
Received 5 August 2014; Accepted 9 May 2015

An effective Weighted Multi-class Least Squares Twin Support Vector Machine for
Imbalanced data classification

Divya Tomar
Indian Institute of Information Technology

Allahabad, Uttar Pradesh, India
divyatomar26@gmail.com

Sonali Agarwal
Indian Institute of Information Technology

Allahabad, Uttar Pradesh, India
sonali@iiita.ac.in

Abstract

The performance of machine learning algorithms is affected by the imbalanced distribution of data among classes.
This issue is crucial in various practical problem domains, for example, in medical diagnosis, network intrusion,
fraud detection etc. Most efforts so far are mainly focused upon binary class imbalance problem. However, the
class imbalance problem is also reported in multi-class scenario. The solutions proposed by the researchers for two-
class scenario are not applicable to multi-class domains. So, in this paper, we have developed an effective Weighted
Multi-class Least Squares Twin Support Vector Machine (WMLSTSVM) approach to address the problem of
imbalanced data classification for multi class. This research work employs appropriate weight setting in loss
function, e.g. it adjusts the cost of error for imbalanced data in order to control the sensitivity of the classifier. In
order to prove the validity of the proposed approach, the experiment has been performed on fifteen benchmark
datasets. The performance of proposed WMLSTSVM is analyzed and compared with some other SVMs and
TWSVMs and it is observed that our proposed approach outperforms all of them. The proposed approach is
statistically analyzed by using non-parametric Wilcoxon signed rank and Friedman tests.

Keywords: Least Squares Twin Support Vector Machine, Multi Least Squares Twin Support Vector Machine,
Weighted Multi Least Squares Twin Support Vector Machine, Imbalanced data classification.

1. Introduction

Classification is one of the significant techniques of data
mining which predicts the class label for any unknown
input data. During the construction of a classifier, a
learning algorithm identifies the relationship between
class labels and attributes set. The performance of a
classifier can deteriorate due to imbalanced distribution
of data between classes in which each class contains
different number of data points [1-5]. The imbalanced
data problem occurs when one class includes large
number of data points (referred as majority class) while
other class includes less (referred as minority class).

Standard classification approaches consider a balanced
training dataset which induces a bias in favor of
majority classes [6]. The degree of imbalance differs
from one application domain to another and the correct
class prediction of data points in an unusual class
becomes more significant than the contrary case, for
example, in disease diagnostic problem where the cases
of diseases are unusual as compared to the normal
population. So in this case, the correct recognition of a
person with disease becomes more important.
Therefore, a classifier could be beneficial if its
prediction rate is higher for the disease category. In
recent years, the class imbalance problem has attracted

International Journal of Computational Intelligence Systems, Vol. 8, No. 4 (2015) 761-778

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

761

Divya Tomar and Sonali Agarwal

significant interest due to its occurrence in application
domains such as in identifying fraudulent telephone
calls, disease diagnostic, intrusion detection, risk
management, oil spills detection from radar images, text
classification etc.[4-5,7-10].

Mostly, the solution provided by the researchers for
the class imbalance problem has concentrated on two-
class imbalance problem [1-2, 11-12]. However, the
imbalance data distribution problem does not only exist
in two-class. Multi-class data also suffers from this
problem. It is more difficult to identify the majority and
minority class for multi-class data. For example, one
particular class X can be majority with respect to class
Y, but minority with respect to another class Z. The
solutions proposed for two-class imbalanced problems
have been shown to be less effective for multiple class
imbalanced learning. Some methods may not be directly
applicable or may achieve poor performance [13-14]. For
example, the solutions proposed by the researchers at
data level are affected by the increased search space and
also the solutions at algorithm level do not perform well
and thus become more complicated for multi-class
scenario [13-18]. So, there is a need to develop a classifier
which effectively handles the imbalanced distribution of
data in multi-classes. Therefore, in this research, we
have proposed a classifier, termed as Weighted Multi-
class Least Squares Twin Support Vector Machine
(WMLSTSVM), for the multi class imbalance problem.
In this classifier, we have assigned different weights to
different data points. Initially, we have extended the
formulation of binary Least Squares Twin Support
Vector Machine (LSTSVM) to Multi Class Least
Squares Twin Support Vector Machine (MLSTSVM) by
using the concept of One-against-All (OAA). In the
literature, it is found that One-against-One (OAO)
concept based approach gives more accurate result in
the presence of imbalanced data [14]. However, in this
study we have adopted OAA concept to extend binary
LSTSVM classifier due to the following reasons:

For M-class classification problem, OAO
MLSTSVM classifier constructs M (M-1) hyper-
planes where (M-1) planes are for each class. While
OAA MLSTSVM classifier generates M hyper-
planes, one plane for each class. So, extending
LSTSVM to multi-class by using OAO concept is a
complex process.

OAO MLSTSVM classifier takes more time in
training as compared to the OAA MLSTSVM
classifier.
In, OAO MLSTSVM approach, each classifier is
involved with the training data points of two classes
at the same time. Therefore, the information of the
remaining data points is omitted in each binary
classification.

Next, weights are added to the formulation of
proposed classifier so that it works well for both
balanced and imbalanced distributed data involving
multi-classes. Weights are introduced to control the
sensitivity for imbalance ratio in determining each
hyper-plane. The performance of the proposed approach
has been compared with Multi-SVM, MBSVM,
Adaboost.NC, OVO MLSTSVM and OVA-MLSTSVM
on fifteen benchmark imbalanced dataset by using
Geometric Mean metric. Some, pre-processing
approaches such as static SMOTE, Global-CS and
Random-Oversampling are combined with the base
classifiers Multi-SVM and MBSVM to overcome the
imbalance problem.

In this study, we have performed the statistical
analysis of classifiers by following the recommendation
of Demsar and make the statistical inferences from the
observed difference in Geometric Mean [19]. Non-
parametric Wilcoxon signed rank and Friedman’s
average rank hypothesis tests are used to statistically
analyze the performance of the proposed classifier with
existing classifiers. Results of Friedman’s test are
displayed with the help of modified version of Demsar
significance diagram.

The paper is organized into eight sections. Section 2
and section 3 provide brief overview of imbalanced data
problem in binary and multi-class scenario and their
solutions. Section 4 and section 5 include background
work and the proposed OAA MLSTSVM classifier
respectively. The formulation of the proposed Weighted
MLSTSVM approach to imbalance data distribution
problems of multi-classes is discussed in section 6.
Experiments on imbalanced datasets have been analyzed
in section 7 and concluding remarks are given in section
8.

2. Imbalanced Data problem

In the classification field, the imbalanced data problem
appears when data points belonging to each class vary

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

762

Least Squares Twin Support Vector Machine

in numbers. The imbalanced data problem deteriorates
the performance of classifiers as they consider the
balanced distribution of data among classes. Various
solutions have been suggested by the researchers to
handle the imbalanced data problem. These solutions
can be divided into three broad categories:

2.1. Data level solutions

Balancing distribution of data between classes is one of
the simplest approaches. The objective of data level
solutions is to rebalance the distribution of data between
classes to reduce the effect of class imbalance [6, 12, 15, 20-

27]. The benefit of using data level solutions is that they
are independent of the selected classifier and hence are
more versatile in nature. Since data level solutions are
provided at the pre-processing time so we need to
prepare the data only one time. Data level solutions can
be divided into two groups: under-sampling and over-
sampling methods. In under sampling method, the data
points of prevalent class are reduced in such a way that
each class contains equal number of data points. On the
other hand, over sampling increases the data points of
minority class to balance them with majority class.
Sometimes the combination of both under sampling and
over sampling approach is used to balance the
distribution of data [25-28]. Under-sampling is a simple
approach, but loses some significant information about
prevalent class while over-sampling method generates
an unnatural bias in favor of a minority class. Apart
from this, balancing the data distributions by using these
approaches also suffers from extra learning cost for
analyzing and processing data [5]. Several under-
sampling and over-sampling approaches are discussed
below:
a. Synthetic Minority Over-sampling (SMOTE): It is
one of the famous techniques of balancing the data
through sampling [20]. Cieslak and Chawla have
suggested SMOTE which generates synthetic instances
along the line segments joining nearest neighbors of
minority classes. Depending upon the amount of over-
sampling required, neighbors are selected randomly
from the k-nearest neighbors. SMOTE suffers from the
over-generalization and variance problems.
b. Random Over-sampling and Under-sampling: The
aim of random over-sampling method is to rebalance the
distribution of data points between classes through
random replication of the data points of minority class
[15]. This method suffers from the over-fitting problem
as it generates exact copies of existing data points. On
the other hand, random under-sampling rebalances the
distribution of data points between classes through

random elimination of the data points of majority
classes [15]. As this method remove the data points so it
can discard potentially useful data which could be
important for further processing.
c. Informed Under-sampling: It includes two
approaches-EasyEnsemble and BalanceCascade [29]. The
objective of these two approaches is to overcome the
deficiency of information loss introduced in the
conventional random under-sampling method [17, 29].
EasyEnsemble develops an ensemble learning system
by independently sampling several subsets from the
majority class. It then generates multiple classifiers
based on the combination of each subset with the
minority class data. This method can be considered as
an unsupervised learning approach which explores the
data of majority class by using independent random
sampling with replacement. In contrast, Balance
Cascade is a supervised learning approach that
generates an ensemble of classifiers to systematically
select majority class data points for under-sampling [29].
d. Safe level SMOTE (SL-SMOTE): As discussed
earlier, SMOTE generates synthetic instances along the
line segments joining nearest neighbors of minority
classes, ignoring nearby data points of majority class.
On the other hand, SL-SMOTE samples the data points
of minority class along the same line with a different
weight degree, called a safe level [30]. Safe level is
obtained by using the k-nearest data points of minority
class. The data point is considered to be safe if its safe
value is close to ‘k’ while it is considered as a noise data
point if the corresponding safe value is close to 0.
Therefore, the aim of this approach is to generate
synthetic data points in safe areas of the training set.
e. Tomek Links: It is used to remove the over-lapping
that is introduced from sampling methods. Tomek Links
can be defined as a pair of minimal distance nearest
neighbor of opposite classes [31]. Given two data points

and of different classes and , is the
distance between them. Then, the pair , is called a
Tomek Links, if there is no data point , such that

(,) < , or , < , . Like
this, if two data points form a Tomek Link, then either
one of these data points is noise or both data points are
border-line. This method can be used as an under-
sampling method or as a data cleaning method. As an
under-sampling method, Tomek Links eliminate the
data points of majority class while as a data cleaning
method it removes the data points of both classes.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

763

Divya Tomar and Sonali Agarwal

f. SMOTE + Edited Nearest Neighbor (SMOTE
+ENN): This method is also used to remove the data
points from both classes [15]. ENN is applied after the
SMOTE in order to eliminate any data point
misclassified by its three nearest neighbors from the
training dataset.
g. One-sided Selection (OSS): This is an under-
sampling approach and is obtained by combining
Tomek Links with Condensed Nearest Neighbor (CNN)
rule. As discussed earlier, TL removes the noisy and
borderline majority data points. CNN removes data
points from the majority class that are distant from the
decision border [32]. The remainder data points of
majority class and all data points of minority class are
used for learning.
h. Cluster based Sampling Method: Jo and Japkowicz
proposed Cluster based Oversampling (CBO) approach
to handle the within-class imbalance problem [33]. In
another research work, Yen and Lee also proposed
cluster based under-sampling approach to deal with the
imbalanced data problem [34]. Cluster based under-
sampling approach improves the predictive accuracy of
minority class by selecting the representative data as
training data. They also investigated the effect of under-
sampling approach in the imbalanced class distribution
scenario. To handle imbalanced data problem, Chen et
al. proposed a novel over-sampling method based on
cluster ensemble [35]. This approach first generates
multiple partitions by using cluster ensembles and
matches these clusters with different partitions. Then, it
searches for cluster boundary minority data points with
the help of clustering consistency index and finally the
minority data points are over-sampled around the border
between clusters.

2.2. Algorithmic level solutions

The second solution of the class imbalance problem is
adjusting the classifier which is an efficient approach
and provides better results as compared to the previous
one. These solutions can be defined as internal methods
that develop new algorithms or modify existing ones in
order to solve the class imbalance problem [36-40]. One-
class learning is useful approach suitable for imbalanced
datasets with high-dimensional noisy features [41]. In this
approach, a classifier learns to predict the data points of
one class which is usually minority class. The main
focus of this approach is to separate the data points of

minority class from majority class. One-class learning
adopts two strategies-The first strategy identifies the
data points of the target class (usually a minority class)
instead of discriminating the data points of all classes.
While the second strategy considers the data points of
both classes and uses internal bias strategies to predict
the target class [41-42]. REMED (Rule Extraction for
MEdical Diagnosis) and RIPPER are two examples of
one-class learning approach [41]. Classifier ensembles
are one of the important approaches used by the
researchers to handle the class imbalance problem.
Classifier ensembles learn from a set of classifiers rather
than one classifier and predict the class of a new data
point by combining the predictions of all classifiers used
for ensemble. Boosting and random forest are two
commonly used approaches to ensemble classifiers [43-

44].

2.3. Cost –sensitive solutions

Sampling methods focus on balancing the distributions
of data points between classes while cost-sensitive
learning methods take into account the costs associated
with misclassifying data points [45-51]. It considers the
variable cost of a misclassification of the different
classes. The cost-sensitive learning approaches try to
minimize the total misclassifications cost, but minority
class gains importance in this cost function. Cost
sensitive learning methods solve the data imbalance
problem by using different cost matrices that describe
the costs of classifying data points from one class to
another. It is found from the literature that cost-sensitive
learning based solutions are more effective than
sampling methods [52-54].
a. Cost sensitive learning framework: It is based on the
concept of cost matrix which can be considered as a
numerical representation of the penalty of
misclassifying data points [17]. Let us consider a binary
classification scenario, the cost of misclassifying a data
point of majority class into minority class is

(,) and the cost of opposite case is
(,). Usually, there is no cost for correct

classification of data points of either class and
(,)> (,). The objective of cost-

sensitive learning is to minimize the overall cost on the
training dataset and these concepts are easily extended
to multi-class classification scenario by considering

(,), which indicates the cost of misclassifying the
data point of jth class into ith class.
b. Cost-sensitive Decision Trees: In this approach, the
cost-sensitive fitting can take three forms. First, one can
apply cost to the decision threshold. Maloof used a

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

764

Least Squares Twin Support Vector Machine

decision tree threshold moving approach for the
classification of imbalanced data with unknown or
unequal misclassification costs [55]. In another research
work, Breiman et al. established the relationship
between misclassification costs of each class, the
distribution of training data points, and the placement of
decision tree threshold [56]. Second, cost can be given to
the split criteria at each node. The main task in this is to
fit an impurity function which is insensitive to unequal
costs. Usually, accuracy is used as the impurity function
for decision trees, which selects the split with minimal
error at each node. However, accuracy is sensitive to
imbalanced distributed data points. Drummond and
Holte have used three specific impurity metrics, Gini,
DKM and entropy and obtained improved cost-
sensitivity as compared to the accuracy/error rate [57].
Finally, cost-sensitive decision tree schemes can be
applied for pruning. In decision tree, pruning is
beneficial because it improves the generalization by
removing leaves with class probability estimates below
a specified threshold. Elkan have used Laplace
smoothing method of the probability estimate and
Laplace pruning technique [45] .
c. Cost-sensitive Neural Network: Cost sensitivity can
be introduced to Neural Networks in four ways: first,
one can apply cost sensitive modifications to the
probabilistic estimate, second, the output of Neural
Network can be made cost-sensitive, third, cost can be
applied to the error minimization function, and lastly
cost-sensitive modification can be applied to the
learning rate. Kukar and Kononenko proposed cost
sensitive Neural Network and applied cost in the testing
phase to modify the probability estimate of the output
[58]. They also applied cost-sensitive modification to the
output of Neural Network. They have modified the
output during training phase to bias the Neural Network
to focus more on the rare class.

In another research work, Sun et al. proposed three
cost-sensitive boosting methods, AdaC1, AdaC2, and
AdaC3 for handling imbalanced learning. They have
added cost into the weight updating strategy of
AdaBoost [5]. AdaCost is another cost-sensitive boosting
algorithm in which cost sensitivity is applied inside the
exponent of the weight updating formula of AdaBoost
[59]. It uses a cost-adjustment function which decreases
the weights of correctly classified data points and
increases the weights of costly misclassification. Cost
functions have also been integrated with Support Vector
Machine and Bayesian classifiers [60-66].

3. Multi-class Imbalance problems

This section discusses the different methodologies
proposed by the researchers to solve multi-class
imbalanced problems as:

3.1. Static SMOTE

This is the pre-processing approach in which the
resampling procedure is applied in M steps, where M is
the number of classes [67]. In each iteration, this
procedure chooses the class of minimum size and
replicates the number of data points of the class in the
original data-set. Synthetic data points are generated by
applying the SMOTE algorithm only over the data
points of the minority class. SMOTE duplicates the
minority class by taking into account only the data
points of original dataset.

3.2. Global-CS

Zhou and Liu resampled each class to equilibrate the
significance of the data points of different classes in
imbalanced problem scenario [68]. They replicated each
data point of class i times and selected

% additional random data points from the
dataset, where and denote number of data
points of the ith class and majority class respectively.

3.3. AdaBoost.NC

Wang and Yao have analyzed the impact of multi-
minority class and multi-majority class on the
performance of random under-sampling and over-
sampling methods and proposed AdaBoost.NC to
handle the imbalance problem in multi-class scenario
[13]. AdaBoost.NC is an ensemble learning approach
which combines the strength of negative correlation
learning and boosting. In this approach, the weights of
the data points are updated with an ad hoc formula
which is based on the classification or misclassification
given by both the classifier learned in the current
iteration and the global ensemble.

3.4. Other methods

Most of the solutions given by the researchers to handle
class imbalance problem in multi-class scenario use
decomposition schemes and work with binary class
imbalance solutions. Tan et al. have used both OAA and
OAO approach to break down the protein-fold
classification problem and then developed rule-based
learners to enhance the coverage of data points of
minority class [69]. Zhao et al. also used OAA and
SMOTE approach to handle the issue of class imbalance
in multi-class scenario [70]. Chen et al. proposed OAA

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

765

Divya Tomar and Sonali Agarwal

based algorithm to decompose the multi-class problem
into binary problems and applied some advanced
sampling approaches to rebalance the distribution of
data [71]. Liao et al. analyzed several over-sampling and
under-sampling approach with OAA for the
classification of Weld flaws with imbalanced data [72]. In
another research work, Fernandez have combined OAO
and SMOTE sampling approach to handle the multi-
class imbalance problem [73]. MetaCost is another
solutions to multi class problems which make a cost
sensitive classifier [74]. Different from the decomposition
schemes to handle the imbalanced learning in multi-
class scenario, Sun et al. have proposed a cost sensitive
boosting algorithm to enhance the classifier
performance for the multi class imbalance problem [75].
The main focus of [75] was to search for the cost matrix
and for this purpose Genetic Algorithm was used to find
the optimum cost setup for each class.

4. Background Work

Recently, Twin Support Vector Machine (TWSVM) has
attracted the attention of researchers due to its better
performance and speed. TWSVM is a binary classifier
introduced by Jayadeva et al. and classifies the data
points of two classes by using a pair of non-parallel
planes [76]. TWSVM is based on two well-known
techniques -Support Vector Machine (SVM) and
Generalized Eigen-value Proximal SVM (GEPSVM).
SVM is a binary classifier which classifies the data
points of two classes by constructing an optimal
separating hyper-plane [77]. While, GEPSVM, proposed
by Mangasarian et al., produces a pair of non-parallel
hyper-planes for the separation of data points of two
classes [78]. TWSVM solves two simple Quadratic
Programming Problems (QPPs) in place of single
complex QPP as in traditional SVM. In SVM, all data
points together give constraints to QPP while in
TWSVM, data points of one class give constraints to
other QPP and vice versa. The validity and effectiveness
of the TWSVM has been proved over conventional
SVM and GEPSVM on several benchmark datasets in
[76]. Later, Kumar et al. introduced a new binary
classifier named as LSTSVM which is the least squares
version of TWSVM [79]. LSTSVM classifies the data
points of two classes by optimizing two linear equations
with equality constraints as opposed to the TWSVM
which solves two QPPs with inequality constraints.
LSTSVM is a simple binary classifier and has shown
better generalization ability as compared to TWSVM.
This section presents the brief overview of traditional

TWSVM and LSTSVM. Consider the training dataset
‘T’ contains ‘n’ data points and is represented as:

= {(,), (,), … , (,)} (1)
where indicates ith data point and {1, 1}
is the class label. Suppose, positive and negative class
comprise n1 and n2 data points respectively and n=n1 +
n2.

4.1. Twin Support Vector Machine

For training dataset ‘T’, TWSVM generates following
decision function:

 () = min ,

| . | (2)

by finding two non-parallel hyper-planes
x w +b = 0 and x w +b = 0 (3)

where , are normal vectors to the hyper-
planes and , are bias terms. TWSVM classifies
the data points by optimizing following two QPPs:

min (w , b ,) Aw + e b + c e
s.t. (Bw + e b) + e , 0 (4)

min (w , b ,) Bw + e b + c e

s.t. (Aw + e b) + e , 0 (5)
where matrices × and × comprise the
data points of positive and negative class respectively.

are the vectors of 1’s, , >0
are penalty parameters, and and are
slack variables corresponding to negative and positive
class.

4.2. Least Squares Twin Support Vector Machine

LSTSVM classifies the data points by optimizing
following two linear equations rather than two QPPs
with equality constraints:

min(w , b ,) Aw + e b +
s.t. – (Bw + e b) + = e (6)

and
min(w , b ,) Bw + e b +

s.t. (Aw + e b) + = e (7)

Solution of above two equations determines the values
of normal vector and bias as:

w

b = F F + E E F e (8)
and

w

b = E E + F F E e (9)
where, E= [A e] and F=[B e]. Further, these
values find two non-parallel hyper-planes according to

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

766

Least Squares Twin Support Vector Machine

equation 3. A test data point is assigned to a class by
using following decision function:
 () = min ,

| . | (10)
where | . | indicates the perpendicular distance of test
data point from hyper-plane. Kumar et al. also proposed
the formulation of LSTSVM for non-linearly separable
data points by using kernel trick. Non-linear LSTSVM
constructs two kernel generated surfaces in higher-
dimension as:
K(x , Z) + = 0 and K(x , Z) + = 0 (11)

where Z=[A B] and K is any arbitrary chosen kernel
function. Following are the optimization problems of
non-linear LSTSVM:

min(, ,) K(A, Z) + +

s.t. – (K(B, Z) +) = e (12)
and

min(, ,) K(B, Z) + +

s.t. (K(A, Z) + e) = e (13)
The solution of above problem produces following
values:

= (H H + G G) H (14)

= (G G + H H) G (15)
where G= [K (A, Z)] , H= [K (B, Z)] and the
class is assigned to test data point as:

 class(j) = argmin(j = 1,2)
(,)

(16)

5. Multiclass Least Squares Twin Support
Vector Machine

Mostly, real life applications contain multiple classes
and demand for a classifier that works effectively for
the categorization of multiple classes. As discussed
earlier, LSTSVM has shown better generalization
performance, but it is suitable only for two-class
problem. However, its multi-class extension is rarely
noted in the literature. So, in this paper, we have
proposed a novel classifier named as MLSTSVM which
is the multi class extension of the binary LSTSVM
classifier. The proposed classifier works on “One-
against-All” strategy in which the data points of each
class is trained with the data points of other classes. For
M-class, MLSTSVM constructs M-binary LSTSVM
classifiers and ith classifier (where i=1,2,…,M)
considers the data points of ith class as positive data
points and data points of other classes as negative data
points. In this manner, it solves M-linear programming
equations and seeks M-hyper planes, one for each class.

Let the training dataset includes ‘n’ data points:
{(,), (,), … , (,)} , where
indicates feature vector and {1,2, … , } indicates
corresponding class label. Let the matrix ×

represents the data points of ith class, where ni denotes
the size of ith class. Again, consider the matrix

()× is comprised of the data points of all classes
except ith class and is defined as:

= [() , () , … , () , () , … , ()]
 (17)
Here, we present the formulation of MLSTSVM for
both linear and non-linear separable data points as:

5.1. Linear MLSTSVM

Taking the ith class as an example, let the ith hyper-plane
is:
 (wi.x)+bi=0 , where i=1,2,…,M (18)

where and indicate normal vector to the
hyper-plane and bias term respectively. The objective
function of ith classifier is obtained as:

min(w , b ,) A w + e b +
 s.t. (B w + e b) + = e (19)
where ci>0 is the penalty parameter, and

() are the vector of 1’s and is the slack
variable. The first term of the objective function
minimizes the squared sum distance of the data points
of ith class from the hyper plane and tries to keep the
hyper-plane in its close affinity. The second term
minimizes the sum of misclassification error due to data
points belonging to rest of the M-1 classes. Thus the
minimization of the above objective function keeps the
ith hyper-plane near to the data points of ith class and far
from the data points of rest of the classes. Lagrangian
corresponding to the equation 19 is achieved as:

(w , b , ,) = A w + e b + -

((B w + e b) + e) (20)

where is a non-negative lagrangian multiplier.
Following necessary Karush-Kuhn-Tucker (KKT)
conditions are obtained by differentiating equation 20
with respect to w , b , :

= A (A w + e b) B = 0 (21)

= e (A w + e b) e = 0 (22)

= = 0 (23)

= (B w + e b) + e =0 (24)
Equations 21 and 22 lead to:

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

767

Divya Tomar and Sonali Agarwal

A

e
[A e]

w

b
B

e
= 0 (25)

Define = [A e] , = [B e] and = [].
With these notations equation 25 may be reformulated
as:
 =0 (26)

= () (27)

It is observed that the objective function of
proposed classifier requires the inverse of E E
which is sometime difficult to calculate due to ill-
conditioned. To avoid the possibility of ill-conditioning
of matrix, a regularization term is added to the above
formulation as:

u = (E E + I) F (28)
where > 0 is a very small scalar and I is an identity
matrix of suitable size. The value of lagrangian
multiplier is computed from (23) and (24) as:

= c (e F u) (29)
Substituting (27) with (29):

= u = (F F + E E) F e (30)

The above values generate the hyper-plane for ith

classifier. In the same way, a hyper-plane is generated
for each classifier and a class is assigned to new data
point depending on which plane lies nearest to it. The
decision function is represented as:
 f(x) = arg min ,..,

| . | (31)
Figure 1 represents the geometric representation of
linear MLSTSVM for three classes. Different shapes
represent the data points of different classes. Figure
shows three hyper-planes, plane 1, plane 2 and plane 3
for class 1, class 2 and class 3 correspondingly in such a
way that data points of each class lie in the close
proximity of the corresponding hyper-plane while as far
as possible from other hyper-planes.

Fig. 1. Geometric representation of Linear MLSTSVM

5.2. Non-Linear MLSTSVM

Sometime, it is not possible to separate the data points
with linear class boundaries. So, we have extended the
formulation of proposed MLSTSVM to non-linear cases
by using kernel trick. Firstly, kernel function is used to
transform the data points in higher dimensional space
and then MLSTSVM classifier constructs kernel
surfaces in that space. Equation of ith kernel surfaces is
obtained as:

K(, Z) + = 0 where i=1,..., M (32)

where Z=[A B] and ‘K’ is appropriately chosen
kernel function. The non-linear MLSTSVM classifier is
constructed by solving following optimization problem:

min(, ,) K(A , Z) + e +
s.t. (K(B , Z) + e) + = e (33)

Lagrangian function corresponding to (33) is given by:

(, , ,) = K(A , Z) + e + -

((K(B , Z) + e) + e) (34)

KKT conditions for (34) are:
= K(A , Z) (K(A , Z) + e)

K(B , Z) = 0 (35)
= (K(A , Z) + e) = 0 (36)

= = 0 (37)

= (K(B , Z) + e) + e)=0 (38)
Equations (37) and (38) lead to:
K(A , Z)

e
[K(A , Z) e]

K(B , Z)

e
=

0 (39)

Define = [K(A , Z) e] and = [K(B , Z)].
Using these notations, equation (39) may be rewritten
as:

=0 (40)
Normal vector and bias are obtained from (37), (38) and
(40) as:

= (+) (41)
The decision function for non-linear MLSTSVM is
represented as:

() = min ,..,
. (,) (42)

A class is assigned to new data point depending on
which kernel surface lies nearest to it.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

768

Least Squares Twin Support Vector Machine

6. Weighted Multi-class Least Squares Twin
Support Vector Machine

Earlier, we have discussed several approaches to handle
class imbalance problem and it is observed that mostly
two-class imbalance problem is targeted by the
researchers. So, in this paper we have focused on multi-
class imbalance problem and proposed a novel
Weighted MLSTSVM classifier (WMLSTSVM). In this
approach, different weights are assigned to the data
points of different classes. Therefore, the selection of
appropriate weight is an important issue of
consideration. The proposed approach selects and
assigns a weight to the classes according to their size.
Consider n1, n2,...,nM be the size of classes, where M is
the number of classes present in the dataset and n=n1 +
n2 +...+ nM..The weight is assigned to a class according
to the following formula:

 =
()

, where i=1,2,...,M (43)
We can draw following three conclusions from the
above mentioned formula:
i. Higher weight is assigned to the class with small

data points while lower weight is assigned to the
class with large data points so that each class could
get equal importance during the training of
classifier.

ii. (0,1) , so that the proposed classifier could be
trained with convergence.

iii. The weights are normalized without loss of
generality and = 1.

The formulations of the proposed WMLSTSVM for
linear and non-linear cases are obtained as:

6.1. Linear WMLSTSVM

The objective function of linear WMLSTSVM for ith

class is formulated as:
min(w , b ,) A w + e b +

 s.t. (B w + e b) + = e (44)

where ()×() represents the diagonal
matrix containing weights for the data points of ith class
as per equation 43. The lagrangian function of the above
mentioned objective function is achieved as:

(w , b , ,) = A w + e b + -

((B w + e b) + e) (45)
where is a non-negative lagrangian multiplier.
Necessary KKT optimality conditions for above
objective function are obtained as:
 = A (A w + e b) B = 0 (46)

= e (A w + e b) e = 0 (47)

= c = 0 (48)

= (B w + e b) + e =0 (49)
Equations (46) and (47) determine:

A

e
[A e]

w

b
B

e
= 0 (50)

Define = [A e] , = [B e] and = [].
With these notations equation 50 may be rewritten as:

=0 (51)
= () (52)

Lagrangian multiplier is determined from (48), (49) and
(51) as:

= + F (E E) F e (53)
w and b are obtained from (52) and (53) and further
seek non-parallel hyper-plane according to (18). So, the
difference between MLSTSVM and WMLSTSVM is
that W is an extra term in the lagrangian multiplier.
Decision function of WMLSTSVM is same as of
MLSTSVM. Due to lagrangian multiplier, the value of
normal vectors and biases differ and so hyper-planes.
But the decision regarding class assignment is same as
in MLSTSVM. For each new data point, its
perpendicular distance is measured from each hyper-
plane and the data point is assigned to the class closest
to it as given in (31).
Algorithm:
For Training:
For i=1 to M, where M is number of classes in dataset.
1a. Define weight for each class according to (43).
1b. Obtain matrices Ei and Fi as:
 Ei=[Ai ei1] and Fi=[Bi ei2]
where Ai includes the data point of ith class and Bi
includes the data points of rest of the classes and
defined by (17).
1c. Penalty parameters are selected on the basis of
validation.
1d. Normal vector and bias are determined from (52)
and (53) and generate hyper-plane using (18).
For Testing:
Training phase generates M hyper-planes one for each
class. During testing phase, the distance of a test data
point is calculated from each hyper-plane and a class,
corresponding to the hyper-plane which is located at
minimum distance from test data point, is assigned to it.
The decision function regarding class assignment is
mentioned in (31).

6.2. Non-Linear WMLSTSVM

WMLSTSVM is efficiently extended to non-linear cases
by utilizing kernel trick. It also generates kernel

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

769

Divya Tomar and Sonali Agarwal

surfaces same as in MLSTSVM to separate the data
points. The formulation of non-linear WMLSTSVM is
obtained as:

min(, ,) K(A , Z) + e +
s.t. (K(B , Z) + e) + = e (54)

Lagrangian function corresponding to (54) is formulated
as:

(, , ,) = K(A , Z) + e +

- ((K(B , Z) + e) + e) (55)

KKT conditions for (55) are given below:

= K(A , Z) (K(A , Z) + e)

K(B , Z) = 0 (56)
= (K(A , Z) + e) = 0 (57)

= = 0 (58)

= (K(B , Z) + e) + e) =0 (59)
Following equation is obtained by combining (56) and
(58):
K(A , Z)

e
[K(A , Z) e]

K(B , Z)

e
=

0 (60)

Define = [K(A , Z) e] and = [K(B , Z)].
With these notations, (60) is reformulated as:

=0 (61)

 = () (62)

Lagrangian Multiplier is determined from (58), (59)
and (61):

= + H (G G) H e (63)

These values are used to construct kernel-generated
surface as per equation 32. The class is allocated to test
data point by using (42).
Algorithm:
For Training:
Choose Kernel Function.
For i=1 to M, where M is number of classes in dataset.
1a. Define weight for each class according to (43).
1b. Obtain matrices Gi and Hi as:
 Gi=[(,) ei1] and Hi=[(,) ei2]
where Ai includes the data point of ith class and Bi
includes the data points of rest of the classes and
defined by (17).
1c. Penalty parameters are selected on the basis of
validation.
1d. Normal vector and bias are determined from (62)
and (63) and generate kernel surface using (32).
For Testing:
Training phase generates M kernel surfaces one for
each class. During testing phase, a class is assigned to
test data point by using (42).

7. Experiments and Discussion

7.1. Dataset Description

In order to prove the validity of the proposed
methodology, we have performed experiment on fifteen
multi-class imbalanced benchmark datasets taken from
KEEL dataset repository [80]. Table 1 indicates the
details of benchmark datasets used in this research
work. The datasets contain multiple classes and the
class with large size (number of data points) is
considered as majority class and with small size is
considered as minority class among all classes.
Imbalance ratio is calculated by taking the ratio of the
size of majority class with minority class.

Table 1. Details of benchmark datasets
Dataset Data size Features Classes Imbalance Ratio
Balance(Bal) 625 4 3 5.88
Ecoli(Eco) 336 7 8 71.5
Glass(Gls) 214 9 6 8.44
Wine(Win) 178 13 3 1.5
NewThyroid(Thy) 215 5 3 4.84
Hayes Roth(HaR) 132 4 3 1.7
Dermatology(Der) 366 34 6 5.55
Shuttle(Shu) 2175 9 5 853
Pen Based(PnB) 1100 16 10 1.95
PageBlock(PgB) 548 10 5 164
Contraceptive(Con) 1473 9 3 1.89
Lymphography(Lym) 148 18 4 40.5
Zoo 101 16 7 10.25
Splice(Spl) 3190 60 3 2.16
Cleveland(Cld) 467 13 5 12.62

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

770

Least Squares Twin Support Vector Machine

7.2. Performance Evaluation Measures

The performance of proposed WMLSTSVM classifier is
evaluated by using Geometric Mean which is calculated
from confusion matrix. Here, we have determined the
confusion matrix for multiple classes as indicated in
table 2.

Table 2. Confusion Matrix
Predicted
Class

Actual Class
Class1 Class2 ... ClassM

Class1 C11 C12 ... C1M

Class2 C21 C22 ... C2M

...
ClassM CM1 CM2 ... CMM

Count Cii , also referred as True Prediction (TP),
indicates the number of data points of class yi which are
correctly classified into it. While count Cij of class yi

with respect to the class yj (yi j) defines the number of
data points of class yj which are incorrectly classified
into class yi by the classifier. Cij also referred as False
prediction (FP) and for class yi , FP(i)= , .
Counts obtain from confusion matrix are used to
determine the performance metrics such as True
Positive Rate (TPR) or recall and Geometric Mean (G-
Mean). TPR of class yi is formulated as:

= (64)

If number of class M=2, then TPR1 and TPR2 also
referred as sensitivity and specificity respectively.
Geometric Mean (G-Mean) is a performance evaluation
metric proposed by Kubat et al. for two class problems
[4]. It measures the balanced performance of a classifier
and is obtained by taking the geometric mean of recall
values of two classes. For multiple classes, the G-Mean
is calculated by taking the geometric means of recall
values of every class as:
 = (65)
G-Mean equally accounts the recall value of each class,
so it measures the balanced performance of classifier.
Therefore, in this research work, we have compared the
performance of proposed WMLSTSVM classifier with
other approaches by using G-Mean.

7.3. Statistical tests for performance comparison
In this research work, hypothesis testing techniques
such as Wilcoxon signed rank and Friedman statistic
tests are used to provide statistical support for the
analysis of the results. Wilcoxon signed rank test is a
non-parametric statistical technique that perform
pairwise comparisons between two classifiers [14, 19, 82].

In this technique, the difference between the
performances of two classifiers is computed for each
dataset. It ranks the absolute differences from smallest
to largest and average ranks are assigned in case of ties.
The rank R+ stores the sum of ranks for the datasets on
which our proposed classifier outperformed the other
classifiers, and rank R- stores the sum of ranks for the
opposite case. Wilcoxon signed rank test follows z-
distribution. Consider ‘T’ to be the smaller of the R+ and
R- , T=min(R+, R-). If T is less than or equal to the
Wilcoxon distribution, the null hypothesis which states
that there is no difference between the classifiers can be
rejected. It is also very useful to compute the p-value
associated with each comparison as it represents the
lowest level of significance of a hypothesis that results
in rejection. By doing this, we can find whether two
classifiers are significantly different and the manner in
which they are different.
On the other hand, Friedman test ranks the algorithms
according to their performance for each dataset
separately, the best performing algorithm gets the rank
of 1, the second best rank 2 and so on [19,83]. Average
ranks are assigned in case of ties. Let be the rank of
the jth of M classifiers on the ith of N datasets. Friedman
test statistic is computed as:
 =

()

() , (66)

where = . Friedman test statistic is
distributed according to the Chi-square distribution with
M-1 degrees of freedom. If the value of is large
enough, then the null hypothesis can be rejected. The
significant differences between individual classifiers are
tested by using post hoc Nemenyi test [84]. According to
this, if the average rank of two algorithms differs by at
least the critical difference, then these algorithms are
significantly different. Critical difference (CD) is
defined as:

 =
() (67)

where is based on the Studentized range statistic.
The results from Friedman and Nemenyi post hoc tests
are plotted and visualized by using a modified version
of Demsar significance diagram [85].

7.4. Experiment and result Analysis
We have evaluated the performance of the proposed
WMLSTSVM classifier with other classifiers such as
Multi-SVM, AdaBoost.NC, Multiple Birth Twin
Support Vector Machine (MBSVM) [81], OVO-
MLSTSVM and OVA MLSTSVM using 10 fold cross
validation. Multi-SVM and MBSVM classifiers are
combined with pre-processing approaches such as

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

771

Divya Tomar and Sonali Agarwal

Static-SMOTE, Global-CS and Random Oversampling
(ROS). Each classifier is implemented in matlabR2012a
on a Windows based operating system with Intel Core i-
7 processor (3.4 GHz) with 12-GB RAM. Grid search
approach is used for parameters selection. Penalty
parameters are selected from the set {10-8,...,105} while
sigma parameter for Gaussian kernel function is chosen
from the set {2-5,...,210}. Since, G-Mean measures the
balanced performance of a classifier, therefore, for
imbalanced dataset, G-Mean is a good choice for
evaluation. Table 3 and 4 present the performance
comparison of the proposed classifier with existing
classifiers including the average of G-Means (GM),
standard G-Means and time (including both training and

testing) of 10-folds. Bold values indicate better
performance of the classifier. For linear cases, G-Mean
of the proposed classifier is better for each dataset
except Hayes Roth, Lymphography, Zoo and Splice.
Adaboost.NC has shown better performance for
Lympography and Zoo dataset. For non-linear cases,
WMLSTSVM has obtained better G-Mean than that of
other nine classifiers for 12 out of 15 datasets. It is also
observed that the proposed classifier takes comparable
computation time on almost all type of datasets as
compared to other classifiers. Therefore, it could be
concluded that the proposed WMLSTSVM classifier
has the highest computation efficiency.

Table 3. Geometric Mean Comparison of linear classifiers on benchmark datasets
Data
set

Static
SMOTE
SVM
GM±std(%)
Time(s)

Global-CS
SVM

GM±std(%)
Time(s)

ROS
SVM

GM±std(%)
Time(s)

Adaboost.NC

GM±std(%)
Time(s)

Static-
SMOTE
MBSVM
GM±std(%)
Time(s)

Global-CS
MBSVM

GM±std(%)
Time(s)

ROS
MBSVM

GM±std(%)
Time(s)

OVO
MLSTSVM

GM±std(%)
Time(s)

OVA
MLSTSVM

GM±std(%)
Time(s)

WMLSTSVM

GM±std(%)
Time(s)

Bal 79.64±5.29
4.55

78.38±6.15
5.36

82.60±5.45
5.22

85.81±5.02
4.38

84.27±5.15
0.428

83.82±5.26
0.254

81.93±4.76
0.491

76.11±3.97
0.089

85.51±4.35
0.07176

89.59±3.86
0.127

Eco 67.95±5.43
2.38

70.89±5.47
3.24

73.04±5.72
3.35

74.58±4.64
3.16

76.75±5.2
1.08

72.63±5.37
1.127

71.45±5.21
1.18

66.40±4.27
0.0803

74.02±5.13
0.07086

80.86±5.02
0.1029

Gls 62.19±4.14
3.04

59.09±6.65
2.35

64.47±5.88
2.39

55.62±6.17
2.65

54.61±5.62
0.088

66.67±6.08
0.052

62.19±5.32
0.0949

74.72±3.37
0.00481

61.05±4.58
0.00468

64.33±4.24
0.0926

Win 91.08±3.28
0.411

91.63±5.73
0.097

92.68±3.65
0.57

94.30±2.54
0.24

96.49±3.08
0.0102

95.38±2.96
0.014

95.07±1.95
0.0382

100±0.0
0.0085

100±0.0
0.0078

100±0.0
0.00858

Thy 91.24±3.13
0.664

89.14±5.02
0.478

88.32±3.83
0.568

91.67±3.25
0.85

92.04±3.72
0.018

94.73±3.04
0.0093

91.79±2.36
0.0803

100±0.0
0.0056

100±0.0
0.00624

100±0.0
0.0135

HaR 64.83±4.27
2.87

65.47±5.23
2.126

60.95±4.6
2.18

57.82±4.16
1.96

71.08±4.53
0.01283

67.45±4.22
0.0096

66.85±4.28
0.0218

52.38±4.04
0.00742

69.19±4.19
0.00468

70.94±3.58
0.005304

Der 82.74±4.15
2.96

85.62±4.83
3.45

82.74±5.02
3.664

91.13±4.58
3.48

83.43±4.67
0.108

82.14±4.5
0.09775

87.32±3.73
0.0928

87.22±4.65
0.0923

88.70±4.84
0.0702

92.89±3.87
0.0907

Shu 65.27±3.65
7.24

73.48±5.75
6.8

67.94±4.53
7.46

80.32±5.02
6.33

78.02±4.84
0.9577

82.43±4.83
1.118

76.11±3.97
1.26

80.69±4.22
0.2169

84.56±4.91
0.14196

92.26±3.12
0.4577

PnB 74.58±4.60
5.82

78.52±6.88
5.509

72.32±4.46
5.26

78.53±4.84
4.46

81.82±4.22
0.1293

85.51±5.03
0.1928

78.90±4.32
0.218

85.87±3.23
0.283

82.19±2.56
0.1045

88.71±2.87
0.347

PgB 83.87±5.59
5.35

70.28±5.27
5.67

74.08±5.24
5.45

81.52±5.27
5.02

77.31±5.24
1.562

85.63±4.26
1.1499

79.85±4.29
1.25

83.39±4.42
0.0874

85.77±4.12
0.08112

86.29±4.34
0.09048

Con 34.82±4.78
5.02

48.83±5.39
4.56

40.92±5.29
4.38

49.01±4.13
4.86

43.08±5.66
0.5624

42.78±5.48
0.4022

45.67±4.41
0.6091

48.03±4.33
0.1302

45.18±4.46
0.10764

54.62±4.95
0.13752

Lym 80.25±4.46
2.41

77.49±4.72
2.11

78.74±4.78
2.63

83.35±5.62
2.24

82.04±4.42
0.486

79.87±4.10
0.6246

79.51±4.65
0.4302

78.46±3.87
0.0959

80.54±4.28
0.0904

81.69±4.16
0.112

Zoo 91.78±3.65
0.03

89.84±4.26
0.0265

91.88±3.97
0.0382

93.82±3.24
0.048

92.67±3.25
0.012

92.51±4.67
0.035

91.46±3.83
0.0545

89.85±3.73
0.0068

89.32±4.05
0.00624

93.5±3.98
0.007452

Spl 84.25±3.67
10.35

77.88±3.57
10.14

81.52±3.88
11.04

90.05±3.02
12.53

91.08±3.34
4.45

84.39±3.63
4.78

85.87±3.22
4.28

78.12±4.38
3.52

84.72±4.73
3.78

90.67±3.88
4.02

Cld 30.74±4.80
2.33

30.22±4.45
2.02

28.08±3.67
2.11

33.82±3.16
3.04

33.62±3.16
1.16

35.86±4.56
0.9246

34.52±3.33
0.988

29.88±3.69
1.03

32.06±4.17
0.9048

39.85±4.34
1.08

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

772

Least Squares Twin Support Vector Machine

Table 4. Geometric Mean Comparison of non-linear classifiers on benchmark datasets
Data
set

Static
SMOTE
SVM
GM±std(%)
Time(s)

Global-CS
SVM

GM±std(%)
Time(s)

ROS
SVM

GM±std(%)
Time(s)

Adaboost.NC

GM±std(%)
Time(s)

Static-
SMOTE
MBSVM
GM±std(%)
Time(s)

Global-CS
MBSVM

GM±std(%)
Time(s)

ROS
MBSVM

GM±std(%)
Time(s)

OVO
MLSTSVM

GM±std(%)
Time(s)

OVA
MLSTSVM

GM±std(%)
Time(s)

WMLSTSVM

GM±std(%)
Time(s)

Bal 86.50±6.39
8.03

87.45±6.03
7.65

85.32±6.46
8.57

87.24±5.17
8.65

88.64±5.53
3.28

88.53±5.68
2.85

89.18±5.66
3.16

74.29±5.36
0.872

90.64±4.84
0.9188

92.83±3.9
0.9356

Eco 76.29±6.17
3.56

75.61±5.91
3.82

77.87±5.92
4.22

80.18±5.02
4.24

80.06±5.45
1.21

79.77±6.24
1.16

81.03±5.82
1.48

69.62±5.8
0.663

81.34±5.78
0.3962

87.06±4.77
0.4003

Gls 59.32±6.26
7.11

63.76±6.08
8.01

62.17±6.06
8.48

63.64±6.69
7.83

65.29±5.88
2.49

70.36±6.13
2.52

69.84±6.26
3.02

83.26±5.03
0.5116

76.63±5.35
0.2249

88.36±3.62
0.2256

Win 93.61±3.15
0.9059

96.14±2.89
0.8892

95.35±3.01
1.05

96.03±2.53
1.27

97.22±2.7
0.3386

98.02±2.65
0.375

97.77±2.66
0.367

100±0.0
0.08892

100±0.0
0.092

100±0.0
0.106

Thy 95.63±2.58
2.34

95.46±3.04
2.11

90.91±3.74
2.45

95.22±2.86
3.04

94.73±3.49
1.02

97.84±2.88
0.9204

97.18±3.17
1.12

100±0.0
0.120

100±0.0
0.132

100±0.0
0.155

HaR 62.74±4.86
6.88

64.21±4.63
7.24

63.70±4.58
6.92

64.89±5.04
7.16

69.91±4.22
1.97

70.24±3.56
2.083

65.83±4.51
2.06

54.55±4.37
2.25

68.07±4.95
1.369

85.49±3.53
1.568

Der 85.42±5.81
8.78

89.28±5.43
8.63

86.23±5.75
9.1

90.08±5.69
8.59

91.45±4.34
3.72

94.82±3.92
4.02

90.01±6.03
3.89

91.67±4.23
1.135

92.77±4.2
0.5538

97.00±4.14
0.736

Shu 67.29±4.66
20.86

76.85±4.39
18.98

65.76±5.02
24.57

77.87±4.67
20.24

84.26±4.12
6.88

80.16±5.43
5.74

75.42±5.32
5.85

82.74±4.85
1.56

83.11±4.11
2.24

94.97±2.96
3.12

PnB 78.25±5.22
30.27

82.15±5.16
32.62

75.73±5.89
30.15

83.98±5.37
31.67

80.25±5.56
12.56

83.27±4.35
12.84

81.28±4.78
13.23

87.16±3.66
11.01

89.91±2.93
10.86

95.19±2.35
10.94

PgB 85.34±6.28
11.77

76.82±6.34
11.21

77.67±6.67
12.38

86.29±6.02
14.02

87.14±5.05
4.764

85.98±5.66
4.2

85.02±6.12
4.305

81.67±6.23
1.719

87.12±4.88
1.677

89.87±4.62
1.89

Con 40.66±5.39
29.01

46.98±4.82
28.37

45.26±5.11
28.08

46.18±4.86
26.08

49.01±4.82
10.42

56.16±5.01
9.48

53.18±5.37
10.24

46.24±4.7
5.53

48.33±4.5
5.6

55.38±4.85
6.03

Lym 82.33±4.53
5.47

81.04±4.89
6.59

83.02±4.69
6.85

82.74±5.24
5.57

83.52±4.35
1.14

81.21±5.13
1.62

82.60±5.6
1.5

80.28±4.85
0.2534

82.96±4.93
0.2277

85.12±3.55
0.2418

Zoo 96.04±3.02
0.932

94.45±3.67
0.9859

93.22±4.01
1.36

95.35±3.53
1.10

96.92±3.65
0.384

95.18±4.4
0.5621

94.07±4.02
0.674

93.67±4.86
0.08112

94.32±3.74
0.0665

94.37±3.74
0.08736

Spl 89.88±3.77
42.45

81.41±3.48
44.22

80.34±3.62
42.11

95.73±3.34
36.54

94.05±3.03
16.26

88.28±3.68
16.29

87.67±4.25
15.32

80.55±5.04
8.02

91.02±3.92
7.66

93.85±3.38
7.85

Cld 34.56±4.82
7.4

32.34±4.79
6.36

30.57±5.11
6.94

35.56±5.11
5.59

35.63±4.66
2.75

34.09±5.02
2.56

32.72±4.61
3.11

32.69±4.7
1.24

34.60±4.96
1.38

39.08±4.26
1.56

Wilcoxon test is used for the comparison between linear
and non-linear classifiers. In table 5, we have compared
the performance of each classifier for both linear and
non-linear cases. The rank for non-linear cases is
indicated by R+ and for linear cases by R-. This test

concludes that the non-linear classifiers are statistically
better than the linear classifiers in all the cases of study
with a high degree of confidence. It is observed from
the table that the p-value is less than 0.05 in all the
cases.

Table 5. Wilcoxon test for the comparison between linear and non-linear classifiers
Classifiers R+(non-linear) R-(linear) p-value
Static Smote SVM 109.0 11.0 0.0056
Global-CS SVM 117.0 3.0 0.0013
ROS SVM 112.0 8.0 0.0033
AdaBoost.NC 102.0 18.0 0.0178
Static Smote MBSVM 114.0 6.0 0.0023
Global-CS MBSVM 110.0 10.0 0.0047
ROS MBSVM 113.5 6.5 0.0025
OVO MLSTSVM 81.5 9.5 0.0124
OVA MLSTSVM 84.0 7.0 0.0076
WMLSTSVM 89.0 2.0 0.0025

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

773

Divya Tomar and Sonali Agarwal

The results obtained from the two statistical tests are
shown in table 6. For Wilcoxon test, we have compared
the performance of the proposed classifier with other
classifiers and calculated the ranks and p-value for each
case. From the results, it is concluded that the proposed
WMLSTSVM classifier outperforms all of them with
high degree of confidence. Friedman test is also applied
and the average rank of each classifier is calculated
according to their G-Mean as shown in table 6. It can be

concluded that the WMLSTSVM has the highest
average rank among all classifiers. Friedman test
statistic is calculated for both linear and non-linear cases
according to equation 66. In both the cases its value is
very high from the critical value for 9 –degree of
freedom which is 16.9190. Therefore, the null
hypothesis which states that there is no difference
between the classifiers is rejected.

Table 6. Result of Wilcoxon signed rank test and Friedman test
Wilcoxon signed rank test

Classifiers
Linear Non-linear

R+ R- p-value R+ R- p-value
WMLSTSVM-OVA MLSTSVM 91 0 0.0016 91 0 0.0016
WMLSTSVM-OVO MLSTSVM 83 8 0.0093 91 0 0.0016
WMLSTSVM-ROS MBSVM 120 0 0.0007 120 0 0.0007
WMLSTSVM-Global CS MBSVM 116 4 0.0015 117 3 0.0013
WMLSTSVM-Static SMOTE MBSVM 114 6 0.0023 116 4 0.0015
WMLSTSVM-AdaBoost.NC 116 4 0.0015 117 3 0.0013
WMLSTSVM-ROS SVM 119 1 0.0008 120 0 0.0007
WMLSTSVM- Global CS SVM 120 0 0.0007 119 1 0.0008
WMLSTSVM-Static SMOTE SVM 120 0 0.0007 119 1 0.0008

Friedman Test

Classifiers
Linear Non-linear

Mean Rank p-value Mean Rank p-value
WMLSTSVM 1.67

<0.05 55.37

1.67

<0.05 69.29

OVA MLSTSVM 4.33 3.33
OVO MLSTSVM 6.00 6.53
ROS MBSVM 5.76 5.73
Global CS MBSVM 4.73 4.46
Static SMOTE MBSVM 4.67 4.06
AdaBoost.NC 4.53 5.4
ROS SVM 7.76 8.8
Global CS SVM 8.0 7.4
Static SMOTE SVM 7.53 7.6

Cri

 CD=3.164
×

×
= 3.49

Critical value . for 10 classifiers is 3.164[19]. Figure
2 shows the significance diagram in which classifiers
are listed in ascending order of ranked performance on

the y-axis and the classifier’s AR across all fifteen
datasets on the x-axis. Two vertical lines represent the
difference of end of the best performing approach’s tail
and the start of the next significantly different approach.

Fig. 2. Average rank comparison of linear classifiers

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

774

Least Squares Twin Support Vector Machine

Fig. 3. Average rank comparison of non-linear classifiers

The diagram clearly depicts that there is no significant
difference between WMLSTSVM, OVA-MLSTSVM,
Global-CS MBSVM, Static SMOTE MBSVM and
Adaboost.NC for linear cases. However, ROS MBSVM,
OVO MLSTSVM, Static SMOTE SVM, ROS SVM and
Global-CS SVM classifiers perform significantly worse
than the best performing classifier with values 5.76, 6,
7.53, 7.76 and 8. Figure 3 shows the average rank
comparison of classifiers for non-linear cases. It is
observed that WMLSTSVM performs significantly
better than Adaboost.NC, ROS MBSVM, OVO
MLSTSVM, Global CS SVM, Static SMOTE SVM and
ROS SVM classifiers for non-linear cases. So, we can
conclude that the proposed WMLSTSVM classifier
performs significantly better in case of multi-class
imbalanced problem scenario.

8. Conclusion
Most of the solutions to class imbalance problem
concentrate on two-class setting. The two-class
imbalance solutions are not directly applicable to multi-
class scenario. This research work addressed the
imbalance problem in multi-class scenario and proposed
a novel classifier named as WMLSTSVM. Firstly, a
novel multi-classifier MLSTSVM is proposed which is
the multi-class extension of the binary LSTSVM. Then,
appropriate weight setting is done in loss function to
control the sensitivity of the classifier for imbalanced
data in determining each hyper-plane. The validity of
the proposed approach has been proved on fifteen
benchmark datasets which are imbalanced in nature.
Statistical analysis of the performance of each classifier
also confirms that the WMLSTSVM classifier is the
best performing classifier and is a suitable choice for
handling imbalanced data problem in multi-class

scenario. For future work, it would be interesting to
select the parameters by using Genetic Algorithm or
Particle Swarm Optimization and investigate the
performance of WMLSTSVM with real world data.

References
1. N. Japkowicz and S. Stephen. "The class imbalance

problem: A systematic study." Intelligent data analysis 6,
no. 5 (2002), pp. 429-449.

2. N.V. Chawla, N. Japkowicz, and A. Kotcz. "Editorial:
special issue on learning from imbalanced data sets." ACM
Sigkdd Explorations Newsletter 6, no. 1 (2004), pp. 1-6.

3. Y. Sun, A. K. Wong, and M. S. Kamel. "Classification of
imbalanced data: A review." International Journal of
Pattern Recognition and Artificial Intelligence 23, no. 04
(2009), pp. 687-719.

4. M. Kubat, R. C. Holte, and S. Matwin. "Machine learning
for the detection of oil spills in satellite radar images."
Machine learning 30, no. 2-3 (1998), pp. 195-215.

5. Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang. "Cost-
sensitive boosting for classification of imbalanced data."
Pattern Recognition 40, no. 12 (2007), pp. 3358-3378.

6. Y. Sun, A. K. Wong, and M. S. Kamel. "Classification of
imbalanced data: A review." International Journal of
Pattern Recognition and Artificial Intelligence 23, no. 04
(2009), pp. 687-719.

7. T. Fawcett and F. Provost. "Adaptive fraud detection."
Data mining and knowledge discovery 1, no. 3 (1997), pp.
291-316.

8. K. Bache and M. Lichman, “UCI Machine Learning
Repository” [http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and
Computer Science, (2013).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

775

Divya Tomar and Sonali Agarwal

9. K.J. Ezawa, M. Singh, and S. W. Norton. "Learning goal
oriented Bayesian networks for telecommunications risk
management." In ICML, (1996), pp. 139-147.

10. C. Cardie and N. Howe. "Improving minority class
prediction using case-specific feature weights." In ICML,
(1997), pp. 57-65.

11. A. Orriols-Puig and E. Bernadó-Mansilla. "Evolutionary
rule-based systems for imbalanced data sets." Soft
Computing 13, no. 3 (2009), pp. 213-225.

12. S. Kotsiantis, D. Kanellopoulos and P. Pintelas.
"Handling imbalanced datasets: A review." GESTS
International Transactions on Computer Science and
Engineering 30, no. 1 (2006), pp. 25-36.

13. S. Wang and X. Yao. "Multiclass imbalance problems:
Analysis and potential solutions." Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on
42, no. 4 (2012), pp. 1119-1130.

14. A. Fernández, V. López, M. Galar, M. A.J. Del Jesus, and
F. Herrera. "Analysing the classification of imbalanced
data-sets with multiple classes: Binarization techniques
and ad-hoc approaches." Knowledge-Based Systems 42
(2013), pp. 97-110.

15. G.E. Batista, R. C. Prati, and M.C. Monard. "A study of
the behavior of several methods for balancing machine
learning training data." ACM Sigkdd Explorations
Newsletter 6, no. 1 (2004), pp. 20-29.

16. A. Estabrooks, T. Jo and N. Japkowicz. "A multiple
resampling method for learning from imbalanced data
sets." Computational Intelligence 20, no. 1 (2004), pp. 18-
36.

17. He, Haibo, and Edwardo A. Garcia. "Learning from
imbalanced data." Knowledge and Data Engineering,
IEEE Transactions on 21, no. 9 (2009), pp. 1263-1284.

18. B. Zadrozny and C. Elkan. "Learning and making
decisions when costs and probabilities are both unknown."
In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining,
ACM, (2001), pp. 204-213.

19. J. Demšar. "Statistical comparisons of classifiers over
multiple data sets." The Journal of Machine Learning
Research 7 (2006), pp. 1-30.

20. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer. "SMOTE: synthetic minority over-sampling
technique." arXiv preprint arXiv:1106.1813 (2011).

21. A. Fernández, S. García, M. JD Jesus and F. Herrera. "A
study of the behaviour of linguistic fuzzy rule based
classification systems in the framework of imbalanced
data-sets." Fuzzy Sets and Systems 159, no. 18 (2008), pp.
2378-2398.

22. J. Derrac, I. Triguero, C. J. Carmona and F. Herrera.
"Evolutionary-based selection of generalized instances for
imbalanced classification." Knowledge-Based Systems 25,
no. 1 (2012): 3-12.

23. M.A. Tahir, J. Kittler and F. Yan. "Inverse random under
sampling for class imbalance problem and its application
to multi-label classification." Pattern Recognition 45, no.
10 (2012), pp. 3738-3750.

24. Y. Tang, Y. Q. Zhang, N. V. Chawla, and S. Krasser.
"SVMs modeling for highly imbalanced classification."
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on 39, no. 1 (2009), pp. 281-288.

25. A. Estabrooks, T. Jo and N. Japkowicz. "A multiple
resampling method for learning from imbalanced data
sets." Computational Intelligence 20, no. 1 (2004), pp. 18-
36.

26. J. Laurikkala, "Instance-based data reduction for
improved identification of difficult small classes."
Intelligent Data Analysis 6, no. 4 (2002), pp. 311-322.

27. J. M. Choi. "A selective sampling method for imbalanced
data learning on support vector machines." (2010).

28. Y. Liu, X. Yu, J. X. Huang, and A. An. "Combining
integrated sampling with SVM ensembles for learning
from imbalanced datasets." Information Processing &
Management 47, no. 4 (2011), pp. 617-631.

29. X. Y. Liu, J. Wu, and Z. H. Zhou. "Exploratory
undersampling for class-imbalance learning." Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on 39, no. 2 (2009), pp. 539-550.

30. C. Bunkhumpornpat, K. Sinapiromsaran, and C.
Lursinsap. "Safe-level-smote: Safe-level-synthetic
minority over-sampling technique for handling the class
imbalanced problem." In Advances in Knowledge
Discovery and Data Mining, Springer Berlin Heidelberg
(2009), pp. 475-482.

31. I. Tomek. "Two modifications of CNN." IEEE Trans.
Systems, Man and Cybernetics 6 (1976), pp. 769-772.

32. M. Kubat and S. Matwin. "Addressing the curse of
imbalanced training sets: one-sided selection." In ICML,
vol. 97, (1997), pp. 179-186.

33. T. Jo and N. Japkowicz. "Class imbalances versus small
disjuncts." ACM SIGKDD Explorations Newsletter 6, no. 1
(2004), pp. 40-49.

34. S. J. Yen and Y.S. Lee. "Cluster-based under-sampling
approaches for imbalanced data distributions." Expert
Systems with Applications 36, no. 3 (2009), pp. 5718-5727.

35. S. Chen, G. Guo and L. Chen. "A new over-sampling
method based on cluster ensembles." In Advanced
Information Networking and Applications Workshops
(WAINA), 2010 IEEE 24th International Conference on,
(2010), pp. 599-604.

36.
"Strategies for learning in class imbalance problems."
Pattern Recognition 36, no. 3 (2003), pp. 849-851.

37. C. Diamantini and D. Potena. "Bayes vector quantizer for
class-imbalance problem." Knowledge and Data

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

776

Least Squares Twin Support Vector Machine

Engineering, IEEE Transactions on 21, no. 5 (2009), pp.
638-651.

38. D. A. Cieslak, T. R. Hoens, N. V. Chawla, and W. P.
Kegelmeyer. "Hellinger distance decision trees are robust
and skew-insensitive." Data Mining and Knowledge
Discovery 24, no. 1 (2012), pp. 136-158.

39. N. G.Pedrajas, J P. Rodríguez, M. G. Pedrajas, D. O.
Boyer, and C. Fyfe. "Class imbalance methods for
translation initiation site recognition in DNA sequences."
Knowledge-Based Systems 25, no. 1 (2012), pp. 22-34.

40. B. Zadrozny and C. Elkan. "Learning and making
decisions when costs and probabilities are both unknown."
In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining,
(2001), pp. 204-213.

41. L. Mena and J. A. Gonzalez. "Symbolic one-class learning
from imbalanced datasets: application in medical
diagnosis." International Journal on Artificial Intelligence
Tools 18, no. 02 (2009), pp. 273-309.

42. D. M. Tax, “One-class classification”. PhD thesis, Delft
University of Technology, 2001.

43. B. X. Wang and N. Japkowicz. "Boosting support vector
machines for imbalanced data sets." Knowledge and
Information Systems 25, no. 1 (2010), pp. 1-20.

44. C. Chen, A. Liaw and L. Breiman. "Using random forest
to learn imbalanced data." University of California,
Berkeley (2004).

45. C. Elkans. "The foundations of cost-sensitive learning." In
International joint conference on artificial intelligence,
vol. 17, no. 1, pp. 973-978. LAWRENCE ERLBAUM
ASSOCIATES LTD, 2001.

46. K. M. Ting. "An instance-weighting method to induce
cost-sensitive trees." Knowledge and Data Engineering,
IEEE Transactions on 14, no. 3 (2002), pp. 659-665.

47. B. Zadrozny, J. Langford and N. Abe. "Cost-sensitive
learning by cost-proportionate example weighting." In
Data Mining, 2003. ICDM 2003. Third IEEE International
Conference on, pp. 435-442. IEEE, 2003.

48. J. M. örg. "Classifier Learning for Imbalanced Data with
Varying Misclassification Costs." (2006).

49. R. Akbani, S. Kwek and N. Japkowicz. "Applying support
vector machines to imbalanced datasets." In Machine
Learning: ECML 2004, pp. 39-50. Springer Berlin
Heidelberg, 2004.

50. X. Yang, Q. Song, and Y. Wang. "A weighted support
vector machine for data classification." International
Journal of Pattern Recognition and Artificial Intelligence
21, no. 05 (2007), pp. 961-976.

51. D. Tomar, S. Singhal, and S. Agarwal. "Weighted Least
Square Twin Support Vector Machine for Imbalanced
Dataset." International Journal of Database Theory &
Application 7, no. 2 (2014).

52. Z. H. Zhou and X. Y. Liu. "Training cost-sensitive neural
networks with methods addressing the class imbalance
problem." Knowledge and Data Engineering, IEEE
Transactions on 18, no. 1 (2006), pp. 63-77.

53. X.Y. Liu and Z. H. Zhou. "The influence of class
imbalance on cost-sensitive learning: An empirical study."
In Data Mining, 2006. ICDM'06. Sixth International
Conference on, pp. 970-974. IEEE, 2006.

54. K. McCarthy, B. Zabar, and G. Weiss. "Does cost-
sensitive learning beat sampling for classifying rare
classes?." In Proceedings of the 1st international workshop
on Utility-based data mining, pp. 69-77. ACM, 2005.

55. M.A. Maloof. "Learning when data sets are imbalanced
and when costs are unequal and unknown." In ICML-2003
workshop on learning from imbalanced data sets II, vol. 2,
(2003), pp. 2-1.

56. L. Breiman, J. Friedman, C. J. Stone and R. A. Olshen.
Classification and regression trees. CRC press, 1984.

57. C. Drummond and R. C. Holte. "Exploiting the cost (in)
sensitivity of decision tree splitting criteria." In ICML,
(2000), pp. 239-246.

58. M. Kukar and I. Kononenko. "Cost-Sensitive Learning
with Neural Networks." In ECAI, (1998), pp. 445-449.

59. W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. "AdaCost:
misclassification cost-sensitive boosting." In ICML,
(1999), pp. 97-105.

60. P. Domingos and M. Pazzani. "Beyond independence:
Conditions for the optimality of the simple bayesian classi
er." In Proc. 13th Intl. Conf. Machine Learning, (1996),
pp. 105-112.

61. G. I. Webb and M. J. Pazzani. "Adjusted probability naive
Bayesian induction." In Advanced Topics in Artificial
Intelligence, Springer Berlin Heidelberg, (1998), pp. 285-
295.

62. R. Kohavi and D. H. Wolpert. "Bias plus variance
decomposition for zero-one loss functions." In ICML,
(1996), pp. 275-283.

63. J. Gama. "Iterative bayes." Theoretical Computer Science
292, no. 2 (2003), pp. 417-430.

64. G. Fumera and F. Roli. "Support vector machines with
embedded reject option." In Pattern Recognition with
Support Vector Machines, Springer Berlin Heidelberg,
(2002), pp. 68-82.

65. J.C. Platt. "Fast training of support vector machines using
sequential minimal optimization." In Advances in kernel
methods, MIT Press, (1999), pp. 185-208.

66. J.Y. Kwok. "Moderating the outputs of support vector
machine classifiers." Neural Networks, IEEE Transactions
on 10, no. 5 (1999), pp. 1018-1031.

67. F.F.Navarro, C. H. Martínez, and P. A. Gutiérrez. "A
dynamic over-sampling procedure based on sensitivity for
multi-class problems." Pattern Recognition 44, no. 8
(2011), pp.1821-1833.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

777

Divya Tomar and Sonali Agarwal

68. Z. H. Zhou and X.Y. Liu. "ON MULTI-CLASS COST-

SENSITIVE LEARNING." Computational Intelligence
26, no. 3 (2010), pp. 232-257.

69. A. Tan, D. Gilbert and Y. Deville. "Multi-class protein-
fold classification using a new ensemble machine learning
approach." (2003).

70. X.M. Zhao, X. Li, L. Chen and K. Aihara. "Protein
classification with imbalanced data." Proteins: Structure,
function, and bioinformatics 70, no. 4 (2008),pp. 1125-
1132.

71. K. Chen, B. L. Lu and J. T. Kwok. "Efficient classification
of multi-label and imbalanced data using min-max
modular classifiers." In Neural Networks, 2006. IJCNN'06.
International Joint Conference on, IEEE, (2006), pp. 1770-
1775.

72. T. W. Liao. "Classification of weld flaws with imbalanced
class data." Expert Systems with Applications 35, no. 3
(2008), pp. 1041-1052.

73. A. Fernández, M. JD Jesus, and F. Herrera. "Multi-class
imbalanced data-sets with linguistic fuzzy rule based
classification systems based on pairwise learning." In
Computational Intelligence for Knowledge-Based Systems
Design, Springer Berlin Heidelberg, (2010), pp. 89-98.

74. P. Domingos. "Metacost: A general method for making
classifiers cost-sensitive." In Proceedings of the fifth ACM
SIGKDD international conference on Knowledge
discovery and data mining, (1999), pp. 155-164.

75. Y. Sun, M. S. Kamel and Y. Wang. "Boosting for
Learning Multiple Classes with Imbalanced Class
Distribution." In ICDM, vol. 6, (2006), pp. 592-602.

76. Jayadeva, R. Khemchandani, S. Chandra, Twin Support
Vector Machine for pattern classification. IEEE Trans
Pattern Anal Mach Intell, 29(5), (2007), pp.905–910.

77. C. Cortes and V. Vapnik. "Support-vector networks."
Machine learning 20, no. 3, (1995), pp.273-297.

78. OL Mangasarian, EW Wild, “Multisurface proximal
support vector classification via generalized eigenvalues”.
IEEE Trans Pattern Anal Mach Intell, 28(1), 2006, pp.69–
74.

79. M. A. Kumar and M. Gopal, “Least squares twin support
vector machines for pattern classification”, Expert Systems
with Applications 36, (2009), pp. 7535–7543.

80. J. Alcalá-Fdez, A. Fernandez, J. Luengo, J. Derrac, S.
García, L.
Sánchez and F. Herrera. KEEL Data-Mining Software
Tool: Data Set Repository,
Integration of Algorithms and Experimental Analysis
Framework. Journal of
Multiple-Valued Logic and Soft Computing 17:2-3,
(2011), 255-287.

81. Z. X. Yang, Y.H. Shao and X.S.Zhang. "Multiple birth
support vector machine for multi-class classification."
Neural Computing and Applications 22, no. 1, 2013, pp.
153-161.

82. D.Sheskin, Handbook of Parametric and Nonparametric
Statistical Procedures, second ed., Chapman & Hall, CRC
2006.

83. M. Friedman. "A comparison of alternative tests of
significance for the problem of m rankings." The Annals of
Mathematical Statistics 11, no. 1 (1940), pp. 86-92.

84. P. Nemenyi. Distribution-free multiple comparisons. Ph.D.
Thesis. Princeton University, 1963.

85. S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
"Benchmarking classification models for software defect
prediction: A proposed framework and novel findings."
Software Engineering, IEEE Transactions on 34, no. 4
(2008), pp. 485-496.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

778

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

