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Abstract

Image intensity in magnetic resonance (MR) images in the presence of noise obeys Rician distribution.
The signal-dependent Rician noise makes accurate image segmentation a challenging task. Although
existing fuzzy c-means (FCM) variants with local filters improve the segmentation performance, they are
less effective for reducing the negative effect from Rician noise, and the repeatedly applied filter increases
their computational intensiveness. To address this issue, we propose a novel image segmentation method
which dynamically incorporates wavelet-based noise detector and filter in the FCM membership function.
The modified algorithm is designed to exploit both frequency and spatial information in the images and
minimizes clustering errors caused by Rician noise. Furthermore, efficiency of the proposed method can
be enhanced by the strategy of applying filter only when noise is detected. The experimental results of
segmentation on synthetic and brain MR images, demonstrate the computational efficiency and noise-
insensitivity of the proposed method.
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1. Introduction

Magnetic resonance (MR) imaging (MRI) creates

much greater contrast between different soft tissues

than other imaging modalities such as computed to-

mography (CT), and becomes the preferred imag-

ing modality for examining neurological conditions

that change the shape, volume and distribution of

brain tissue. MRI signal further provides multi-

spectral information that reinforce the mapping be-

tween brain tissue and the created MR image 1,2,3,4.

Accurate segmentation of MR images plays a

crucial role in many related applications. Since there
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is an intuitive similarity between segmentation and

clustering 2,5,6,7, image segmentation methods based

on unsupervised clustering techniques are widely

used. MR images suffer from the problem of partial

volume effect (PVE) in which single image pixel is

created by the mixture of signals from several tissues
8,9; thus it is impractical to label one single group to

the affected pixels . Fuzzy clustering becomes more

applicable in this scenario, owing to the fact that

it assigns one pixel to several groups concurrently

based on the membership function 10,11. Among

fuzzy clustering methods, the fuzzy c-means (FCM)

clustering 12,13,14,15 is the most widely applied fuzzy

clustering technique.

Image pixels in the immediate neighborhood

possesses nearly the same feature data. However,

this correlation is not fully utilized by the stan-

dard FCM algorithm, hence pixels affected by noise

could be wrongly grouped. With the dual objectives

of utilizing pixel neighboring information and mak-

ing FCM algorithm insensitive to noise, researchers

have proposed various FCM variants which incor-

porate spatial information into FCM 16,17,18,19,20,21,

where mean or median 16,17, Gaussian 18 and bilat-

eral filters 20 are respectively applied. Recent works

based on this approach, such as the inclusion of both

spatial information and anisotropic neighborhood 22

and the incorporation of multi-resolution bilateral

filter 23, further enhance the performance.

However the incorporation of spatial filters has

two major disadvantages. First, MR image data are

usually modeled by the Rician distribution and the

noise in MR images obeys a Rician distribution 24,25.

Assuming noise in MR image as Gaussian distribu-

tion can lead to an approximately 60% underestima-

tion of the true noise power 25. The noise filters ap-

plied in the existing FCM variants do not specifically

account for Rician noise, and consequently incorpo-

rating these filters into FCM algorithm becomes less

effective in enhancing the noise-insensitivity. Our

previous work addresses this issue by incorporating

FCM with a wavelet-based filter for further reducing

the negative effect from Rician noise 26. However,

this approach requires the multi-dimensional mem-

bership function convolved by the filter in each clus-

tering iteration, thus making the modified algorithm

significantly more computational intensive.

In this paper, we present a new method which

includes two additional improvements to our previ-

ous work 26. First, in order to enhance the com-

putational efficiency of the algorithm, we propose

using the median value of wavelet coefficients as

wavelet domain indicator 27 to detect the existence

of Rician noise. When no noise is detected, the al-

gorithm can be accelerated by skipping the unnec-

essary process of noise removal filtering. Second,

we have modified the Rician noise filter to be more

suitable for processing Rician noise exhibited in the

FCM membership function.. Experimental segmen-

tation results on synthetic images and and multi-

spectral brain MR images, with or without additive

Rician noise, suggest that our approach is more effi-

cient and exhibits better clustering performance than

comparative FCM variants. Another advantage of

the proposed method compared to the most updated

FCM variant 21is that it does not require any prior

knowledge of the images.

The organization of the paper is as follows: in the

next section, a brief review of the standard FCM and

existing FCM variants is given. We also describe

our proposed approach in this section. Experimental

data, setting and comparative results obtained within

various existing and the proposed FCM variants are

presented in Section 3. Concluding remarks and fu-

ture work proposal are given in Section 4.

2. Method

2.1. Existing FCM Algorithms

2.1.1. Standard FCM Algorithm

With the use of fuzzy memberships 12, the FCM

clustering algorithm minimizes the following objec-

tive function:

⎧⎪⎪⎨⎪⎪⎩
J =

N
∑
j=1

c
∑

i=1
μm

i j d
2
i j =

N
∑
j=1

c
∑

i=1
μm

i j ||x j −αi||2 ,
c
∑

i=1
μi j = 1,∀ j = 1,2,3, ...,N .

(1)

where X = (x1;x2; ...;xN) denotes an image with N
pixels to be partitioned into c clusters; xi repre-
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sents multidimensional data; μi j ∈ [0,1] represents

the membership degree of pixel x j in the ith clus-

ter; αi is the centroid of cluster i; m > 1 is the fuzzy

index which controls the fuzziness of the resulting

partition; d2
i j = ||x j −αi||2 is the distance between

pixel x j to centroid ai. The cluster centroids α and

membership function are shown respectively in (2):

αi =

N
∑
j=1

μm
i j x j

N
∑
j=1

μm
i j

; μi j =
1

c
∑

k=1

( ||x j−αi||
||x j−αk||

) 2
m−1

(2)

2.1.2. FCM with Spatial Filters

Neighboring pixels in typical images are highly cor-

related. This spatial relationship is important in

clustering, however it is not utilized in the standard

FCM algorithm. To exploit the spatial information,

a spatial filter is incorporated into FCM algorithm,

which can be defined as follows 16:

hi j = ∑
k∈NB(x j)

μik (3)

where NB(x j) represents a square window centered

on pixel x j in the spatial domain. μik represents the

standard membership function of point xk to cluster

i .

The filter function is included into the member-

ship function in the FCM algorithm as follows 20:

μ ′
i j =

μ p
i jh

q
i j

∑c
k=1 μ p

k jh
q
k j

(4)

where p and q are parameters to control the rela-

tive importance of both functions. hi j is transformed

into the weights of corresponding μi j to calculate the

new membership function μ ′
i j

16. This approach has

been successfully employed to improve FCM per-

formance by utilizing image spatial information and

reducing the negative effect from noise 16,18,20,22,26.

However, one major drawback of this approach is

that the local noise filter is applied on each cluster of

the membership function μ indiscriminately, hence

when the clustering is not affected by the noise,

the computational-intensive process of noise filter-

ing becomes redundant, thus making the fuzzy clus-

tering inefficient.

2.2. Proposed Method

2.2.1. Rician Noise Detector

It is known that noise in MR images follows Rician

distribution 25. Being referred to as the error be-

tween the underlying image intensities and the ob-

served data, Rician noise has a local signal depen-

dent mean, rather than Gaussian noise 25,28,29.

Wavelet-domain filtering can be employed to

handle the spatial variations in both the signal and

noise distribution. It is also demonstrated that

the performance of noise removal method based

on shrinkage of wavelet coefficients is asymptotic

minimax-optimal and there is no excessive artifacts

introduced during the signal reconstruction 29,30.

Wavelet coefficients can be used to obtain a detector

of Rician noise level, or a threshold for discriminat-

ing noise and noise-free signals 30.

The most commonly used approach to obtain

threshold is through binary classification: a coeffi-

cient is dominated either by noisy or noise-free sig-

nal. If one threshold minimizes the mean square er-

ror (MSE) of the wavelet coefficients of corrupted

and uncorrupted image signals, the optimal signal

to noise ratio (SNR) becomes retrievable since the

MSE minimization is equivalent to SNR maximiza-

tion 29.

In a wavelet decomposition of signals, a wavelet

coefficient wD
k, j represents its bandpass content at

resolution scale 2 j (1� j�J), spatial position k
and orientation D. Once a 2-dimensional wavelet

transform is performed, the noise detector d can be

estimated by retrieving the median absolute devia-

tion of the wavelet coefficients in the HH subband

at the finest resolution scale, divided by 0.6745 30 as

follows:

d = Median
( |X −med|

0.6745

)
(5)

where X is the wavelet coefficients at the finest res-

olution scale, and med stands for the median of

X . The existence of noise can then be measured

by comparing the noise detector d with a threshold

value.
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2.2.2. Wavelet Denoising Filter

Noisy signal can be modeled as y = a+n, where a is

the noise-free signal, n is the noise 31. With wavelet

transformation, this noise model can be rewritten as

follows:

yo,s(p) = ao,s(p)+no,s(p) (6)

where p is a wavelet coefficient at orientation o and

scale s, reused from x in Equ. 5.

The wavelet coefficients can be divided into two

categories: wavelet coefficients that contain a signal

of interest (hypothesis H1) and those that do not (hy-

pothesis H0) 32. The Minimum Mean Square Error

(MMSE) of ao,s(p) can be retrieved as follows:

âs = E(as|ys,H1)P(H1|ys)+E(as|ys,H0)P(H0|ys)
(7)

By assuming signal of interest is much

higher than noise, we can respectively deduct

E(as|ys,H1)≈ys and E(as|ys,H0)≈0. Consequently,

MMSE can be rewritten as a general likelihood ratio

as follows:

âs = P(H1|ys)ys =
1

1+η(ys)ξ
ys (8)

where η(ys) =
pY |H(ys|H0)

pY |H(ys|H1)
and ξ = P(H0)

P(H1)
.

Image can be decomposed into 2 levels by multi-

resolution wavelet transform. We can then perform

a non-linear shrinkage on the retrieved wavelet co-

efficients on each level and orientation.

Wavelet coefficient can be used to label signal of

noise by calculating through the following equation:

âD
k,s =

{
0 if |wD

k,s||ŷD
k,s+1|< d

1 if |wD
k,s||ŷD

k,s+1|� d
(9)

where d is the reused noise detector in (5) and wk,s
is the wavelet coefficients, k is the index of wavelet

coefficients.

The parameters of the generalized Laplacian

prior can be estimated from the histogram of the

wavelet coefficients. Then the probability density

function can be estimated based on the histogram of

S0 = {l : âl = 0} and S1 = {l : âl = 1} . In order to

reduce the effect of the errors in the tails, log func-

tion is used to fit the distribution 27.

The likelihood (p(mag|0) and p(mag|1), where

mag is the magnitude of the wavelet coefficient w)

and the prior ratio (p(eng|0) and p(eng|1), where

eng is the averaged energy of the neighboring coef-

ficients) can thereby be computed. With the com-

puted likelihood ratio and prior ratio, the probability

that one coefficient contains signal of interest can be

estimated as follows:

Probability =
Likelihood ∗ r ∗Prior ratio

1+Likelihood ∗ r ∗Prior ratio
(10)

where r can be retrieved by r̂ =

N
∑

k=1
âk

N−
N
∑

k=1
âk

27.

We can then shrink the wavelet coefficients us-

ing Probability of significance. The denosing filter

hence becomes effective since major signal of inter-

est remains, while noise signal is reduced in the pre-

ceding process. The denosing process is finalized by

performing the inverse wavelet transform to restore

the image.

2.2.3. Incorporating FCM with Noise Detector
and Filter

We can incorporate the Rician noise detector and fil-

ter into FCM by performing them on the member-

ship function in each iteration of FCM clustering,

instead of directly applying on the input image data
16. The algorithm employs the Rician noise detec-

tor to measure the existence of Rician noise reflected

by the membership function, and selectively reduces

noise with the denoising filter. The retrieved wavelet

coefficients for Rician noise detector are reused for

creating the denoising filter. The proposed FCM

algorithm, which dynamically incorporates wavelet

denosing filter, is referred to as dwFCM in the rest
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of the paper, and its outline is illustrated in Alg. 1.

Algorithm 1. The proposed algorithm of dwFCM

Input:
cluster number c, fuzziness m, threshold t for noise

detector, k = 0, initial cluster centroids a(0), mem-

bership function μ(0) with the constraint of (1) and

stop criterion

Output:
membership matrix μ , cluster centroids a

(1) for each i do
(2) Compute the non-decimated wavelet transform

of μ(k+1)
i, j with 2 resolution levels and retrieve

wavelet coefficients w;

(3) Compute detector d with (5);

(4) if d > t (noise detected, start noise reduction)

then
(5) for each level and orientation (horizontal, verti-

cal and diagonal)

(6) Estimate the parameters p,s of the generalized

Laplacian prior exp(−|x|/s)p;

(7) Compute the likelihood p(mag|0) and p(mag|1)
;

(8) Compute the prior ratios p(eng|0) and p(eng|1) ;

(9) Compute the Probability of wavelet coefficients

containing signal of interest with (10);

(10) Shrink the wavelet coefficients with Probability;

(11) end for
(12) end if
(13) Perform inverse wavelet transform;

(14) end for
(15) Compute centroids a(k+1) and membership func-

tion μ(k+1)
i j with (2), and objective function J(k+1)

with (1);

(16) k = k+1;

(17) Repeat step (1)-(16) until the stop criterion is sat-

isfied;

3. Experimental Results

In this section, we present comparative experiments

with several existing FCM variants and the proposed

algorithm. The algorithms are implemented by Mat-

lab on a dual-CPU 2.5 GHz Pentium PC with Win-

dows 64 bit operating system. Throughout the ex-

periments, for all the FCM variants, the maximum

number of iteration is set to 100, parameters of

feature weights to 1, the parameter for controlling

fuzziness m in 1 to 2, windows size of filters to 5×5,

σ for Gaussian filters to 0.94, and cluster number to

6.

3.1. Image Data and Visualized Clustering
Results

Both synthetic and brain MR images of the size of

256×256 are used in the experiments. A pair of syn-

thetic images of smoothly distributed pixel intensity

are shown in the first column in Fig. 1. Pixel inten-

sity in the images linearly decreases from the top to

bottom and left to right corner. The second and third

columns in Fig. 1 illustrate the images corrupted by

Rician noise of SNR=15 and SNR=10. Each pair

(i.e., each column) of image data is employed as the

multi-dimensional input data for the clustering algo-

rithms.

Fig. 1. Synthetic and the respective Rician noise-corrupted

images: a pair of original images (first column), images re-

spectively corrupted by noise of SNR=15 (second column),

and by noise ratio of SNR=10 (third column)

We have conducted comparative experiments on

the image data with standard FCM 12, sFCM 16,

gFCM 18, bFCM 20, wFCM 26 and the proposed

dwFCM algorithm to evaluate the performance and

efficiency of the proposed method from different

perspectives.

Fig. 2 visualizes the synthetic image segmenta-

tion results by labeling each cluster with distinctive
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grayscale value. In the first row where no noise is

added, all the clustering techniques create desirable

segmentation results with smooth and clear edges,

while in the second and third rows, where strong Ri-

cian noise of SNR=15 and 10 are respectively ap-

plied on the image, the added noise severely cor-

rupts the segmentation results. It can be seen that,

clustering results created by the use of FCM, sFCM,

gFCM, and bFCM as visualized respectively from

the first to the fourth column contain multiple noisy

and isolated spots, with blurry boundaries within

clusters. It can be observed that in the fifth and

sixth column where wFCM and dwFCM are applied,

shaper boundaries of different clusters are created

and multiple isolated spots are merged into blobs.

In the third row, the stronger added noise further

deteriorates segmentation results created by FCM,

sFCM, gFCM and bFCM. In these cases, the bound-

aries within clusters are barely perceivable. While

in the fifth and sixth columns, where wFCM and

dwFCM are respectively used, isolated spots are fur-

ther reduced, and boundaries between groups be-

come more distinguishable.

Fig. 2. Visualized clustering results on images from Fig.

2: original images(first row), images corrupted by noise

of SNR=15 (second row) and images corrupted by noise of

SNR=10 (third row), respectively by: FCM (first column),

sFCM (second column), gFCM (third column), bFCM

(fourth column), wFCM (fifth column) and dwFCM (sixth

column)

The publicly available MICCAI BRATS Chal-

lenge (MBC) 2012 dataset †is also used for exper-

iments. In this work, to take advantage of the infor-

mation from multi-spectral MR images, we combine

three images of T1-, T2-weighted and FLAIR im-

ages from each selected image slice set, thus creat-

ing 3-dimensional matrices as the input data set. We

have selected 45 sets of image slices which contains

pixels of all the types. As shown in Fig. 3 (b) and

(d), images are corrupted by artificial Rician noise at

various SNR value to evaluate the performance and

efficiency of the algorithm under different noise lev-

els.

Fig. 3. MR images: (a) T1-weighted; (b) T2-weighted; (c)

Flair; (d) Rician noise of SNR=10 on (a); (e) Rician noise

of SNR=10 on (b); (f) Rician noise of SNR=10 on (c).

Fig. 4 visualizes the MR image segmentation re-

sults. The adopted clustering number of 6 is de-

signed to accommodate cerebral organs of white

matters (WM), gray matters (GM), cerebral-spinal

fluid (CSF) along with background (BG), tumor and

edema. It can be observed that when the image data

is free of additive noise, most brain tissues are cor-

rectly separated by the standard FCM and all FCM

variants. However when Rician noise of SNR=10 is

added, segmentation results are interfered and be-

comes varied. Compared to other FCM variants,

dwFCM not only merge the isolated points in the

clusters of background and cerebral organs, but also

create generally correct delineation of the WM and

GM, and contain less isolated pixels in these tissues.

Further quantitative analysis results suggest the clus-

†The brain-tumor image data used in this work were obtained from the MICCAI 2012 Challenge on Multimodal Brain Tumor Segmen-

tation (http://www.imm.dtu.dk/projects/BRATS2012) organized by B. Menze, A. Jakab, S. Bauer, M. Reyes, M. Prastawa, and K. Van

Leemput. This database contains fully anonymized images from the following institutions: ETH Zurich, University of Bern, University

of Debrecen, and University of Utah.
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ters of intracranial tissues created by dwFCM con-

tain the smallest amount of pixels affected by noise.

By treating clusters of tissues from Fig. 4 (a) to (f)

as masks, changed pixels in clusters caused by the

additive Rician noise can be detected and counted.

By performing the experiments on 328 MR image

slices, the average number of changed WM, GM and

CSF pixels created by FCM, sFCM, gFCM, bFCM,

wFCM and dwFCM are 3458.0, 2644.3, 2586.8,

1689.8, 1328.3 and 1279.1, respectively. This clus-

tering performance improvement can be attributed

to the combination of FCM membership function

and wavelet filter, which biases clustering solution

toward homogeneous grouping.

3.2. Performance in Terms of Computational
Intensiveness

A good clustering algorithm converges with mini-

mum number of iteration and consumes less time

in each iteration 14. Fig. 5 illustrates the average

number of iteration and computational time. Except

the standard FCM, dwFCM algorithm spent the least

amount of time; and in all the cases, average num-

ber of iteration with dwFCM is the smallest. It can

be seen from Fig. 5 (b) that, compared with bFCM

and gFCM, the efficiency gain of the dwFCM algo-

rithm rises by more than 10 times when no noise

or Rician noise of low intensity is added in the in-

put image data. This significant enhancement can

be attributed to the incorporated Rician noise de-

tector, i.e., when Rician noise is not detected, the

computational-intensive wavelet denoising process

will be skipped. This effect can be further proved

by the substantially increased time consumption by

dwFCM when input images are corrupted by the

strong additive noise of SNR=10. It should be noted

that, even no additive noise added in the input im-

ages, performance of dwFCM could be different due

to the fact that the Rician noise existing in the orig-

inal image may be detected and filtered in certain

iterations of dwFCM.

Fig. 5. Results of (a) iteration times; (b) time spent on each

iteration by FCM variants with image data with additive Ri-

cian noise of different SNR.

3.3. Performance in Terms of Validity Functions

Validity functions based on fuzzy partition and fea-

ture structure are applied to evaluate the perfor-

mance of the fuzzy clustering algorithms. Partition

coefficient Vpc
33 and partition entropy Vpe

34, de-

fined as (11), are the commonly used validity func-

tions based on fuzzy partition. Less fuzziness means

better performance, and therefore the best clustering

is achieved when the value of Vpc is maximal or Vpe
is minimal.

Vpc =

N
∑
j=1

c
∑

i=1
μ2

i j

N
; Vpe =

−
N
∑
j=1

c
∑

i=1
μi j log μi j

N
(11)

Validity functions based on the feature structure
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Fig. 4. Visualized clustering results on input image data

with no additive noise by (a) FCM; (b) sFCM; (c) gFCM;

(d) bFCM; (e) wFCM; (f) dwFCM, and added noise of

SNR=10 by (g) FCM; (h) sFCM; (i) gFCM; (j) bFCM; (k)

wFCM; (l) dwFCM.

35 makes a direct connection to the featuring prop-

erty. Vxb is the widely used one of this kind and de-

fined as (12). Minimizing Vxb is expected to lead to

a good clustering 35.

Vxb =

N
∑
j=1

c
∑

i=1
μm

i j ||x j −ai||2

N × (min1�k,m�c,m �=k||ak −am||2) (12)

Table 1 lists the average fuzzy validity function

values of the multiple FCM variants using image

data with Rician noise of different intensities. It can

be seen that the stronger additive Rician noise, the

lower Vpc and the higher Vpe and Vxb will be created.

This demonstrates the negative effect of the additive

Rician noise on the fuzzy clustering performance.

Meanwhile, compared to the standard FCM and all

other FCM variants, wFCM and dwFCM create the

highest Vpc values and the lowest Vpe and Vxb val-

ues. This suggests that the incorporated wavelet fil-

ter in the membership function μ has more desired

effect on removing Rician noises, and creates more

homogeneous clustering for image data which obey

Rician distribution. The advantage of the proposed

dwFCM over our previous work of wFCM is also

demonstrated in Table 1 that dwFCM creates better

results than our previous work of wFCM.

3.4. Performance in terms of brain tumor
segmentation accuracy

Although image clustering is not a preferred ap-

proach for brain tumor segmentation 36, this re-

search compares the results of FCM variants for

brain tumor segmentation to study the applicability

of the proposed dwFCM in more complex segmenta-

tion tasks. In this study, we have selected 142 sets of

noticeable tumor-affected multi-spectral MR image

slices, and respectively added noise of intensities of

SNR=40, 20 and 10 to the images.

Sensitivity (Sn) and Speci f icity (Sp) 37 are ap-

plied for statistically measuring the tumor segmen-

tation results. Using locations of ground truth (GT)

tumor pixels as references (See Fig. 6), extracted

pixels in the tumor cluster (See Fig. 7) can be la-

beled as correctly or wrongly segmented. And by

treating correctly segmented tumor, wrongly seg-

mented tumor, correctly segmented non-tumor and

wrongly segmented non-tumor pixel number as true

positive (true+), false positive ( f alse+), true nega-

tive (true−) and false negative ( f alse−) number re-

spectively, Sn and Sp values can be obtained accord-

ing to: Sn = true+
true++ f alse− and Sp = true−

true−+ f alse+ , re-

spectively. An Sn of 100% means that the test recog-

nizes all actual positives, i.e., all brain tumor pixels

are segmented as tumor. And an Sp of 100% means

that the test recognizes all actual negatives, i.e., all
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Table 1. Validity function values from various FCM variants
and image data with Rician noise of different SNR

FCM sFCM gFCM bFCM wFCM dwFCM

Vpc

No additive noise 0.853 0.924 0.925 0.926 0.930 0.932
Noise of SNR=40 0.847 0.924 0.925 0.926 0.930 0.931
Noise of SNR=20 0.691 0.823 0.826 0.839 0.869 0.880
Noise of SNR=10 0.503 0.646 0.657 0.662 0.670 0.673

Vpe

No additive noise 0.296 0.144 0.142 0.140 0.133 0.129
Noise of SNR=40 0.305 0.144 0.141 0.141 0.132 0.130
Noise of SNR=20 0.557 0.302 0.297 0.280 0.233 0.221
Noise of SNR=10 0.923 0.594 0.587 0.572 0.566 0.562

Vxb

No additive noise 0.010 0.013 0.013 0.013 0.004 0.002
Noise of SNR=40 0.010 0.013 0.013 0.013 0.004 0.002
Noise of SNR=20 0.013 0.016 0.016 0.016 0.007 0.004
Noise of SNR=10 0.034 0.033 0.037 0.037 0.034 0.033

non-tumor pixels are segmented as non-tumor 37.

Fig. 6. With respect to image data of Fig 3, tumor (white

area) and edema (gray area) as GT

Fig. 7. With respect to image data of Fig 3, tumor segmen-

tation on (a) no additive noise with FCM, (b) no additive

noise with dwFCM, (c) added noise of SNR=10 with FCM,

(d) added noise of SNR=10 with dwFCM.

It can be seen from the Sp and Sn values tabu-

lated in Table 2 that all general FCM variants makes

better tumor segmentation result than the standard

FCM algorithm. The proposed dwFCM algorithm

creates the best tumor segmentation accuracy when

MR images are corrupted by noise of moderate in-
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Table 2. Tumor segmentation Speci f icity (Sp) and Sensitivity
(Sn) produced by various FCM variants and image data with
Rician noise of different SNR

Intensity of added noise FCM sFCM gFCM bFCM wFCM dwFCM

None
Sp 94.85% 96.49% 95.99% 96.40% 96.37% 96.93%

Sn 79.79% 82.75% 83.42% 83.91% 83.16% 83.49%

SNR=40
Sp 93.84% 94.41% 94.18% 94.44% 94.70% 94.89%

Sn 78.33% 81.38% 82.36% 83.43% 83.18% 83.96%

SNR=20
Sp 85.29% 90.72% 91.19% 91.34% 91.57% 91.68%

Sn 69.32% 79.39% 80.25% 80.09% 80.74% 81.06%

SNR=10
Sp 71.05% 79.88% 79.13% 80.07% 79.26% 79.40%

Sn 56.33% 65.10% 67.30% 69.72% 65.88% 67.34%

tensities. When strong noise of SNR=10 is added in

the MR images, both wFCM and dwFCM creates

lower brain tumor segmentation than some FCM

variants. This can be explained by the severely de-

teriorating effect from the strong noise, which sub-

stantially corrupted the input image data, thus mak-

ing the tumor segmentation results unacceptable for

real medical diagnosis or surgery preparation.

4. Conclusion and Further Study

The proposed dwFCM clustering algorithm for MR

image segmentation is designed to deal with the Ri-

cian noise, which is common in MR images. By

incorporating the wavelet-based Rician noise detec-

tor and filter in the membership function, the fuzzy

clustering is capable of handling Rician distributed

signal more efficiently and effectively. The compu-

tational intensiveness can be significantly decreased

with the help of Rician noise detector which al-

lows the algorithm bypass unnecessary noise filter-

ing. The wavelet filter incorporated in the member-

ship function can be used to remove the negative ef-

fect on the clustering performance from the Rician

noise. One additional advantage of the proposed

dwFCM is that it does not require any prior knowl-

edge of the image.

In addition to the subjective observation and

computation intensiveness evaluation, fuzzy valid-

ity functions and tumor segmentation accuracy mea-

surements are applied for conducting discriminative

and analytical experiments to evaluate the perfor-

mance and robustness of the proposed method. The

experimental results show that the proposed dwFCM

algorithm has superior performance over existing

filters-incorporated FCM variants, especially when

moderate Rician noise is added. Future research will

focus on improving the clustering performance of

the dwFCM when Rician noise of high intensity is

added in the image data.

Further study on improving the proposed ap-

proach aims on optimizing the wavelet denoising fil-

ter. The utilized wavelet denoising filter is proven

robust and effective on MR images. However, in

this study, the denoising filter is applied on the mem-

bership function matrix. We would design more ef-

fective wavelet denoising filters to adjust member-

ship function based on the distribution of input im-

age data.
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