
positively-biased input
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Fig. 26. Evolution of consciousness in system with transformed 
excitation (+biased C2).

In case of negatively-biased C2 class input vectors, a
system having partial memory under transformed 
excitation exhibits fairly simple divergence patterns when 
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the vector size is monotonically increased. This is 
illustrated in Fig. 27. It is observable that, with the 
increasing negatively-biased inputs to the system, the 
degree of indeterminism tends to converge to the sum of 
inputs. On the other hand, the relative distances between 
the state of deterministic consciousness and degree of 
indeterminism in the system steadily increase as the sizes
of input vectors are monotonically increased with negative 
bias.

Indeterminism in consciousness with memory in case of 
negatively-biased transformed input
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Fig. 27. Variation consciousness in system with transformed 
excitation ( biased C2).

The dynamics of evolution of state of consciousness of the 
system is illustrated in Fig. 28. It is evident that, the 
evolution of state of consciousness in a system having
partial memory under negatively-biased input vectors
along with transformed excitation is gradual in nature.

Evolution of consciousness in case of 
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Fig. 28. Evolution of consciousness in system with transformed 
excitation ( biased C2).

5.4.2. Transformation with n,t+i

In the next case, the evolution of deterministic 
consciousness of a system having complete memory is
computed. In the case of complete memory, the system can 
store the elements of previous state of consciousness as 
well as the history of input vectors indicating, y t =
avg( n t-1) and, I n = j = 0, t I n j. The initial values are set 
as, y 0 = 0.5 and, k = 1. The inter-nodal signal transaction 

values are computed as, Int = 0.5( (I n) + n) to eliminate 
over-excitation of transmission. It is important to note that, 
the sizes and values of input vectors in all cases of 
experimentation in this section are kept exactly same as 
with experimentations with a system having partial 
memory. This would help to compare the dynamics of 
consciousness with respect to variations of memory
capacity of a system.
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Fig. 29. Consciousness in complete memory system (transformed 
excitation, fair C2).

The evolution of positive deterministic consciousness in a 
system having complete memory along with fair input is 
illustrated in Fig. 29. It is evident that, when input vector 
size is monotonically increased, the system achieves 
deterministic consciousness rapidly and the degree of 
indeterminism reduces to zero. However, if the input 
vector is made positively-biased, then the state of positive 
deterministic consciousness fails to reach unity as 
illustrated in Fig. 30.
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(positively-biased input) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3

Sum of positively-biased input vector

De
gr

ee
 o

f v
ar

ia
tio

n

Computed conscious decision
state
Degree of indeterminism

Fig. 30. Consciousness in complete memory system (transformed 
excitation, +biased C2).

The similar effect is observable in Fig. 31, when the input 
vector is made negatively-biased. In both the cases (with 

biased inputs), a system having complete memory fails to 
achieve positive deterministic consciousness. Thus, the 
system having complete memory along with fair 
excitations can successfully evolve to the positive 
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deterministic consciousness state, which is consistent to 
nature. In other cases, the residual degree of indeterminism 
remains in the system to varying degrees.

Indeterminism in consciousness with memory and transformation 
(negatively-biased input)
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Fig. 31. Consciousness in complete memory system (transformed 
excitation, biased C2).

6. Comparative Analysis

In this section, a detailed comparison of evolution of 
positive consciousness between a partial-memory system 
and a complete-memory system is explained considering
same types and values of input vectors. The comparative 
study in case of fair inputs is illustrated in Fig. 32. It is 
evident that, a system having complete memory achieves 
positive deterministic consciousness, whereas a residue of 
indeterminism remains in a system having partial memory.
On the contrary, the enhancement of memory to full extent 
by incorporating n,t+i in a system would not help to 
achieve positive deterministic consciousness if the inputs 
to the system are biased as illustrated in Fig. 33 and Fig. 
34. In these cases, the biased inputs negate the effects of 
gained experiences (y values) in a system irrespective of 
memory capacities.

Comparison of evolution of consciousness in different memory types 
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Fig. 32. Comparison of deterministic consciousness with memory 
(fair input).

The conjugated effects of memory capacity and the 
biasness of excitations to a system are observable in Fig. 
35.  

Comparison of evolution of deterministic consciousness in different 
memory types (positively-biased input)
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Fig. 33. Comparison of deterministic consciousness with memory 
(+biased input).

Comparison of evolution of deterministic consciousness with memory 
(negatively-biased input)
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Fig. 34. Comparison of deterministic consciousness with memory 
( biased input).

Comparison of evolution of experiences in different memory systems
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Fig. 35. Comparison of evolution of experiences in different 
memory and input.

A system having complete memory, transformation and 
fair inputs gains experiences from environmental 
excitations and thus, it reaches to the state of positive 
deterministic consciousness. The other systems with 
different memory capacities and transformation fail to 
integrate experiences from environmental excitations 
under different input conditions (biases), which negatively 
affect the evolution of state of positive consciousness in 
the systems. However, a system having partial memory 
fails to achieve positive deterministic consciousness with 
fair inputs, because partial memory containing reduced 
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information retards the evolution of experiences in such 
system.

7. Conclusion

The state of consciousness is an important neuro-cognitive 
function of brain having similarities to the elements of 
distributed computing. Thus, the computational model of 
consciousness can be constructed in view of distributed 
computing structures. Furthermore, the traditional 
distributed computing models can be transformed into bio-
inspired adaptive distributed computing structures by 
incorporating the computational model of consciousness. 
In this paper, a computational model of state of 
deterministic consciousness is constructed by following 
the functional neurophysiology and elements of distributed 
computing. The constructed model follows the graph-
theoretic view of the neurophysiology of brain having 
complex network structures. The proposed distributed 
computational model incorporates dynamics of neuro-
signal propagation and fuzzy internalization of input 
excitations in the complex network of nodes. The delay-
density variations and its effects on message propagations 
in the network are modeled following the dynamics of 
signals in the neuro-network of brain. It is illustrated that, 
the distributed computational model of deterministic 
consciousness incorporates memory and properties of 
evolutionary dynamics. Experimental results illustrate that, 
fair environmental excitations and nodal memory can 
realize the state of positive deterministic consciousness.
Furthermore, a bio-inspired adaptive distributed computing 
structure is constructed by incorporating the computational 
model of consciousness resulting in nodal classifications at 
different levels.
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