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Abstract

Currently, researches on content based image copy detection mainly focus on robust feature extrac-
tion.However, most of existing approaches use only a single feature to represent an image for copy
detection, which is often insufficient to characterize the image content. Besides, with the exponential
growth of online images, it’s urgent to explore a way of tackling the problem of large scale. In this paper,
we propose a feature fusion based hashing method which effectively utilize the correlation between two
feature models and efficiently accomplish large scale image copy detection. To accurately map images
into the Hamming space, our hashing method not only preserves the local structure of individual feature
but also globally consider the local structures for all the features to learn a group of hash functions. The
experiment results show that the proposed method outperforms the state-of-the-art techniques in both
accuracy and efficiency.

Keywords: Content Based Copy Detection, Feature Fusion, Kernel Canonical Correlation Analysis,
Neighborhood Structure Preserving Hashing

1. Introduction

Since software for editing digital content is easily
accessible, digital images may subject to differen-
t kinds of attack like scale change, cropping, res-
olution or contrast change, etc., yielding differen-
t image copies preserving the main semantic con-
tent of the original image, causing infringements to
the copyright of original works. As a result, copy-

right protection has become an urgent problem to
be solved. To satisfy the necessity of protecting the
copyright of some digital images, content based im-
age copy detection is proposed, which performs the
detection by processing content of raw multimedia,
ignoring partial data and avoiding embedding digital
watermarks into the original works and hence is an
effective way to trace unmarked content after being
distributed.
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Traditional copy detection(CBCD) always ex-
tract only one single feature to represent an im-
age, which is always insufficient to characterize the
content. Simultaneously utilizing multiple features
which are complementation to each other is intu-
itively helpful for image representation. For exam-
ple, local feature is less robust to the changes in
cropping and global feature is sensitive to changes
in contrast, brightness, scale, rotation, and so on. It
is difficult, if not impossible, to find a single visu-
al feature which is robust to all types of variations.
Therefore, it is particularly important to exploiting
multiple features for CBCD.

Apart from that, since current image copy de-
tection always involves large scale of images, even
globe feature results in large size of feature data, let
alone local feature which contains much more in-
formation and requires larger payload size on both
computation cost and storage cost. In such scenari-
o, constructing efficient indexing structures to facil-
itate fast similarity search over large scale dataset-
s is also important for online copy detection. Re-
searchers has introduced hashing into the field of
content based image copy detection, but existing al-
gorithms still have several drawbacks like sematic
loss, coding efficiency.

In this paper, we propose a feature fusion based
hashing method that is able to effectively maximize
the correlation between two feature models and ef-
ficiently accomplish large scale image copy detec-
tion. The main idea are as follows:(1)adopts Ker-
nel Canonical Correlation Analysis(KCCA) to max-
imize the correlation between two kind of features;
(2)adopts machine learning to construct an objective
function and minimize it to generate neighborhood
structure preserving hashing(NSPH) and apply cor-
responding hash function to the two features. The
remainder of this paper is organize as follows. In
section 2, we review the state-of-the-art of feature
fusion and hashing. In section 3, We present the fea-
ture fusion algorithm and then construct an image
copy detection framework. And then, in section 4,
extensive experiments are conducted to demonstrate
the effectiveness and efficiency of the proposed al-
gorithm. Finally, we draw a conclusion in section
5.

2. Related Work

2.1. Feature Fusion

Employing multiple features for multimedia appli-
cations aims to explore the way of fusing multiple
futures derived from the same object. Typically, we
can classify the current fusion methods into two cat-
egories according to when the features are fused.

One category combines the different search
result-lists derived from different features, which are
called late fusion. In1, D. F. Hsu etc. proposed Com-
binatorial Fusion Analysis (CFA) to fuse the rank
lists of several score derived from calculating the s-
tatistic information of the original feature represen-
tation. Similarly, D. R. Kisku etc.2 computed the
matching scores of both local area feature (nose and
mouth) and globe feature (whole face) and used the
Dempster-Shafer Theory to determine whether the
query face image belongs to a person or not. In 3,
a voting procedure is used to get final classification
result based on the results of nearest neighbor classi-
fiers applied to each module. The above late fusion
strategies did not consider the individual character
of different feature models, especially the inner cor-
relation between them, making them not adequate
for realistic application.

The other category integrates the features and
their correlations at stage of generating features for
search, which is called early fusion. X. Wan4 con-
structed Feature Interaction Graph (FIG), in which
every feature is considered as a node and nodes are
linked with edges which represent the Intra-type cor-
relation between features of the same model and the
Inter-type correlation between features of different
models. S. Gundimada5 tried to linearly construct a
cost function in the form of weighted sum, and mini-
mized it to get the final feature representation which
is relatively similar with the inner structures of both
two feature models.

2.2. Hashing

Hashing is a technique that generates compact hash
code from the feature data to represent the main con-
tents, and therefore can be used for image copy de-
tection.Early hashing methods like LSH15, Multi-
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probe LSH16, Kernelized LSH17 have the bottleneck
of large space cost. To make the hash code more ef-
ficient and accurate, a few data-aware hashing meth-
ods have been proposed by introducing the machine
learning tricks into the field of hashing to enhance
the effectiveness of hash codes.

Tang etc.6 develop a global method using non-
negative matrix factorization (NMF), which first
convert image into a fixed-sized pixel array and then
generate secondary image by rearranging pixels and
applying NMF to produce a feature-bearing hash
code, after that, the fingerprint is coarsely quantized
into binary string and scrambled to generate the im-
age fingerprint.

Similarity Sensitive Coding (SSC)10 and Forgiv-
ing Hashing (FgH)11 adopts boosting approach, they
first train AdaBoost classifiers with similar pairs of
items as positive examples (and also non-similar
pairs of items as negative examples in SCC), and
then take the output of all (decision stump) weak
learners on a given document as its binary code.

In addition, spectral hashing (SpH)12 and self-
taught hashing (STH)13 are proposed and are consid-
ered as the state-of-the-art works14. However, these
two methods both suffer overfitting problem since
the operations of generating hash codes for traing
data and hash function for test data are independent-
ly handled, which will lead to poor generalization
ability.

On the whole, though hashing based method is
considered as the effective approach to approximate
nearest neighbor search applications like content
based copy detection, semantic loss issue remains
the big challenge in the area of hashing. Motivated
by this, we propose a new machine learning based
hashing algorithm and optimize it with future fusion
to achieve superior semantic preservation.

3. Feature Fusion Hashing for Image Copy
Detection

3.1. Framework of Image Copy Detection

We propose an image copy detection framework
illustrated in Figure 1. It is composed of two
stages called offline stage and online stage, the

key point of which is to accomplish both cor-
relation maximization and similarity preservation.
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Fig. 1. proposed Framework for Image Copy Detection.
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In offline stage, we first extract two kind of fea-
tures derived from the same images, which are re-
spectively denoted by X = [x1,x2, . . . ,xn] ∈ R

n×p1

and Y = [y1,y2, . . . ,yn] ∈ R
n×p2 (n is the number of

training images, p1 and p2 are the dimensionality of
the two features respectively). Then the features are
projected into two subspaces using Kernel Canoni-
cal Correlation Analysis, obtaining the correlation-
maximized feature representations matrices, which
are respectively denoted by U = [u1,u2, . . . ,un] ∈
R

n×p and V = [v1,v2, . . . ,vn]∈R
n×p (p is the dimen-

sionality of the correlation-maximized features), and
get two corresponding mapping matrices α ∈ R

n×p

and β ∈ R
n×p. After that, the third step map-

s the features into binary codes denoted by H =
[h1,h2, . . . ,hn]

T ∈ {1,−1}n×p (c is the length of the
hash codes), which meets the requirements of simi-
larity preservation.

In online stage, for a query image, features xq

and yq are extracted through the same methods in the
online stage. Then the features are projected into the
same subspaces using the two transform matrices α
and β learned in the offline stage and get correlation-
maximized features unew and vnew. Finally, unew and
vnew are mapped into binary code through the same
method of the offline stage.

3.2. Correlation Maximization

Canonical correlation Analysis (CCA) 7 is a method
of maximizing the correlating linear relationships
between two multidimensional variables, which can
be applied in information based tasks and in our nat-
ural selection. It can be seen as using two views
of the same object to extract two similar represen-
tations, making it feasible to fuse two features and
preserve as much semantic information as possible,
the ideal case of which is the two result representa-
tions are totally the same.

In an attempt to increase the flexibility of the
feature selection, kernelization of CCA (KCCA) is
proposed to overcome the limitation of CCA, which
maps the hypotheses to a higher-dimensional feature
space and brings in improvement to the results.

Given two matrices X and Y , we define a new co-
ordinate for Y by choosing a mapping direction wx

and projecting X onto that direction. Similarly, we

choose a mapping direction wy for Y . Then we get
new matrices U and V :

U = wx
T X

V = wy
TY

. (1)

To maximize the correlation between X and Y , we
need to choose proper wx and wy to maximize the
Pearson’s Correlation Coefficient:

ρ =
cov(U,V )

σUσV
=

wx
TCX Xwy√

wx
TCX Xwxwy

TCYY wy
.

(2)

Using the definition of the covariance matrix, we can
rewrite the covariance matrix C using the data ma-
trices (of vectors) X and Y , which have the sample
vector as rows, we obtain:

CXX = XT X

CXY = XTY

CYY = Y TY

. (3)

And the mapping directions can be rewritten as the
projection of the data onto two direction α and β :

wx = XT α
wy = Y T β

. (4)

Substituting Eq.(3) and(4) into Eq.(2) we get:

ρ =
αT XXTYY T β√

αT XXT XXT αβ TYY T β
. (5)

Let KX = XXT and KY = YY T be the kernel matri-
ces corresponding to the two features. We get the
transformation of Eq.(5):

ρ =
αT KXKY β√

αT KX
2αβ T KY

T β
. (6)

The above maximization problem can be trans-
formed to be a optimization problem:

argmaxαT KXKY β
s.t. αT KX

2α = 1

β T KY
T β = 1

. (7)

By solving the corresponding Lagrangian problem
of Eq.(7), the optimization problem can be solved by
calculating a generalized eigenproblem to get wx,wy

and corresponding U,V .
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3.3. Neighborhood Structure Preserving
Hashing(NSPH)

To achieve fast similarity search, hashing is always
used for indexing. A good semantic hashing should
ensure the similarity preservation to guarantee its ef-
fectiveness, which means that semantically similar
feature data should be mapped into similar codes in
hamming space and vice verse. Here we construct
an objective function and optimize it to achieve the
similarity preservation.

Given a feature matrix Z = [z1,z2, . . . ,zn] ∈R
n×p

(n is the number of training images, p is the dimen-
sionality the feature), we want to get hash codes de-
noted by H = [h1,h2, . . . ,hc]

T ∈ {1,−1}n×c (c is the
length of the hash codes). To exploit the local sim-
ilarity structure of a feature, we construct a n× n
similarity matrix S as

Si j =

{
1 , if zi ∈ Nk(z j)orz j ∈ Nk(zi)

0 ,otherwise
. (8)

where Nk(z) represents the set of k-nearest-neighbor
of feature vector z.

The Hamming distance between two binary
codes hi and hj (corresponding to features zi and z j)
is given by the number of bits that are different be-
tween them. To ensure the similarity preservation,
we seek to minimize the weighted average Ham-
ming distance which represents the semantic loss

n

∑
i=1

n

∑
j=1

Si j

∥∥hi −hj

∥∥2
. (9)

For the convenience of implementation for large s-
cale dataset, we need to find a way to transform new
feature data to binary hash code. Here we adopt the
linear transformation as the hash function for sim-
plicity of implementation and optimization, which
is defined as:

hc(xi) = wc
T Zi +bi . (10)

Then we can learn hash mapping matrix W and
bias term b by minimizing the empirical error of
the hash function. Because the constraint H =
[h1,h2, . . . ,hc]

T ∈ {1,−1}n×c makes the objective

function to be an NP-hard problem, we relax that
constraints to make the problem computationally
solvable. After that, we construct a joint frame work
which aims to minimize semantic loss and empirical
error simultaneously. The final objective function
turns out to be:

arg min
n

∑
i, j=1

Si j
∥∥hi −hj

∥∥2

+φ(
∥∥ZTW +1b−H

∥∥2
F + γ ‖W‖2

F)

s.t.YY T = I

. (11)

Where ‖W‖2
F is a regularization function, the con-

straint YY T = I is imposed to avoid trivial solution.
φ and γ are parameters.What should be noted is min-
imizing the empirical error term

∥∥ZTW +1b−H
∥∥2

F
not only give a way to transform new feature data
to binary hash code, but also mean globe informa-
tion on training data, helping prevent the problem of
overfitting and make the learning more robust.

To get the an optimal solution of the objective
function, we need to first minimize the objective
function with respect to W and b. Set the derivative
of Eq. (11) with respect to b to zero, we have

1T (ZT w+1b−H) = 0

⇒ b =
1
n
(1T H −1T ZTW )

. (12)

Set the derivative of Eq. (11) with respect to W
to zero, we have

Z(ZTW +1b−H)+ γW = 0 . (13)

Using the obtained result of Eq. (12), we transform
Eq. (13) to be as follows.

ZZTW +Z1(
1
n
(1T H −1T ZTW ))−XH + γW = 0

⇒W = (ZAZT + γI)−1ZAH
.

(14)

where A = I − 1
n11T , it is obvious that A = AT and
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A = AAT . So we get

ZTW +1b−H

= ZTW +1
1
n
(1T H −1T ZTW )−H

= AZTW −AH

= AZT (ZAZT + γI
−1
)ZAH −AH

= (AZT (ZAZT + γI
−1
)ZA−A)H

. (15)

Let B = (ZAZT + γI)−1, it is obvious that B = BT ,
so W = BZAH and ZTW + 1b −H = (AZT BZA−
A)H ,then we transform the last part of the objective
function as follows by applying the theory of trace
optimization8:∥∥ZTW +1b−H

∥∥2
F + γ ‖W‖2

F

= trHT (AZT BZA−A)T(AZT BZA−A)H+

γtr(W TW )

= trHT (AZT BZAAZTBZA−2AZTBZA+A)H+

γtr(HT AZT BBZAH)

= trHT (γAZT BBZA+AZTBZAZTBZA

−2AZT BZA+A)H

= trHT (AZT B(γI+ZAZT)BZA

−2AZT BZA+A)H

= trHT (AZT BB−1BZA−2AZTBZA+A)H

= trHT (AZT BZA−2AZTBZA+A)H

= trHT (A−AZTBZA)H

= trHTCH

.

(16)

Where C = A−AZT BZA. Apart from that, the first
part of the objective function can be transformed to
be following formula:

n

∑
i, j=1

Si j

∥∥hi −hj

∥∥2
= tr(HT (N −S)H) . (17)

Where Nii = ∑n
j=1 Si j) and other elements are zero.

Combine the Eq. (16) and Eq. (17), the objective

function turn out to be:

arg min
YY T=I

tr(HT (N −S+φC)H)
. (18)

Then H can be obtained by the c eigenvectors of
(L+ φB) corresponding to the c smallest eigenval-
ues. Once we got the hash code H of the correlation-
maximized two features U and V in continuous do-
main, we concatenate and binarize them to get the
feature fusion hash code Ĥ.

4. Experiments

4.1. Experiment Setting

Our training image dataset consists of 46,735
images, where 1000 images come from the
COREL 1000 image database∗, 15,128 Images are
from the CEA CLIC database†, 30,607 images come
from the Caltech 256 database‡. All the three im-
age databases are commonly used in the research of
image processing, image retrieval and computer vi-
sion, and the last image database is used to test our
method on real world images.

We randomly select 1000 images from the image
dataset to be query images, and the rest are treated
as non-copies. Using Stirmark, every query im-
age is modified to generate 100 copies in the way
of9. After that, the 100,000 copies are inserted into
the image dataset for query image to search their
copy.Fig. 2 shows some sample images and corre-
sponding image copies. The list of alterations of all
attacks is as follows:

1. SPA (15): signal processing attacks, including
colorizing (3), changing saturation(3), chang-
ing intensity(3), median filtering(3),Gaussian
filtering, sharpening, and frequency mode
Laplacian removal(FMLR).

2. JPEG (12): JPEG compression with quality
factors ranging from 90% to 10%.

∗http://wang.ist.psu.edu/docs/related.shtml
†http://www.irit.fr/RFIEC/CLIC/CLIC kernel/CLIC kernel.zip
‡http://vision.caltech.edu/Image Datasets/Caltech256/
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Figure 2: Sample images and corresponding sample image copies.

3. GLGT (3): general linear geometric transfor-
m.

4. CAR (7): change of the aspect ratio.

5. LR (5): line removal.

6. RC (16): rotation + cropping.

7. Scaling (5): scaling with factors ranging from
0.5 to 2.0.

8. Cropping (9): cropping the image by a per-
centage ranging from 1% to 75%.

9. Shearing (6): apply affine warp on both x- and
y axes.

10. RRS (16): rotation + rescaling.

11. RB (1): random bending.

12. Flipping (1).

13. Seam carving (4).

4.2. Performance of the Proposed Method

Before the experiment, we need to define some e-
quation for evaluation of the performance. Let RP be

the number of true copies correctly assigned to the
positive class, FP is the number of false copies incor-
rectly assigned to the positive class, and RN the num-
ber of true copies incorrectly rejected by the positive
class. The precision and recall are defined as:

precision =
RP

RP +FP
,recall =

RP

RP+RN
. (19)

Then F1-measure, also called F1-score, is the har-
monic mean of precision and recall:

F1 −measure = 2 ·
precision · recall

precision+ recall
. (20)

To evaluate the performance of the proposed ap-
proach, several experiments are done. HSV and
Local Binary Pattern(LBP) of all the images are
extracted, which are globe feature and local fea-
ture respectively and can be considered as com-
plementation to each other.To exhibit the perfor-
mance of the proposed approach, we conduct a se-
ries of experiments among our method, STH, and
SpH to test the accuracy, efficiency and effective-
ness of our method. The parameters of our proposed
method are set as follows: (1) k is set to be 5 when
construct the similarity matrix; (2) φ , γ are tuned
from 10−6

,10−3
,100

,10+3
,10+6, and finally set as

100
,10−5 respectively.
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We first evaluate the nearest neighbor search per-
formance on GIST1M, which contains 1 million
384-d GIST features. Following the search strate-
gy of Hamming ranking commonly adopted in many
hashing methods, we evaluate the recall at the first
N Hamming neighbors, the performance of which is
shown in fig. 3. Our proposed method outperforms
all other methods.
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Fig. 3. Nearest neibhor search performance of hashing
methods on GIST1M.

After that, we explore the influences of code
length on the retrieval performance by tuning the
code length c from 4 to 80. Fig.4 shows the compar-
ison results among NSPH(our method), STH, and
SpH on HSV feature. Before reaching the peak, the
F1-measure of proposed method is higher than SpH
and STH. After reaching the peak respectively, the
F1-measure of our method and STH decrease grad-
ually while SpH hold its superiority. However, s-
ince long binary codes demand more memory and
computation, the performance of long code length
is not that important, so we set the code length to
be 20 for further comparison experiment, and hence
the code length of feature fusion hashing is 40.
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Fig. 4. F1-measure of the comparative algorithm under var-
ious code length.

Fig.5 shows the accuracy comparison results a-
mong NSPH(our method), STH, and SpH on HSV
feature in the form of Precision-Recall curve. It’s
obvious that NSPH outperforms SpH and STH,
which mainly derives from that NSPH effectively
decrease semantic loss in the process of hashing.
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Fig. 5. Precision-Recall curve of the comparative hashing
algorithm.

Fig.6 shows the comparison results among
feature fusion+NSPH(FF+NSPH), HSV+NSPH,

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

732



Feature Fusion based Hashing for Large Scale Image Copy Detection

LBP+NSPH, in terms of precision-recall curves for
query images. It’s obvious that feature fusion hash-
ing outperforms single feature hashing, which main-
ly comes from that correlation maximization effec-
tively fuse features of two complementary modality.
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Fig. 6. Precision-Recall curve of feature fusion and single
feature.

Table 1. The time cost(ms) of the two method.

Method Time
Original HSV 2130.45
FF+NSPH 36.73
HSV+NSPH 16.19
LBP+NSPH 15.82
HSV+STH 19.35
HSV+SpH 13.98

Table 1 shows average time consumption for
a query to search its copies in our image
dataset(including both the time of getting hash code
and search). Algorithms are run by Matlab on a
Windows server with a 2.40 GHz quad-core In-
tel Xeon CPU and 12 GB of memory. Obviously,
our method(FF+NSPH) takes longer time than oth-
er hashing methods, but is much more faster than
Original HSV data. The phenomenon manly de-
rives from the difference between original feature
data and hash code. For hash code, calculating pair-
wise similarity only need to operate a XOR on the
two hash codes and count the number of non-zero

bits. However, for original feature data, we need
to calculate the Euclidean distance between the two
feature data, which is obviously much more time-
consuming than the former. Besides, the time cost
of those hashing methods are almost the same.

5. CONCLUSIONS AND FUTUREWORK

In this paper we propose a feature fusion based hash-
ing for image copy detection. We perform exten-
sive tests with dataset and our method shows good
performance in terms of not only precision and re-
call but also efficiency. Future work will include
apply another image features to see whether our
method shows better performance, and further in-
vestigating the way of correlation maximization and
neighborhood structure preservation that may im-
prove CBCD in aspect of precision and recall, scal-
ability, and so on.
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