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Abstract

The performance of machine learning algorithms is affected by the imbalanced distribution of data among classes. 
This issue is crucial in various practical problem domains, for example, in medical diagnosis, network intrusion, 
fraud detection etc. Most efforts so far are mainly focused upon binary class imbalance problem. However, the 
class imbalance problem is also reported in multi-class scenario. The solutions proposed by the researchers for two-
class scenario are not applicable to multi-class domains. So, in this paper, we have developed an effective Weighted 
Multi-class Least Squares Twin Support Vector Machine (WMLSTSVM) approach to address the problem of 
imbalanced data classification for multi class. This research work employs appropriate weight setting in loss 
function, e.g. it adjusts the cost of error for imbalanced data in order to control the sensitivity of the classifier. In 
order to prove the validity of the proposed approach, the experiment has been performed on fifteen benchmark 
datasets. The performance of proposed WMLSTSVM is analyzed and compared with some other SVMs and 
TWSVMs and it is observed that our proposed approach outperforms all of them. The proposed approach is 
statistically analyzed by using non-parametric Wilcoxon signed rank and Friedman tests.

Keywords: Least Squares Twin Support Vector Machine, Multi Least Squares Twin Support Vector Machine, 
Weighted Multi Least Squares Twin Support Vector Machine, Imbalanced data classification.

1. Introduction

Classification is one of the significant techniques of data 
mining which predicts the class label for any unknown 
input data. During the construction of a classifier, a 
learning algorithm identifies the relationship between 
class labels and attributes set. The performance of a 
classifier can deteriorate due to imbalanced distribution 
of data between classes in which each class contains 
different number of data points [1-5]. The imbalanced 
data problem occurs when one class includes large 
number of data points (referred as majority class) while 
other class includes less (referred as minority class). 

Standard classification approaches consider a balanced 
training dataset which induces a bias in favor of 
majority classes [6]. The degree of imbalance differs 
from one application domain to another and the correct 
class prediction of data points in an unusual class 
becomes more significant than the contrary case, for 
example, in disease diagnostic problem where the cases 
of diseases are unusual as compared to the normal 
population.  So in this case, the correct recognition of a 
person with disease becomes more important. 
Therefore, a classifier could be beneficial if its 
prediction rate is higher for the disease category. In 
recent years, the class imbalance problem has attracted 

International Journal of Computational Intelligence Systems, Vol. 8, No. 4 (2015) 761-778

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

761



Divya Tomar and Sonali Agarwal

significant interest due to its occurrence in application 
domains such as in identifying fraudulent telephone 
calls, disease diagnostic, intrusion detection, risk 
management, oil spills detection from radar images, text 
classification etc.[4-5,7-10].

Mostly, the solution provided by the researchers for 
the class imbalance problem has concentrated on two-
class imbalance problem [1-2, 11-12]. However, the 
imbalance data distribution problem does not only exist 
in two-class. Multi-class data also suffers from this 
problem. It is more difficult to identify the majority and 
minority class for multi-class data. For example, one 
particular class X can be majority with respect to class 
Y, but minority with respect to another class Z. The 
solutions proposed for two-class imbalanced problems 
have been shown to be less effective for multiple class 
imbalanced learning. Some methods may not be directly 
applicable or may achieve poor performance [13-14]. For 
example, the solutions proposed by the researchers at 
data level are affected by the increased search space and 
also the solutions at algorithm level do not perform well 
and thus become more complicated for multi-class 
scenario [13-18]. So, there is a need to develop a classifier 
which effectively handles the imbalanced distribution of 
data in multi-classes. Therefore, in this research, we
have proposed a classifier, termed as Weighted Multi-
class Least Squares Twin Support Vector Machine 
(WMLSTSVM), for the multi class imbalance problem. 
In this classifier, we have assigned different weights to 
different data points. Initially, we have extended the 
formulation of binary Least Squares Twin Support 
Vector Machine (LSTSVM) to Multi Class Least 
Squares Twin Support Vector Machine (MLSTSVM) by 
using the concept of One-against-All (OAA). In the 
literature, it is found that One-against-One (OAO) 
concept based approach gives more accurate result in 
the presence of imbalanced data [14]. However, in this 
study we have adopted OAA concept to extend binary 
LSTSVM classifier due to the following reasons:

For M-class classification problem, OAO 
MLSTSVM classifier constructs M (M-1) hyper-
planes where (M-1) planes are for each class. While 
OAA MLSTSVM classifier generates M hyper-
planes, one plane for each class. So, extending 
LSTSVM to multi-class by using OAO concept is a 
complex process.

OAO MLSTSVM classifier takes more time in 
training as compared to the OAA MLSTSVM 
classifier.
In, OAO MLSTSVM approach, each classifier is 
involved with the training data points of two classes 
at the same time. Therefore, the information of the 
remaining data points is omitted in each binary 
classification.    

Next, weights are added to the formulation of 
proposed classifier so that it works well for both 
balanced and imbalanced distributed data involving 
multi-classes. Weights are introduced to control the 
sensitivity for imbalance ratio in determining each 
hyper-plane. The performance of the proposed approach 
has been compared with Multi-SVM, MBSVM,
Adaboost.NC, OVO MLSTSVM and OVA-MLSTSVM 
on fifteen benchmark imbalanced dataset by using 
Geometric Mean metric. Some, pre-processing 
approaches such as static SMOTE, Global-CS and 
Random-Oversampling are combined with the base 
classifiers Multi-SVM and MBSVM to overcome the 
imbalance problem.  

In this study, we have performed the statistical 
analysis of classifiers by following the recommendation 
of Demsar and make the statistical inferences from the 
observed difference in Geometric Mean [19]. Non-
parametric Wilcoxon signed rank and Friedman’s 
average rank hypothesis tests are used to statistically 
analyze the performance of the proposed classifier with 
existing classifiers. Results of Friedman’s test are 
displayed with the help of modified version of Demsar 
significance diagram.

The paper is organized into eight sections. Section 2 
and section 3 provide brief overview of imbalanced data 
problem in binary and multi-class scenario and their 
solutions. Section 4 and section 5 include background 
work and the proposed OAA MLSTSVM classifier 
respectively. The formulation of the proposed Weighted 
MLSTSVM approach to imbalance data distribution 
problems of multi-classes is discussed in section 6. 
Experiments on imbalanced datasets have been analyzed 
in section 7 and concluding remarks are given in section 
8.    

2. Imbalanced Data problem

In the classification field, the imbalanced data problem 
appears when data points belonging to each class vary 
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in numbers. The imbalanced data problem deteriorates 
the performance of classifiers as they consider the 
balanced distribution of data among classes. Various 
solutions have been suggested by the researchers to 
handle the imbalanced data problem. These solutions 
can be divided into three broad categories:

2.1. Data level solutions

Balancing distribution of data between classes is one of 
the simplest approaches. The objective of data level 
solutions is to rebalance the distribution of data between 
classes to reduce the effect of class imbalance [6, 12, 15, 20-

27]. The benefit of using data level solutions is that they 
are independent of the selected classifier and hence are 
more versatile in nature. Since data level solutions are 
provided at the pre-processing time so we need to 
prepare the data only one time. Data level solutions can
be divided into two groups: under-sampling and over-
sampling methods. In under sampling method, the data 
points of prevalent class are reduced in such a way that 
each class contains equal number of data points.  On the 
other hand, over sampling increases the data points of 
minority class to balance them with majority class. 
Sometimes the combination of both under sampling and 
over sampling approach is used to balance the 
distribution of data [25-28]. Under-sampling is a simple 
approach, but loses some significant information about 
prevalent class while over-sampling method generates 
an unnatural bias in favor of a minority class. Apart 
from this, balancing the data distributions by using these 
approaches also suffers from extra learning cost for 
analyzing and processing data [5]. Several under-
sampling and over-sampling approaches are discussed 
below:  
a. Synthetic Minority Over-sampling (SMOTE): It is 
one of the famous techniques of balancing the data 
through sampling [20]. Cieslak and Chawla have 
suggested SMOTE which generates synthetic instances 
along the line segments joining nearest neighbors of 
minority classes. Depending upon the amount of over-
sampling required, neighbors are selected randomly 
from the k-nearest neighbors. SMOTE suffers from the 
over-generalization and variance problems. 
b. Random Over-sampling and Under-sampling: The 
aim of random over-sampling method is to rebalance the 
distribution of data points between classes through 
random replication of the data points of minority class 
[15]. This method suffers from the over-fitting problem 
as it generates exact copies of existing data points. On 
the other hand, random under-sampling rebalances the 
distribution of data points between classes through 

random elimination of the data points of majority
classes [15]. As this method remove the data points so it 
can discard potentially useful data which could be 
important for further processing.
c. Informed Under-sampling: It includes two 
approaches-EasyEnsemble and BalanceCascade [29]. The 
objective of these two approaches is to overcome the 
deficiency of information loss introduced in the 
conventional random under-sampling method [17, 29].
EasyEnsemble develops an ensemble learning system 
by independently sampling several subsets from the 
majority class. It then generates multiple classifiers 
based on the combination of each subset with the 
minority class data. This method can be considered as 
an unsupervised learning approach which explores the 
data of majority class by using independent random 
sampling with replacement. In contrast, Balance 
Cascade is a supervised learning approach that 
generates an ensemble of classifiers to systematically 
select majority class data points for under-sampling [29].
d. Safe level SMOTE (SL-SMOTE): As discussed 
earlier, SMOTE generates synthetic instances along the 
line segments joining nearest neighbors of minority 
classes, ignoring nearby data points of majority class. 
On the other hand, SL-SMOTE samples the data points 
of minority class along the same line with a different 
weight degree, called a safe level [30]. Safe level is 
obtained by using the k-nearest data points of minority 
class. The data point is considered to be safe if its safe 
value is close to ‘k’ while it is considered as a noise data 
point if the corresponding safe value is close to 0. 
Therefore, the aim of this approach is to generate 
synthetic data points in safe areas of the training set.
e. Tomek Links: It is used to remove the over-lapping 
that is introduced from sampling methods. Tomek Links 
can be defined as a pair of minimal distance nearest 
neighbor of opposite classes [31]. Given two data points 

and of different classes and , is the 
distance between them. Then, the pair , is called a 
Tomek Links, if there is no data point , such that  

( , ) < , or , < , . Like 
this, if two data points form a Tomek Link, then either 
one of these data points is noise or both data points are 
border-line. This method can be used as an under-
sampling method or as a data cleaning method. As an 
under-sampling method, Tomek Links eliminate the
data points of majority class while as a data cleaning 
method it removes the data points of both classes.
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f. SMOTE + Edited Nearest Neighbor (SMOTE 
+ENN): This method is also used to remove the data 
points from both classes [15]. ENN is applied after the 
SMOTE in order to eliminate any data point 
misclassified by its three nearest neighbors from the 
training dataset.                  
g. One-sided Selection (OSS): This is an under-
sampling approach and is obtained by combining 
Tomek Links with Condensed Nearest Neighbor (CNN) 
rule. As discussed earlier, TL removes the noisy and 
borderline majority data points. CNN removes data 
points from the majority class that are distant from the 
decision border [32]. The remainder data points of 
majority class and all data points of minority class are 
used for learning. 
h. Cluster based Sampling Method: Jo and Japkowicz
proposed Cluster based Oversampling (CBO) approach 
to handle the within-class imbalance problem [33]. In 
another research work, Yen and Lee also proposed 
cluster based under-sampling approach to deal with the 
imbalanced data problem [34]. Cluster based under-
sampling approach improves the predictive accuracy of 
minority class by selecting the representative data as 
training data. They also investigated the effect of under-
sampling approach in the imbalanced class distribution 
scenario. To handle imbalanced data problem, Chen et 
al. proposed a novel over-sampling method based on 
cluster ensemble [35]. This approach first generates 
multiple partitions by using cluster ensembles and 
matches these clusters with different partitions. Then, it 
searches for cluster boundary minority data points with 
the help of clustering consistency index and finally the 
minority data points are over-sampled around the border 
between clusters.

2.2. Algorithmic level solutions

The second solution of the class imbalance problem is 
adjusting the classifier which is an efficient approach 
and provides better results as compared to the previous 
one. These solutions can be defined as internal methods 
that develop new algorithms or modify existing ones in 
order to solve the class imbalance problem [36-40]. One-
class learning is useful approach suitable for imbalanced 
datasets with high-dimensional noisy features [41]. In this 
approach, a classifier learns to predict the data points of 
one class which is usually minority class. The main 
focus of this approach is to separate the data points of 

minority class from majority class. One-class learning 
adopts two strategies-The first strategy identifies the 
data points of the target class (usually a minority class) 
instead of discriminating the data points of all classes. 
While the second strategy considers the data points of 
both classes and uses internal bias strategies to predict 
the target class [41-42]. REMED (Rule Extraction for 
MEdical Diagnosis) and RIPPER are two examples of 
one-class learning approach [41]. Classifier ensembles 
are one of the important approaches used by the 
researchers to handle the class imbalance problem. 
Classifier ensembles learn from a set of classifiers rather 
than one classifier and predict the class of a new data 
point by combining the predictions of all classifiers used 
for ensemble. Boosting and random forest are two 
commonly used approaches to ensemble classifiers [43-

44].

2.3. Cost –sensitive solutions

Sampling methods focus on balancing the distributions 
of data points between classes while cost-sensitive 
learning methods take into account the costs associated 
with misclassifying data points [45-51]. It considers the 
variable cost of a misclassification of the different 
classes. The cost-sensitive learning approaches try to 
minimize the total misclassifications cost, but minority 
class gains importance in this cost function. Cost 
sensitive learning methods solve the data imbalance 
problem by using different cost matrices that describe 
the costs of classifying data points from one class to 
another. It is found from the literature that cost-sensitive 
learning based solutions are more effective than 
sampling methods [52-54].
a. Cost sensitive learning framework: It is based on the 
concept of cost matrix which can be considered as a 
numerical representation of the penalty of 
misclassifying data points [17]. Let us consider a binary 
classification scenario, the cost of misclassifying a data 
point of majority class into minority class is 

( , ) and the cost of opposite case is 
( , ). Usually, there is no cost for correct 

classification of data points of either class and 
( , )> ( , ). The objective of cost-

sensitive learning is to minimize the overall cost on the 
training dataset and these concepts are easily extended 
to multi-class classification scenario by considering 

( , ), which indicates the cost of misclassifying the 
data point of jth class into ith class. 
b. Cost-sensitive Decision Trees:  In this approach, the 
cost-sensitive fitting can take three forms. First, one can 
apply cost to the decision threshold. Maloof used a 
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decision tree threshold moving approach for the 
classification of imbalanced data with unknown or 
unequal misclassification costs [55]. In another research 
work, Breiman et al. established the relationship 
between misclassification costs of each class, the 
distribution of training data points, and the placement of 
decision tree threshold [56].  Second, cost can be given to 
the split criteria at each node. The main task in this is to 
fit an impurity function which is insensitive to unequal 
costs. Usually, accuracy is used as the impurity function 
for decision trees, which selects the split with minimal 
error at each node. However, accuracy is sensitive to 
imbalanced distributed data points. Drummond and 
Holte have used three specific impurity metrics, Gini, 
DKM and entropy and obtained improved cost-
sensitivity as compared to the accuracy/error rate [57].
Finally, cost-sensitive decision tree schemes can be 
applied for pruning. In decision tree, pruning is 
beneficial because it improves the generalization by 
removing leaves with class probability estimates below 
a specified threshold. Elkan have used Laplace 
smoothing method of the probability estimate and 
Laplace pruning technique [45] .
c. Cost-sensitive Neural Network: Cost sensitivity can 
be introduced to Neural Networks in four ways: first, 
one can apply cost sensitive modifications to the 
probabilistic estimate, second, the output of Neural 
Network can be made cost-sensitive, third, cost can be 
applied to the error minimization function, and lastly 
cost-sensitive modification can be applied to the 
learning rate. Kukar and Kononenko proposed cost 
sensitive Neural Network and applied cost in the testing 
phase to modify the probability estimate of the output 
[58].  They also applied cost-sensitive modification to the 
output of Neural Network. They have modified the 
output during training phase to bias the Neural Network 
to focus more on the rare class. 

In another research work, Sun et al. proposed three 
cost-sensitive boosting methods, AdaC1, AdaC2, and 
AdaC3 for handling imbalanced learning. They have 
added cost into the weight updating strategy of 
AdaBoost [5]. AdaCost is another cost-sensitive boosting 
algorithm in which cost sensitivity is applied inside the 
exponent of the weight updating formula of AdaBoost 
[59]. It uses a cost-adjustment function which decreases 
the weights of correctly classified data points and 
increases the weights of costly misclassification. Cost 
functions have also been integrated with Support Vector 
Machine and Bayesian classifiers [60-66].            

3. Multi-class Imbalance problems

This section discusses the different methodologies 
proposed by the researchers to solve multi-class 
imbalanced problems as:

3.1. Static SMOTE

This is the pre-processing approach in which the 
resampling procedure is applied in M steps, where M is 
the number of classes [67]. In each iteration, this 
procedure chooses the class of minimum size and 
replicates the number of data points of the class in the 
original data-set. Synthetic data points are generated by 
applying the SMOTE algorithm only over the data 
points of the minority class. SMOTE duplicates the 
minority class by taking into account only the data 
points of original dataset.

3.2. Global-CS 

Zhou and Liu resampled each class to equilibrate the 
significance of the data points of different classes in 
imbalanced problem scenario [68]. They replicated each 
data point of class i times and selected 

% additional random data points from the 
dataset, where and denote number of data 
points of the ith class and majority class respectively.  

3.3. AdaBoost.NC

Wang and Yao have analyzed the impact of multi-
minority class and multi-majority class on the 
performance of random under-sampling and over-
sampling methods and proposed AdaBoost.NC to 
handle the imbalance problem in multi-class scenario 
[13]. AdaBoost.NC is an ensemble learning approach 
which combines the strength of negative correlation 
learning and boosting. In this approach, the weights of 
the data points are updated with an ad hoc formula 
which is based on the classification or misclassification 
given by both the classifier learned in the current 
iteration and the global ensemble. 

3.4. Other methods

Most of the solutions given by the researchers to handle 
class imbalance problem in multi-class scenario use 
decomposition schemes and work with binary class 
imbalance solutions. Tan et al. have used both OAA and 
OAO approach to break down the protein-fold 
classification problem and then developed rule-based 
learners to enhance the coverage of data points of 
minority class [69]. Zhao et al. also used OAA and 
SMOTE approach to handle the issue of class imbalance 
in multi-class scenario [70]. Chen et al. proposed OAA 

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

765



Divya Tomar and Sonali Agarwal

based algorithm to decompose the multi-class problem 
into binary problems and applied some advanced 
sampling approaches to rebalance the distribution of 
data [71]. Liao et al. analyzed several over-sampling and 
under-sampling approach with OAA for the 
classification of Weld flaws with imbalanced data [72]. In 
another research work, Fernandez have combined OAO 
and SMOTE sampling approach to handle the multi-
class imbalance problem [73]. MetaCost is another 
solutions to multi class problems which make a cost 
sensitive classifier [74]. Different from the decomposition 
schemes to handle the imbalanced learning in multi-
class scenario, Sun et al. have proposed a cost sensitive 
boosting algorithm to enhance the classifier 
performance for the multi class imbalance problem [75].
The main focus of [75] was to search for the cost matrix 
and for this purpose Genetic Algorithm was used to find 
the optimum cost setup for each class. 

4. Background Work

Recently, Twin Support Vector Machine (TWSVM) has 
attracted the attention of researchers due to its better 
performance and speed. TWSVM is a binary classifier 
introduced by Jayadeva et al. and classifies the data 
points of two classes by using a pair of non-parallel 
planes [76]. TWSVM is based on two well-known 
techniques -Support Vector Machine (SVM) and 
Generalized Eigen-value Proximal SVM (GEPSVM). 
SVM is a binary classifier which classifies the data 
points of two classes by constructing an optimal 
separating hyper-plane [77]. While, GEPSVM, proposed 
by Mangasarian et al., produces a pair of non-parallel 
hyper-planes for the separation of data points of two 
classes [78]. TWSVM solves two simple Quadratic 
Programming Problems (QPPs) in place of single 
complex QPP as in traditional SVM. In SVM, all data 
points together give constraints to QPP while in 
TWSVM, data points of one class give constraints to 
other QPP and vice versa. The validity and effectiveness 
of the TWSVM has been proved over conventional 
SVM and GEPSVM on several benchmark datasets in 
[76].  Later, Kumar et al. introduced a new binary 
classifier named as LSTSVM which is the least squares 
version of TWSVM [79]. LSTSVM classifies the data 
points of two classes by optimizing two linear equations 
with equality constraints as opposed to the TWSVM 
which solves two QPPs with inequality constraints. 
LSTSVM is a simple binary classifier and has shown 
better generalization ability as compared to TWSVM. 
This section presents the brief overview of traditional 

TWSVM and LSTSVM. Consider the training dataset 
‘T’ contains ‘n’ data points and is represented as:                      

= {( , ), ( , ), … , ( , )}                          (1)
where indicates ith data point and {1, 1}
is the class label. Suppose, positive and negative class 
comprise n1 and n2 data points respectively and n=n1 +
n2.

4.1. Twin Support Vector Machine

For training dataset ‘T’, TWSVM generates following 
decision function:

           ( ) = min ,

| . |                         (2)

by finding two non-parallel hyper-planes
x w +b = 0 and        x w +b = 0 (3)    

where , are normal vectors to the hyper-
planes and , are bias terms. TWSVM classifies 
the data points by optimizing following two QPPs:

min (w , b , ) Aw + e b + c e               
s.t.                    (Bw + e b ) + e , 0 (4)                      

min (w , b , ) Bw + e b + c e

s.t. (Aw + e b ) + e , 0 (5)
where matrices × and × comprise the 
data points of positive and negative class respectively. 

are the vectors of 1’s, , >0 
are penalty parameters,  and and are 
slack variables corresponding to negative and positive 
class.

4.2. Least Squares Twin Support Vector Machine

LSTSVM classifies the data points by optimizing 
following two linear equations rather than two QPPs 
with equality constraints:

min(w , b , ) Aw + e b +             
s.t.                       – (Bw + e b ) + = e            (6)                       

and 
min(w , b , ) Bw + e b +

s.t.                          (Aw + e b ) + = e            (7)                      

Solution of above two equations determines the values 
of normal vector and bias as:

                
w

b = F F + E E F e               (8)                       
and

w

b = E E + F F E e                 (9)
where, E= [A e ] and F=[B e ]. Further, these 
values find two non-parallel hyper-planes according to 
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equation 3. A test data point is assigned to a class by 
using following decision function:
               ( ) = min ,

| . |                     (10)
where | . | indicates the perpendicular distance of test 
data point from hyper-plane. Kumar et al. also proposed 
the formulation of LSTSVM for non-linearly separable 
data points by using kernel trick. Non-linear LSTSVM 
constructs two kernel generated surfaces in higher-
dimension as:
K(x , Z ) + = 0 and K(x , Z ) + = 0 (11)  

where Z=[A B] and K is any arbitrary chosen kernel 
function. Following are the optimization problems of 
non-linear LSTSVM:

min( , , ) K(A, Z ) + +

s.t.           – (K(B, Z ) + ) = e            (12)                              
and 

min( , , ) K(B, Z ) + +

s.t.             (K(A, Z ) + e ) = e            (13)                                  
The solution of above problem produces following 
values:

= (H H + G G) H                    (14)

= (G G + H H) G                           (15)
where G= [K (A, Z ) ] , H= [K (B, Z ) ] and the 
class is assigned to test data point as:

          class(j) = argmin(j = 1,2)
( , )

(16)               

5. Multiclass Least Squares Twin Support 
Vector Machine

Mostly, real life applications contain multiple classes 
and demand for a classifier that works effectively for 
the categorization of multiple classes. As discussed 
earlier, LSTSVM has shown better generalization 
performance, but it is suitable only for two-class 
problem. However, its multi-class extension is rarely 
noted in the literature. So, in this paper, we have 
proposed a novel classifier named as MLSTSVM which 
is the multi class extension of the binary LSTSVM 
classifier. The proposed classifier works on “One-
against-All” strategy in which the data points of each 
class is trained with the data points of other classes. For 
M-class, MLSTSVM constructs M-binary LSTSVM 
classifiers and ith classifier (where i=1,2,…,M) 
considers the data points of ith class as positive data 
points and data points of other classes as negative data 
points. In this manner, it solves M-linear programming 
equations and seeks M-hyper planes, one for each class. 

Let the training dataset includes ‘n’ data points:
{( , ), ( , ), … , ( , )} , where 
indicates feature vector and {1,2, … , } indicates 
corresponding class label. Let the matrix ×

represents the data points of ith class, where ni denotes 
the size of ith class. Again, consider the matrix 

( )× is comprised of the data points of all classes 
except ith class and is defined as:

= [( ) , ( ) , … , ( ) , ( ) , … , ( ) ]
                                                                             (17) 
Here, we present the formulation of MLSTSVM for 
both linear and non-linear separable data points as:

5.1. Linear MLSTSVM

Taking the ith class as an example, let the ith hyper-plane 
is:
            (wi.x)+bi=0           , where i=1,2,…,M      (18)                        

where and indicate normal vector to the 
hyper-plane and bias term respectively. The objective 
function of ith classifier is obtained as:

min(w , b , ) A w + e b +             
                        s.t. (B w + e b ) + = e (19)                      
where ci>0 is the penalty parameter, and 

( ) are the vector of 1’s and  is the slack 
variable. The first term of the objective function 
minimizes the squared sum distance of the data points 
of ith class from the hyper plane and tries to keep the 
hyper-plane in its close affinity. The second term 
minimizes the sum of misclassification error due to data 
points belonging to rest of the M-1 classes. Thus the 
minimization of the above objective function keeps the 
ith hyper-plane near to the data points of ith class and far 
from the data points of rest of the classes. Lagrangian 
corresponding to the equation 19 is achieved as:

(w , b , , ) = A w + e b + -

((B w + e b ) + e )                                 (20)

where is a non-negative lagrangian multiplier. 
Following necessary Karush-Kuhn-Tucker (KKT) 
conditions are obtained by differentiating equation 20 
with respect to w , b , :

= A (A w + e b ) B = 0 (21)                  

= e (A w + e b ) e = 0            (22)

= = 0                                (23)

= (B w + e b ) + e =0                 (24)                       
Equations 21 and 22 lead to:
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A

e
[A e ]

w

b
B

e
= 0 (25)                                            

Define  = [A e ] , = [B e ] and  = [ ].
With these notations equation 25 may be reformulated 
as:
           =0                                       (26)                                                         

= ( )                                      (27)

It is observed that the objective function of 
proposed classifier requires the inverse of E E
which is sometime difficult to calculate due to ill-
conditioned. To avoid the possibility of ill-conditioning 
of matrix, a regularization term is added to the above 
formulation as:

u = (E E + I) F                             (28)
where > 0 is a very small scalar and I is an identity 
matrix of suitable size. The value of lagrangian 
multiplier is computed from (23) and (24) as:

= c (e F u )                                  (29)
Substituting (27) with (29):

= u = (F F + E E ) F e (30)

The above values generate the hyper-plane for ith

classifier. In the same way, a hyper-plane is generated 
for each classifier and a class is assigned to new data 
point depending on which plane lies nearest to it. The 
decision function is represented as: 
                 f(x) = arg min ,..,

| . |                  (31)
Figure 1 represents the geometric representation of 
linear MLSTSVM for three classes. Different shapes 
represent the data points of different classes. Figure 
shows three hyper-planes, plane 1, plane 2 and plane 3 
for class 1, class 2 and class 3 correspondingly in such a 
way that data points of each class lie in the close 
proximity of the corresponding hyper-plane while as far 
as possible from other hyper-planes.

Fig. 1. Geometric representation of Linear MLSTSVM 

5.2. Non-Linear MLSTSVM

Sometime, it is not possible to separate the data points 
with linear class boundaries. So, we have extended the 
formulation of proposed MLSTSVM to non-linear cases 
by using kernel trick. Firstly, kernel function is used to 
transform the data points in higher dimensional space 
and then MLSTSVM classifier constructs kernel 
surfaces in that space. Equation of ith kernel surfaces is 
obtained as:

K( , Z ) + = 0 where i=1,..., M        (32)

where Z=[A B ] and ‘K’ is appropriately chosen 
kernel function. The non-linear MLSTSVM classifier is 
constructed by solving following optimization problem:

min( , , ) K(A , Z ) + e +             
s.t. (K(B , Z ) + e ) + = e (33)

                          
Lagrangian function corresponding to (33) is given by:

( , , , ) = K(A , Z ) + e + -

((K(B , Z ) + e ) + e )                     (34)                        

KKT conditions for (34) are:
= K(A , Z ) (K(A , Z ) + e )

K(B , Z ) = 0               (35)                      
= (K(A , Z ) + e ) = 0 (36)        

= = 0                                                    (37)  

= (K(B , Z ) + e ) + e )=0               (38)
Equations (37) and (38) lead to:
K(A , Z )

e
[K(A , Z ) e ]

K(B , Z )

e
=

0                                                                             (39)                        

Define  = [K(A , Z ) e ] and = [K(B , Z ) ].
Using these notations, equation (39) may be rewritten 
as:

=0                                (40)                       
Normal vector and bias are obtained from (37), (38) and 
(40) as:

= ( + )                        (41)
The decision function for non-linear MLSTSVM is 
represented as:  

( ) = min ,..,
. ( , )              (42)

A class is assigned to new data point depending on 
which kernel surface lies nearest to it.
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6. Weighted Multi-class Least Squares Twin 
Support Vector Machine

Earlier, we have discussed several approaches to handle 
class imbalance problem and it is observed that mostly 
two-class imbalance problem is targeted by the 
researchers. So, in this paper we have focused on multi-
class imbalance problem and proposed a novel 
Weighted MLSTSVM classifier (WMLSTSVM). In this 
approach, different weights are assigned to the data 
points of different classes. Therefore, the selection of 
appropriate weight is an important issue of 
consideration. The proposed approach selects and 
assigns a weight to the classes according to their size. 
Consider n1, n2,...,nM be the size of classes, where M is 
the number of classes present in the dataset and n=n1 +
n2 +...+ nM..The weight is assigned to a class according 
to the following formula:              

    =
( )

,            where i=1,2,...,M    (43)                                      
We can draw following three conclusions from the 
above mentioned formula:
i. Higher weight is assigned to the class with small 

data points while lower weight is assigned to the 
class with large data points so that each class could 
get equal importance during the training of 
classifier.

ii. (0,1) , so that the proposed classifier could be 
trained with convergence. 

iii. The weights are normalized without loss of 
generality and   = 1.

The formulations of the proposed WMLSTSVM for 
linear and non-linear cases are obtained as:

6.1. Linear WMLSTSVM

The objective function of linear WMLSTSVM for ith

class is formulated as:
min(w , b , ) A w + e b +             

          s.t. (B w + e b ) + = e                        (44)

where  ( )×( ) represents the diagonal 
matrix containing weights for the data points of ith class 
as per equation 43. The lagrangian function of the above 
mentioned objective function is achieved as:

(w , b , , ) = A w + e b + -

((B w + e b ) + e )                                 (45)      
where  is a non-negative lagrangian multiplier. 
Necessary KKT optimality conditions for above 
objective function are obtained as:
          = A (A w + e b ) B = 0 (46)                  

= e (A w + e b ) e = 0              (47)                  

= c = 0                               (48)                       

= (B w + e b ) + e =0                 (49)                      
Equations (46) and (47) determine:

A

e
[A e ]

w

b
B

e
= 0                   (50)

Define  = [A e ] , = [B e ] and  = [ ].
With these notations equation 50 may be rewritten as:                      

=0                                        (51)                        
= ( )                                     (52)

Lagrangian multiplier is determined from (48), (49) and 
(51) as:

= + F (E E ) F e                  (53)
w and b are obtained from (52) and (53) and further 
seek non-parallel hyper-plane according to (18). So, the 
difference between MLSTSVM and WMLSTSVM is 
that W is an extra term in the lagrangian multiplier. 
Decision function of WMLSTSVM is same as of 
MLSTSVM. Due to lagrangian multiplier, the value of 
normal vectors and biases differ and so hyper-planes. 
But the decision regarding class assignment is same as 
in MLSTSVM. For each new data point, its 
perpendicular distance is measured from each hyper-
plane and the data point is assigned to the class closest 
to it as given in (31). 
Algorithm:
For Training:
For i=1 to M, where M is number of classes in dataset. 
1a. Define weight for each class according to (43).
1b. Obtain matrices Ei and Fi as:
                   Ei=[Ai ei1] and Fi=[Bi ei2 ]
where Ai includes the data point of ith class and Bi
includes the data points of rest of the classes and 
defined by (17).
1c. Penalty parameters are selected on the basis of 
validation.
1d. Normal vector and bias are determined from (52) 
and (53) and generate hyper-plane using (18).
For Testing: 
Training phase generates M hyper-planes one for each 
class. During testing phase, the distance of a test data 
point is calculated from each hyper-plane and a class, 
corresponding to the hyper-plane which is located at 
minimum distance from test data point, is assigned to it. 
The decision function regarding class assignment is 
mentioned in (31).

6.2. Non-Linear WMLSTSVM

WMLSTSVM is efficiently extended to non-linear cases 
by utilizing kernel trick. It also generates kernel 
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surfaces same as in MLSTSVM to separate the data 
points. The formulation of non-linear WMLSTSVM is 
obtained as:

min( , , ) K(A , Z ) + e +             
s.t. (K(B , Z ) + e ) + = e                    (54)                                  

Lagrangian function corresponding to (54) is formulated 
as:

( , , , ) = K(A , Z ) + e +

- ((K(B , Z ) + e ) + e ) (55)
                                                                                   
KKT conditions for (55) are given below:  

= K(A , Z ) (K(A , Z ) + e )

K(B , Z ) = 0                                    (56)                   
= (K(A , Z ) + e ) = 0            (57)                    

= = 0                                            (58)                                      

= (K(B , Z ) + e ) + e ) =0          (59)                                                   
Following equation is obtained by combining (56) and 
(58): 
K(A , Z )

e
[K(A , Z ) e ]

K(B , Z )

e
=

0                                                                             (60)                            

Define  = [K(A , Z ) e ] and = [K(B , Z ) ].
With these notations, (60) is reformulated as:

=0                            (61)                                           

                     = ( )                          (62)

Lagrangian Multiplier is determined from (58), (59) 
and (61):

= + H (G G ) H e             (63)        

These values are used to construct kernel-generated 
surface as per equation 32. The class is allocated to test 
data point by using (42).
Algorithm:
For Training:
Choose Kernel Function.
For i=1 to M, where M is number of classes in dataset. 
1a. Define weight for each class according to (43).
1b. Obtain matrices Gi and Hi as:
             Gi=[ ( , ) ei1] and Hi=[ ( , ) ei2 ]
where Ai includes the data point of ith class and Bi
includes the data points of rest of the classes and 
defined by (17).
1c. Penalty parameters are selected on the basis of 
validation.
1d. Normal vector and bias are determined from (62) 
and (63) and generate kernel surface using (32).
For Testing: 
Training phase generates M kernel surfaces one for 
each class. During testing phase, a class is assigned to 
test data point by using (42). 

7. Experiments and Discussion

7.1. Dataset Description

In order to prove the validity of the proposed 
methodology, we have performed experiment on fifteen 
multi-class imbalanced benchmark datasets taken from 
KEEL dataset repository [80]. Table 1 indicates the 
details of benchmark datasets used in this research 
work. The datasets contain multiple classes and the 
class with large size (number of data points) is 
considered as majority class and with small size is 
considered as minority class among all classes. 
Imbalance ratio is calculated by taking the ratio of the 
size of majority class with minority class.  

Table 1. Details of benchmark datasets
Dataset Data size Features Classes Imbalance Ratio
Balance(Bal) 625 4 3 5.88
Ecoli(Eco) 336 7 8 71.5
Glass(Gls) 214 9 6 8.44
Wine(Win) 178 13 3 1.5
NewThyroid(Thy) 215 5 3 4.84
Hayes Roth(HaR) 132 4 3 1.7
Dermatology(Der) 366 34 6 5.55
Shuttle(Shu) 2175 9 5 853
Pen Based(PnB) 1100 16 10 1.95
PageBlock(PgB) 548 10 5 164
Contraceptive(Con) 1473 9 3 1.89
Lymphography(Lym) 148 18 4 40.5
Zoo 101 16 7 10.25
Splice(Spl) 3190 60 3 2.16
Cleveland(Cld) 467 13 5 12.62
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7.2. Performance Evaluation Measures

The performance of proposed WMLSTSVM classifier is 
evaluated by using Geometric Mean which is calculated 
from confusion matrix. Here, we have determined the 
confusion matrix for multiple classes as indicated in 
table 2. 

Table 2. Confusion Matrix
Predicted 
Class

Actual Class
Class1 Class2 ... ClassM

Class1 C11 C12 ... C1M

Class2 C21 C22 ... C2M

... ... ... ... ...
ClassM CM1 CM2 ... CMM

Count Cii , also referred as True Prediction (TP), 
indicates the number of data points of class yi which are 
correctly classified into it. While count Cij of class yi

with respect to the class yj (yi j) defines the number of 
data points of class yj which are incorrectly classified 
into class yi by the classifier. Cij also referred as False 
prediction (FP) and for class yi , FP(i)= , .
Counts obtain from confusion matrix are used to 
determine the performance metrics such as True 
Positive Rate (TPR) or recall and Geometric Mean (G-
Mean). TPR of class yi is formulated as:

=                                             (64)

If number of class M=2, then TPR1 and TPR2 also 
referred as sensitivity and specificity respectively. 
Geometric Mean (G-Mean) is a performance evaluation 
metric proposed by Kubat et al. for two class problems 
[4]. It measures the balanced performance of a classifier 
and is obtained by taking the geometric mean of recall 
values of two classes. For multiple classes, the G-Mean 
is calculated by taking the geometric means of recall 
values of every class as:
           =                 (65)
G-Mean equally accounts the recall value of each class,
so it measures the balanced performance of classifier. 
Therefore, in this research work, we have compared the 
performance of proposed WMLSTSVM classifier with 
other approaches by using G-Mean.

7.3. Statistical tests for performance comparison
In this research work, hypothesis testing techniques 
such as Wilcoxon signed rank and Friedman statistic 
tests are used to provide statistical support for the 
analysis of the results. Wilcoxon signed rank test is a 
non-parametric statistical technique that perform 
pairwise comparisons between two classifiers [14, 19, 82].

In this technique, the difference between the 
performances of two classifiers is computed for each 
dataset. It ranks the absolute differences from smallest 
to largest and average ranks are assigned in case of ties. 
The rank R+ stores the sum of ranks for the datasets on 
which our proposed classifier outperformed the other 
classifiers, and rank R- stores the sum of ranks for the 
opposite case. Wilcoxon signed rank test follows z-
distribution. Consider ‘T’ to be the smaller of the R+ and 
R- , T=min(R+, R-). If T is less than or equal to the 
Wilcoxon distribution, the null hypothesis which states 
that there is no difference between the classifiers can be 
rejected. It is also very useful to compute the p-value 
associated with each comparison as it represents the 
lowest level of significance of a hypothesis that results 
in rejection. By doing this, we can find whether two 
classifiers are significantly different and the manner in 
which they are different.  
On the other hand, Friedman test ranks the algorithms 
according to their performance for each dataset 
separately, the best performing algorithm gets the rank 
of 1, the second best rank 2 and so on [19,83]. Average 
ranks are assigned in case of ties. Let be the rank of 
the jth of M classifiers on the ith of N datasets. Friedman 
test statistic is computed as:
                 =

( )

( ) ,        (66)

where = . Friedman test statistic is 
distributed according to the Chi-square distribution with 
M-1 degrees of freedom. If the value of is large 
enough, then the null hypothesis can be rejected. The 
significant differences between individual classifiers are 
tested by using post hoc Nemenyi test [84]. According to 
this, if the average rank of two algorithms differs by at 
least the critical difference, then these algorithms are 
significantly different. Critical difference (CD) is 
defined as:

            =
( )                                           (67)

where is based on the Studentized range statistic. 
The results from Friedman and Nemenyi post hoc tests 
are plotted and visualized by using a modified version 
of Demsar significance diagram [85].

7.4. Experiment and result Analysis     
We have evaluated the performance of the proposed
WMLSTSVM classifier with other classifiers such as 
Multi-SVM, AdaBoost.NC, Multiple Birth Twin 
Support Vector Machine (MBSVM) [81], OVO-
MLSTSVM and OVA MLSTSVM using 10 fold cross 
validation. Multi-SVM and MBSVM classifiers are 
combined with pre-processing approaches such as 
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Static-SMOTE, Global-CS and Random Oversampling 
(ROS). Each classifier is implemented in matlabR2012a 
on a Windows based operating system with Intel Core i-
7 processor (3.4 GHz) with 12-GB RAM. Grid search 
approach is used for parameters selection. Penalty 
parameters are selected from the set {10-8,...,105} while 
sigma parameter for Gaussian kernel function is chosen 
from the set {2-5,...,210}. Since, G-Mean measures the 
balanced performance of a classifier, therefore, for 
imbalanced dataset, G-Mean is a good choice for 
evaluation. Table 3 and 4 present the performance 
comparison of the proposed classifier with existing 
classifiers including the average of G-Means (GM), 
standard G-Means and time (including both training and 

testing) of 10-folds. Bold values indicate better 
performance of the classifier. For linear cases, G-Mean 
of the proposed classifier is better for each dataset 
except Hayes Roth, Lymphography, Zoo and Splice.
Adaboost.NC has shown better performance for 
Lympography and Zoo dataset.  For non-linear cases, 
WMLSTSVM has obtained better G-Mean than that of 
other nine classifiers for 12 out of 15 datasets. It is also 
observed that the proposed classifier takes comparable
computation time on almost all type of datasets as 
compared to other classifiers. Therefore, it could be
concluded that the proposed WMLSTSVM classifier 
has the highest computation efficiency.

Table 3. Geometric Mean Comparison of linear classifiers on benchmark datasets
Data
set

Static
SMOTE
SVM
GM±std(%)
Time(s)

Global-CS
SVM

GM±std(%)
Time(s)

ROS
SVM

GM±std(%)
Time(s)

Adaboost.NC

GM±std(%)
Time(s)

Static-
SMOTE
MBSVM
GM±std(%)
Time(s)

Global-CS
MBSVM

GM±std(%)
Time(s)

ROS
MBSVM

GM±std(%)
Time(s)

OVO
MLSTSVM

GM±std(%)
Time(s)

OVA
MLSTSVM

GM±std(%)
Time(s)

WMLSTSVM

GM±std(%)
Time(s)

Bal 79.64±5.29
4.55

78.38±6.15
5.36

82.60±5.45
5.22

85.81±5.02
4.38

84.27±5.15
0.428

83.82±5.26
0.254

81.93±4.76
0.491

76.11±3.97
0.089

85.51±4.35
0.07176

89.59±3.86
0.127

Eco 67.95±5.43
2.38

70.89±5.47
3.24

73.04±5.72
3.35

74.58±4.64
3.16

76.75±5.2
1.08

72.63±5.37
1.127

71.45±5.21
1.18

66.40±4.27
0.0803

74.02±5.13
0.07086

80.86±5.02
0.1029

Gls 62.19±4.14
3.04

59.09±6.65
2.35

64.47±5.88
2.39

55.62±6.17
2.65

54.61±5.62
0.088

66.67±6.08
0.052

62.19±5.32
0.0949

74.72±3.37
0.00481

61.05±4.58
0.00468

64.33±4.24
0.0926

Win 91.08±3.28
0.411

91.63±5.73
0.097

92.68±3.65
0.57

94.30±2.54
0.24

96.49±3.08
0.0102

95.38±2.96
0.014

95.07±1.95
0.0382

100±0.0
0.0085

100±0.0
0.0078

100±0.0
0.00858

Thy 91.24±3.13
0.664

89.14±5.02
0.478

88.32±3.83
0.568

91.67±3.25
0.85

92.04±3.72
0.018

94.73±3.04
0.0093

91.79±2.36
0.0803

100±0.0
0.0056

100±0.0
0.00624

100±0.0
0.0135

HaR 64.83±4.27
2.87

65.47±5.23
2.126

60.95±4.6
2.18

57.82±4.16
1.96

71.08±4.53
0.01283

67.45±4.22
0.0096

66.85±4.28
0.0218

52.38±4.04
0.00742

69.19±4.19
0.00468

70.94±3.58
0.005304

Der 82.74±4.15
2.96

85.62±4.83
3.45

82.74±5.02
3.664

91.13±4.58
3.48

83.43±4.67
0.108

82.14±4.5
0.09775

87.32±3.73
0.0928

87.22±4.65
0.0923

88.70±4.84
0.0702

92.89±3.87
0.0907

Shu 65.27±3.65
7.24

73.48±5.75
6.8

67.94±4.53
7.46

80.32±5.02
6.33

78.02±4.84
0.9577

82.43±4.83
1.118

76.11±3.97
1.26

80.69±4.22
0.2169

84.56±4.91
0.14196

92.26±3.12
0.4577

PnB 74.58±4.60
5.82

78.52±6.88
5.509

72.32±4.46
5.26

78.53±4.84
4.46

81.82±4.22
0.1293

85.51±5.03
0.1928

78.90±4.32
0.218

85.87±3.23
0.283

82.19±2.56
0.1045

88.71±2.87
0.347

PgB 83.87±5.59
5.35

70.28±5.27
5.67

74.08±5.24
5.45

81.52±5.27
5.02

77.31±5.24
1.562

85.63±4.26
1.1499

79.85±4.29
1.25

83.39±4.42
0.0874

85.77±4.12
0.08112

86.29±4.34
0.09048

Con 34.82±4.78
5.02

48.83±5.39
4.56

40.92±5.29
4.38

49.01±4.13
4.86

43.08±5.66
0.5624

42.78±5.48
0.4022

45.67±4.41
0.6091

48.03±4.33
0.1302

45.18±4.46
0.10764

54.62±4.95
0.13752

Lym 80.25±4.46
2.41

77.49±4.72
2.11

78.74±4.78
2.63

83.35±5.62
2.24

82.04±4.42
0.486

79.87±4.10
0.6246

79.51±4.65
0.4302

78.46±3.87
0.0959

80.54±4.28
0.0904

81.69±4.16
0.112

Zoo 91.78±3.65
0.03

89.84±4.26
0.0265

91.88±3.97
0.0382

93.82±3.24
0.048

92.67±3.25
0.012

92.51±4.67
0.035

91.46±3.83
0.0545

89.85±3.73
0.0068

89.32±4.05
0.00624

93.5±3.98
0.007452

Spl 84.25±3.67
10.35

77.88±3.57
10.14

81.52±3.88
11.04

90.05±3.02
12.53

91.08±3.34
4.45

84.39±3.63
4.78

85.87±3.22
4.28

78.12±4.38
3.52

84.72±4.73
3.78

90.67±3.88
4.02

Cld 30.74±4.80
2.33

30.22±4.45
2.02

28.08±3.67
2.11

33.82±3.16
3.04

33.62±3.16
1.16

35.86±4.56
0.9246

34.52±3.33
0.988

29.88±3.69
1.03

32.06±4.17
0.9048

39.85±4.34
1.08
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Table 4. Geometric Mean Comparison of non-linear classifiers on benchmark datasets
Data
set

Static
SMOTE
SVM
GM±std(%)
Time(s)

Global-CS
SVM

GM±std(%)
Time(s)

ROS
SVM

GM±std(%)
Time(s)

Adaboost.NC

GM±std(%)
Time(s)

Static-
SMOTE
MBSVM
GM±std(%)
Time(s)

Global-CS
MBSVM

GM±std(%)
Time(s)

ROS
MBSVM

GM±std(%)
Time(s)

OVO
MLSTSVM

GM±std(%)
Time(s)

OVA
MLSTSVM

GM±std(%)
Time(s)

WMLSTSVM

GM±std(%)
Time(s)

Bal 86.50±6.39
8.03

87.45±6.03
7.65

85.32±6.46
8.57

87.24±5.17
8.65

88.64±5.53
3.28

88.53±5.68
2.85

89.18±5.66
3.16

74.29±5.36
0.872

90.64±4.84
0.9188

92.83±3.9
0.9356

Eco 76.29±6.17
3.56

75.61±5.91
3.82

77.87±5.92
4.22

80.18±5.02
4.24

80.06±5.45
1.21

79.77±6.24
1.16

81.03±5.82
1.48

69.62±5.8
0.663

81.34±5.78
0.3962

87.06±4.77
0.4003

Gls 59.32±6.26
7.11

63.76±6.08
8.01

62.17±6.06
8.48

63.64±6.69
7.83

65.29±5.88
2.49

70.36±6.13
2.52

69.84±6.26
3.02

83.26±5.03
0.5116

76.63±5.35
0.2249

88.36±3.62
0.2256

Win 93.61±3.15
0.9059

96.14±2.89
0.8892

95.35±3.01
1.05

96.03±2.53
1.27

97.22±2.7
0.3386

98.02±2.65
0.375

97.77±2.66
0.367

100±0.0
0.08892

100±0.0
0.092

100±0.0
0.106

Thy 95.63±2.58
2.34

95.46±3.04
2.11

90.91±3.74
2.45

95.22±2.86
3.04

94.73±3.49
1.02

97.84±2.88
0.9204

97.18±3.17
1.12

100±0.0
0.120

100±0.0
0.132

100±0.0
0.155

HaR 62.74±4.86
6.88

64.21±4.63
7.24

63.70±4.58
6.92

64.89±5.04
7.16

69.91±4.22
1.97

70.24±3.56
2.083

65.83±4.51
2.06

54.55±4.37
2.25

68.07±4.95
1.369

85.49±3.53
1.568

Der 85.42±5.81
8.78

89.28±5.43
8.63

86.23±5.75
9.1

90.08±5.69
8.59

91.45±4.34
3.72

94.82±3.92
4.02

90.01±6.03
3.89

91.67±4.23
1.135

92.77±4.2
0.5538

97.00±4.14
0.736

Shu 67.29±4.66
20.86

76.85±4.39
18.98

65.76±5.02
24.57

77.87±4.67
20.24

84.26±4.12
6.88

80.16±5.43
5.74

75.42±5.32
5.85

82.74±4.85
1.56

83.11±4.11
2.24

94.97±2.96
3.12

PnB 78.25±5.22
30.27

82.15±5.16
32.62

75.73±5.89
30.15

83.98±5.37
31.67

80.25±5.56
12.56

83.27±4.35
12.84

81.28±4.78
13.23

87.16±3.66
11.01

89.91±2.93
10.86

95.19±2.35
10.94

PgB 85.34±6.28
11.77

76.82±6.34
11.21

77.67±6.67
12.38

86.29±6.02
14.02

87.14±5.05
4.764

85.98±5.66
4.2

85.02±6.12
4.305

81.67±6.23
1.719

87.12±4.88
1.677

89.87±4.62
1.89

Con 40.66±5.39
29.01

46.98±4.82
28.37

45.26±5.11
28.08

46.18±4.86
26.08

49.01±4.82
10.42

56.16±5.01
9.48

53.18±5.37
10.24

46.24±4.7
5.53

48.33±4.5
5.6

55.38±4.85
6.03

Lym 82.33±4.53
5.47

81.04±4.89
6.59

83.02±4.69
6.85

82.74±5.24
5.57

83.52±4.35
1.14

81.21±5.13
1.62

82.60±5.6
1.5

80.28±4.85
0.2534

82.96±4.93
0.2277

85.12±3.55
0.2418

Zoo 96.04±3.02
0.932

94.45±3.67
0.9859

93.22±4.01
1.36

95.35±3.53
1.10

96.92±3.65
0.384

95.18±4.4
0.5621

94.07±4.02
0.674

93.67±4.86
0.08112

94.32±3.74
0.0665

94.37±3.74
0.08736

Spl 89.88±3.77
42.45

81.41±3.48
44.22

80.34±3.62
42.11

95.73±3.34
36.54

94.05±3.03
16.26

88.28±3.68
16.29

87.67±4.25
15.32

80.55±5.04
8.02

91.02±3.92
7.66

93.85±3.38
7.85

Cld 34.56±4.82
7.4

32.34±4.79
6.36

30.57±5.11
6.94

35.56±5.11
5.59

35.63±4.66
2.75

34.09±5.02
2.56

32.72±4.61
3.11

32.69±4.7
1.24

34.60±4.96
1.38

39.08±4.26
1.56

Wilcoxon test is used for the comparison between linear 
and non-linear classifiers. In table 5, we have compared 
the performance of each classifier for both linear and 
non-linear cases. The rank for non-linear cases is 
indicated by R+ and for linear cases by R-. This test 

concludes that the non-linear classifiers are statistically 
better than the linear classifiers in all the cases of study 
with a high degree of confidence. It is observed from 
the table that the p-value is less than 0.05 in all the 
cases. 

Table 5. Wilcoxon test for the comparison between linear and non-linear classifiers
Classifiers R+(non-linear) R-(linear) p-value
Static Smote SVM 109.0 11.0 0.0056
Global-CS SVM 117.0 3.0 0.0013
ROS SVM 112.0 8.0 0.0033
AdaBoost.NC 102.0 18.0 0.0178
Static Smote MBSVM 114.0 6.0 0.0023
Global-CS MBSVM 110.0 10.0 0.0047
ROS MBSVM 113.5 6.5 0.0025
OVO MLSTSVM 81.5 9.5 0.0124
OVA MLSTSVM 84.0 7.0 0.0076
WMLSTSVM 89.0 2.0 0.0025
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The results obtained from the two statistical tests are 
shown in table 6. For Wilcoxon test, we have compared 
the performance of the proposed classifier with other 
classifiers and calculated the ranks and p-value for each 
case. From the results, it is concluded that the proposed 
WMLSTSVM classifier outperforms all of them with 
high degree of confidence. Friedman test is also applied 
and the average rank of each classifier is calculated 
according to their G-Mean as shown in table 6. It can be 

concluded that the WMLSTSVM has the highest 
average rank among all classifiers. Friedman test 
statistic is calculated for both linear and non-linear cases 
according to equation 66. In both the cases its value is 
very high from the critical value for 9 –degree of 
freedom which is 16.9190. Therefore, the null 
hypothesis which states that there is no difference 
between the classifiers is rejected. 

Table 6. Result of Wilcoxon signed rank test and Friedman test
Wilcoxon signed rank test

Classifiers
Linear Non-linear

R+ R- p-value R+ R- p-value
WMLSTSVM-OVA MLSTSVM 91 0 0.0016 91 0 0.0016
WMLSTSVM-OVO MLSTSVM 83 8 0.0093 91 0 0.0016
WMLSTSVM-ROS MBSVM 120 0 0.0007 120 0 0.0007
WMLSTSVM-Global CS MBSVM 116 4 0.0015 117 3 0.0013
WMLSTSVM-Static SMOTE MBSVM 114 6 0.0023 116 4 0.0015
WMLSTSVM-AdaBoost.NC 116 4 0.0015 117 3 0.0013
WMLSTSVM-ROS SVM 119 1 0.0008 120 0 0.0007
WMLSTSVM- Global CS SVM 120 0 0.0007 119 1 0.0008
WMLSTSVM-Static SMOTE SVM 120 0 0.0007 119 1 0.0008

Friedman Test

Classifiers
Linear Non-linear

Mean Rank p-value Mean Rank p-value
WMLSTSVM 1.67

<0.05 55.37

1.67

<0.05 69.29

OVA MLSTSVM 4.33 3.33
OVO MLSTSVM 6.00 6.53
ROS MBSVM 5.76 5.73
Global CS MBSVM 4.73 4.46
Static SMOTE MBSVM 4.67 4.06
AdaBoost.NC 4.53 5.4
ROS SVM 7.76 8.8
Global CS SVM 8.0 7.4
Static SMOTE SVM 7.53 7.6

Cri

                            CD=3.164
×

×
= 3.49

Critical value  . for 10 classifiers is 3.164[19]. Figure 
2 shows the significance diagram in which classifiers 
are listed in ascending order of ranked performance on 

the y-axis and the classifier’s AR across all fifteen 
datasets on the x-axis. Two vertical lines represent the 
difference of end of the best performing approach’s tail 
and the start of the next significantly different approach. 

Fig. 2. Average rank comparison of linear classifiers
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Fig. 3. Average rank comparison of non-linear classifiers

The diagram clearly depicts that there is no significant 
difference between WMLSTSVM, OVA-MLSTSVM, 
Global-CS MBSVM, Static SMOTE MBSVM and 
Adaboost.NC for linear cases. However, ROS MBSVM, 
OVO MLSTSVM, Static SMOTE SVM, ROS SVM and 
Global-CS SVM classifiers perform significantly worse 
than the best performing classifier with values 5.76, 6, 
7.53, 7.76 and 8. Figure 3 shows the average rank 
comparison of classifiers for non-linear cases. It is 
observed that WMLSTSVM performs significantly 
better than Adaboost.NC, ROS MBSVM, OVO 
MLSTSVM, Global CS SVM, Static SMOTE SVM and 
ROS SVM classifiers for non-linear cases.  So, we can 
conclude that the proposed WMLSTSVM classifier 
performs significantly better in case of multi-class 
imbalanced problem scenario.

8. Conclusion
Most of the solutions to class imbalance problem 
concentrate on two-class setting. The two-class 
imbalance solutions are not directly applicable to multi-
class scenario. This research work addressed the 
imbalance problem in multi-class scenario and proposed
a novel classifier named as WMLSTSVM. Firstly, a 
novel multi-classifier MLSTSVM is proposed which is 
the multi-class extension of the binary LSTSVM. Then, 
appropriate weight setting is done in loss function to 
control the sensitivity of the classifier for imbalanced 
data in determining each hyper-plane. The validity of 
the proposed approach has been proved on fifteen 
benchmark datasets which are imbalanced in nature.  
Statistical analysis of the performance of each classifier 
also confirms that the WMLSTSVM classifier is the 
best performing classifier and is a suitable choice for 
handling imbalanced data problem in multi-class 

scenario. For future work, it would be interesting to 
select the parameters by using Genetic Algorithm or 
Particle Swarm Optimization and investigate the 
performance of WMLSTSVM with real world data.
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