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Abstract

This paper mainly provides one new nature inspired Energy Conversation Optimization (ECO) method to
search for the optimal sensor position of sensor network in the typical tunnels, fully covering the tunnel and
dynamically locating the high-speed train in the tunnel. Firstly, one objective of this study is to briefly intro-
duce the framework of transmitting the sensor’s data in the railway network, the objectives and the constraints
of the optimal coverage problem. Secondly, another objective of this paper is to provide some fundamental
assumptions and concepts of ECO algorithm, together with the corresponding convergence analysis and the
main steps of ECO algorithm. Additionally, the ECO algorithm is mainly utilized to address the optimal
tunnel coverage problem. Numerical results mainly concentrate on the effectiveness of ECO algorithm com-
paring with the PSO algorithm and deal with four typical optimal coverage problems in the presence of the
line tunnel, the indirect line tunnel and the complicated tunnels, etc. Finally, the ECO algorithm can offer
the guideline for the smallest number of sensors and the corresponding positions in the given tunnel, fully
covering the whole tunnel and providing the location of high-speed trains.

Keywords: Energy conversation optimization, optimal tunnel coverage problem, sensor network, railway

transportation

1. Introduction

Comparing with other transportation methods, rail-
way transportation has the advantages such as the
huge transportation capacity, the high speed, the low
transportation cost, the high safety and the low pol-
lution, etc. Therefore, the China railway transporta-
tion plays a great role on the whole transportation
in the presence of large distance for heavy lorry and
small distance within 4 hours to 6 hours for the peo-
ple. In the field of the modern railway transporta-
tion, the train location problem, which can be con-
sidered as one of the most interesting and important

topics, is helpful for controlling the train’s speed, re-
ducing the interval time between two adjacent trains
and improving the efficiency of railway transporta-
tion, etc. More importantly, it is also important to
tackle with the train location problem under a vari-
ety of typical railways.

Recently, most of the currently and efficiently
existing methods of train location [1, 2] on the ba-
sis of global position system (GPS) system and Bei-
dou system (BDS) can provide the position service
with high precision, finally leading to the huge trans-
portation capacity. However, the GPS system or the
BDS system probably cannot be applied in the tun-
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nels and the valley in the mountainous scenarios,
since the corresponding high-speed trains cannot re-
ceive and respond to the signal from the satellite sta-
tions. In order to handle with the above-mentioned
problem, we resort the sensor network or WiFi net-
work to fully cover the whole tunnel, locating the
train in the mountainous tunnel and dynamically
controlling the train’s speed. To find the optimal po-
sitions of sensors, swarm optimization methods pos-
sibly can be utilized to overcome this problem.

The original idea of those swarm optimization
methods mainly mimics the mechanism in the na-
ture or simulates the behavior of diverse swarm ani-
mals. More specifically, genetic algorithm (GA) [3],
which is firstly formally introduced by John Holland
in the 1970s, simulates the process of natural evolu-
tion and survival of the fittest by selection operator,
crossover operator and mutation operator, etc. Parti-
cle swarm optimization (PSO) [4, 5], originally de-
veloped by Kennedy and Ebhert in 1995, simulates
the movement of searching for food by the birds
and the fish. In order to describe the idea of PSO
algorithm, they introduce several new concepts in-
cluding the particle, the particle’s best previous po-
sition and the swarm’s best previous position, etc.
Ant colony optimization (ACO) [6], initially devel-
oped by Marco Dorigo in 1992, is inspired by swarm
ants’ behavior of seeking the path from the colony
to the source of food and laying down pheromone
trails. Simulated annealing (SA) [7] is initially de-
scribed by Kirkpatrick in 1983 and the correspond-
ing inspiration comes from the annealing of metallic
molecule from high temperature to low temperature.
Furthermore, there are also several novel optimiza-
tion methods in recent years, such as firefly algo-
rithm [8], cultural algorithms [9], Harmony search,
intelligent water drops [10], charged system search
[11], krill herd algorithm [12], artificial bee colony
[13] and cuckoo search [14], etc.

In this contribution, one new Energy Conversa-
tion Optimization (ECO) method, which is firstly in-
spired by the law of energy conversation and parti-
cle swarm optimization [15, 16, 17, 18], is utilized
to search for the optimal position of each sensor to
cover the whole tunnel and provide the service of lo-
cating the train’s position. Motivated by the law of

energy conversation in the nature and other existing
swarm optimization methods [19, 20, 21, 22, 23],
several contributions in this paper can be highlighted
as follows.

« A new nature-inspired optimization method, on
the basis of particle swarm optimization and the
law of energy conversation, is firstly developed
to optimize the smallest number of sensors and
search for the optimal position of each sensor.

« It is of importance to describe and model the ob-
jective function and the corresponding constraint
of the optimal tunnel coverage problem.

« The convergence analysis of three mathematical
models on ECO algorithm is helpful for parame-
ter selection and the tradeoff between exploration
ability and exploitation ability.

« Concerning the different typical tunnels in the
mountainous scenarios, the ECO algorithm is em-
ployed to handle with the tunnel coverage prob-
lem, providing the optimal position of each sen-
SOr.

o The corresponding ECO method can be also ap-
plied for locating the people or the car in the real-
istic tunnel.

The remainder of this paper is organized as fol-
lows. Section 2 gives the description of the optimal
converge tunnel problem in the presence of the sin-
gle tunnel and the complicated tunnels. In order to
deeply study the ECO algorithm, the new concepts,
together with the corresponding convergence anal-
ysis, originate from the PSO algorithm and the law
of energy conservation in Section 3. To tackle with
optimal coverage tunnel problem by the ECO algo-
rithm, the main steps of ECO algorithm are provided
in Section 4. For the sake of the effectiveness of
ECO algorithm, numerical results highlight that the
ECO algorithm has the advantage over the PSO al-
gorithm in Section 5. The ECO algorithm can search
for the optimal position of each sensor in four com-
plicated tunnels in Section 6. Section 7 concludes
the important results and the future works of the op-
timal tunnel problem in the area of China’s modern
railway transportation.
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2. Optimal Coverage Tunnel Problem

2.1. Background

With the development of high-speed trains in China,
the goal of modern railway transportation is to firstly
ensure the safety of the trains, later increase the
speed of the trains and increase the number of mov-
ing trains in one railway track. In order to achieve
the aforementioned objectives, it is of necessity to
utilize Beidou system (BDS) to locate the time-
varying train position with high precision during the
whole moving process, in addition, the Beidou sys-
tem can be widely and successfully applied for the
China’s railway transportation in the future. How-
ever, the Beidou system or the GPS system probably
cannot locate into the high-speed train in the context
of the tunnels in the mountain and the valley in the
mountain, and so on.

The problem of locating the train in the moun-
tainous tunnel plays a great role on the safety and
the efficiency of railway transportation in the pres-
ence of the China’s west, since there exist a large
number of the mountainous tunnels along the rail-
way. For example, the corresponding well-known
tunnels consist of Wugqiaolin tunnel, Dayaoshan tun-
nel and Jundushan tunnel, etc. Particularly, there are
a lot of the mountainous tunnels in the railway from
Cheng Du city to Kun Ming city, from Bao Ji city to
Guang Yuan city and from Xi An city to An Kang
city, etc. Therefore, the dynamical locating of high-
speed train in the mountainous tunnel is one of the
important and interesting topics in the field of the
current and future modern railway transportation.

In order to tackle with this problem, the sen-
sor network can provide the time-varying position
of high-speed train with high precision in the given
tunnel. The framework of transmitting sensor data
is depicted in Fig. 1. Firstly, when the high-speed
train goes into the tunnel and the signal is transmit-
ted between the train and the sensor, providing the
train’s position in the tunnel. Secondly, with the
help of other sensors in the tunnel, the position of
high-speed train is transmitted to the station and data
center via the GSM-R railway network. Thirdly, the
data including the position of each train are greatly
helpful for controlling the speed of those trains in the

railway and optimizing the train’s scheduling table,
in addition, those corresponding data to be obtained
also benefit the three-dimensional visualizing, data
analysis and data mining.

2.2. Objectives and Constraints of Optimal
Coverage Tunnel Problem

In order to deeply analyze the optimal coverage tun-
nel problem, the main task of this subsection is to in-
troduce the description of the fundamental concepts
on optimal coverage tunnel problem, together with
the objectives and the corresponding constraints.
Definition 1 Given the center point Ci(x;,y;) and
the radius R; of the ith sensor, the coverage region
S, which is composed of the discrete points (x,y) in
the two-dimensional space, can be mathematically
defined as
(x—x)’ + (=) <R (1)
In the three dimensional space, the coverage re-
gion S can be mathematically expressed by
x—x)+ -y + -z <R. ()
Definition 2 Given the sensor network with n nodes
and its coverage region S; (1 <i < n), the coverage
region I of sensor network is

r=5,ususS3U---UsS, 3)
where the center point C; denotes (x;,y;,z;) in the
three dimensional space.

Given one whole region Q, the sufficient condi-
tion of the full coverage by one sensor network can
be mathematically expressed by

QcrT. “4)
Definition 3 The optimal coverage problem is to
subject to the condition of (4) and minimize the fol-
lowing equation.

min I'— Q. (®)]
Definition 4 In this paper, two typical tunnels to be
considered are composed of the line tunnel and the
complicated tunnel.
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Figure 1: Framework of transmitting data in the sensor network

Concerning the line tunnel, the optimal tunnel
coverage problem by the sensor network in the pres-
ence of the constraint condition (4) can be mathe-
matically expressed by

n—1

minZ[Ci +R;—(Ciy1 —Ri1)].
i=1

(6)

In the different complicated tunnels, it is so dif-
ficult to set up its mathematical model of the com-
plicated tunnel. In order to handle with this prob-
lem, the complicated tunnel L is composed of several
discrete order points, so the corresponding tunnel L
can be mathematically described by

)

where m denotes the number of discrete points along
the tunnel.

The considered objective function of the optimal
tunnel coverage problem can be mathematically de-

scribed by
m m
max )" fi(x)—min " gi(x)
i=1 i=1

where f;(x) is the number of discrete points only cov-
ered by single sensor, and g;(x) is the number of dis-
crete points simultaneously covered by two sensors
OF more Sensors.

L={(x1,y1),(x2,¥2),(x3,¥3), " , (Xpn, Ym)}

®)

In order to achieve the goal of the optimal cover-
age tunnels including the line tunnel and the compli-
cated tunnel, it is of importance to search for the cen-
ter points of each sensor in sensor network. There-
fore, the task of the following sections is to intro-
duce the new swarm optimization method to find the

optimal center of every sensor, leading to fully and
optimally covering the tunnel.

3. Energy Conversation Optimization

By the inspiration of the law of energy conserva-
tion and several new swarm optimization methods,
this section is mainly to incorporate the original idea
in Physics into swarm optimization in evolutionary
computation to possibly reduce the risk of prema-
ture convergence. Several basic concepts and defi-
nitions, corresponding to the incorporation between
the law of energy conservation and swarm optimiza-
tion, are introduced to deeply understand the essence
and main steps of Energy Conversation Optimiza-
tion (ECO) algorithm.

3.1. Basic Concepts and Definitions in ECO
Algorithm

To better illustrate the ECO algorithm, we firstly in-
troduce the basic assumptions and notations on the
law of energy conversation and evolutionary compu-
tation.
Definition 5 Consider the mass M and the current
velocity v of the solution. Power energy Py of one
solution, mainly depending on its mass and the ve-
locity, is physically defined by the following equa-
tion.
Pr=im2
f= 5 V.
Definition 6 Consider the objective function f and
the tth best position G(t). The height Ah(t+ 1) in the

€))
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ECO algorithm physically denotes the changed ob-
Jective fitness. Taking the minimization problem into
account, the height Ah(t+ 1) is

FGO) = f(G+1) [f(G(+1)) < f(G®)
f(G@+ 1) = f(G(D)

Ah(t+1) = { 0
(10)
where t denotes the number of current generation.

In the context of the maximization problem, the
corresponding height Ah(t+ 1) is

J(Ga+1) - f(G®) [f(G@+1)> f(G®)
f(G(r+ 1) = f(G@)).

Ah(t+1):{ 0
(11)

Therefore, potential energy P, of one solution is
defined as

P.(t) = Mgah(r) (12)

where g, generally setting to 9.8, denotes the gravi-
tational acceleration in Physics.

Lemma 1 Consider the resistance force [ and the
distance s along the trajectory from point A to point
B. As illustrated in Fig. 2, the current velocities at
point A and point B are assumed to be v and v,
respectively. According to the law of energy conver-
sation, current energy at point A, including poten-
tial energy and power energy, is equal to the energy
at point B, including current power energy and the
damping energy. The law of energy conversation can
be mathematically described by

1 1
Mgrh+ —Mv% = —Mv%+fs

> 5 (13)

where the first part and the second part in the left
hand side of (13) denote the potential energy and
power energy at A point, respectively. In addition,
the first part and the second part in the right hand
side of hand side of (13) denote the power energy at
B point and the additional energy, which overcomes
the friction force and the resistance force from point
A to point B, respectively.

Lemma 2 Consider the whole process regarding
energy conversation, the whole energy, including
power energy and potential energy, at the first step
is equal to the energy of resistance force during the
whole evolutionary process when one solution only

searches for the suboptimal optimum. Mathemati-
cally speaking, energy conversion in the whole evo-
lutionary process can be described by

Mghy+ %Mv]% = Mgh, + Zﬁs,- (14)
i=1

where hy and vy denote the initial objective fitness

and the velocity of one solution. And hy (h, < hy)

is the final objective fitness at the last step, while f;

and s; denote the resistance force and the moving

distance at the ith step, respectively.

Ideally speaking, if the solution in ECO algo-
rithm searches for the global optimum, the final ob-
jective fitness hy, equals to 0. That is to say, the equa-
tion (14) can be mathematically rewritten as

1 o0
Mghs+ 5Mv§ = > fist. (15)

i=1

3.2. Two Difficult Problems in Mathematical
Model

In order to incorporate the law of energy conversa-
tion and swarm optimization, it is of importance to
handle with two typical problems which are closely
related to the resistance energy and the conversion
from potential energy to power energy in different
landscapes of objective functions.

Firstly, it is hard to implement the conversation
from one point to another point, since the resistent
force f and the distance s from point A to point B are
difficultly calculated and obtained during the evolu-
tionary process. In order to cope with the above-
mentioned problem, the damping factor « is intro-
duced to overcome the corresponding complex prob-
lem, and the second part in the right hand side of
(13) is considered to be one part of the current power
energy. Hence, the resistance force energy can be
roughly expressed by

12
fs=ax EMV2 (16)
where a (@ >0) is the damping factor of the system.

According to (16), the equation of (13) can be
mathematically rewritten as

1 1
Mgnh+ —Mv% = —Mv%(l + ).

> > a7
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Figure 2: The process from potential energy to power energy

Therefore, the current velocity v, can be mathe-
matically expressed by

2gah+v2
2= l+a

Secondly, in the case of different landscapes and
different ranges of solution space, the height % in
the landscape of some objective functions may be
very high, resulting in large velocity of each solu-
tion. However, the height % in the landscape of other
functions may be very low, resulting in small ve-
locity. To address this complex problem, one factor
B between power energy and potential energy is in-
troduced to ensure that potential energy in different
landscapes can give rise to suitable velocity of each
solution. In order to achieve this goal, the initial po-
tential energy of each solution is equally assumed to
be the maximum power energy, and it can be math-
ematically expressed by

(18)

1
3 MV = BMghma

(19)
where v,,4, and ., are the maximum velocity and
the initial objective fitness in the evolutionary pro-
cess, respectively.

According to (19), the interchanged factor 8
from potential energy to power energy can be math-
ematically calculated by

2

Vmax
= (20)
ﬂ 2ghmax

In terms of (18) and (20), the current velocity v,
at point B can be also rewritten as

2Bgrh+v2
2= l+a

In summary, the damping factor @ in (21) es-
sentially controls the convergence speed of one so-
lution, while another factor § is to ensure that the
ECO algorithm can be adaptively utilized in differ-
ent practical objective functions. The goal of intro-
ducing the law of energy conversation in evolution-
ary process is to increase current velocity of each
solution, possibly getting away from the local opti-
mum.

2n

3.3. Swarm Topology of ECO Algorithn

The topology of all solutions, which essentially con-
trols the speed of spreading the location of global
optimum, plays a great role on high efficiency and
the analysis on swarm behavior. As is well known,
the high connected topology can give rise to large
convergence speed, resulting in low computation
time and premature convergence, while the low con-
nected topology leads to small convergence speed,
leading to too much computational time and high
successful ratio finding good solution. Therefore, it
is of importance to select suitable topology of all so-
lutions in the practical problem. From the perspec-
tive of evolutionary method, swarm topology mainly
plays a great role on the attractor of each solution in
the ECO system.
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Figure 3: The topology of group animals in the nature

Swarm topology in ECO algorithm is mainly in-
spired by the behavior of many group animals in the
nature. Specifically speaking, a kind of group an-
imals do not have the communication with all ani-
mals, however, they merely have connection with its
neighbors [24, 25]. From the graph viewpoint, the
corresponding topology is depicted in Fig. 3.

Compared with other evolutionary algorithms,
ECO algorithm has the advantages over the math-
ematical analysis from the perspective of swarm
topology. In order to conduct mathematical analy-
sis of ECO algorithm, Laplacian matrix and the cor-
responding eigenvalue are introduced to analyze the
connected density and the connectivity, respectively.
In addition, the connected density mainly plays a
great role on the speed of spreading the global opti-
mum and the corresponding convergence rate, while
the connectivity chiefly determines whether all solu-
tions can converge into the global optimum or sub-
optimal optimum or not.

In Graph, there are two typical sets which are
composed of the vertex set N and the edge set E.
The vertex set N consists of n nodes, such as {N,
Ny, ---, N,}, and the edge set E={e;;, i=1, 2, ---, n;
j=1, 2, ---, n} denotes the topology of the swarm. In
addition, the element ¢;; in the edge set E is defined

as
eijz{

where N; and N; denote the starting node and the
ending node, respectively.

According to swarm topology together with the
corresponding edge set, the adjacency matrix E can

0 N; cannot connect with N ;

1 Otherwise (22)

be mathematically expressed by

el e e en
e exn e e

E=| ez exn e33 €3, (23)
€nl €2 €x3 €nn

nxn

where ¢;; denotes the connected edge between node
N; and node N;.

On the basis of adjacency matrix E, Laplacian
matrix L, which is also called the admittance ma-
trix or Kirchhoff matrix, can be mathematically ex-
pressed as

i ho hs L1y
by by b3 Lo,
L=| 1l L 33 L3, (24)
lnl ln2 ln3 lnn nxn
where the element /;; in Laplacian matrix L is

—e€jj I

lij= . (25)
Z ejj 1=].
j

Furthermore, all eigenvalues of Laplacian matrix
L can be sorted by

0= <A< <4< 4, (26)

where A; denotes the i-th sorted eigenvalue of Lapla-
cian matrix.

According to Laplacian matrix and its eigenval-
ues, several conclusions and remarks can be summa-
rized as
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1. If the graph of one topology is an unconnected
graph, the second smallest eigenvalue A, is
equal to 0. In addition, A> can determine
whether the graph of the topology is the con-
nected graph or not.

2. According to the basic property of Lapla-
cian matrix, Laplacian matrix is positive-
semidefinite. And the first smallest eigenvalue
Ay strictly equals to O and its eigenvector is [1,
1, 1, .-+, 1]. Others eigenvalues in matrix L
are strictly larger than O under the connected
graph.

3. Particularly, the second smallest eigenvalue
Ay can mathematically denote the connected
density of swarm topology.

4. The main diagonal of Laplacian matrix can
express the connected density of swarm topol-

ogy.

In order to achieve the convergence of whole so-
lution, its topology in the ECO algorithm is selected
to be the connected topology, whose second small-
est eigenvalue A is strictly larger than 0. In addition,
the parameter A, physically denotes the speed of in-
terchanging the valuable information of the global
optimum.

3.4. Convergence Analysis for the ECO
Algorithm

In the case of the ECO algorithm, the velocity and
the position of each solution, under the assumption

of y(1) = Qﬁffh, can be mathematically described by
1+y(1) -
Wt+ 1) =\ 220 + ) e Gl - x(0)
+a e
(27)
x(t+ 1) =v(t+1)+x(?) (28)

where ¢; denotes the constant variable and r; denotes
the random variable in [0,1]. Additionally, ey is the
topology of all particles at 7th step.

Assuming ¢ j(f)=c;r je;, the equations of (27) and
(28), can be simply rewritten as

1 n
Wr+1) = 4 I’LZC(;) W+ Y @G (1) - (1))
=1

(29)
(30)

Furthermore, (29) at the (t+1)th step can also be
described by

x(t+1) =v(t+ 1)+ x(2).

1+y(t+1)
l1+a

v(t+2) v(t+ 1)+

n 3D
Zl(pj(["‘ D(Gj(t+1) —x(t+1)).
j=

When every best position G/(#) of the jth solu-
tion is assumed as constant parameter, (31) subtracts
into (29).

v(t+2)—

1+a

n
(VEZD 41— 3 @i+ 1)+
Jj=1 (32)
L2101 = 0.
For simplify, the equation (32) can be also rewrit-
ten as

Vit +2) =L@+ v+ D +u@vEe) =0 (33)
where
Wi+ 1) = ,/% (34)
and
La+ D) =y@+D+1=D g+ 1. (39)

=

In essence, the system (33) of ECO algorithm
is the time-varying second order linear system with
random variables. In order to discuss and analyze
the convergence, one discrete Lyapunov function is
needed to discuss the stability and the convergence
of ECO algorithm.

Assuming y(t+1)=¢(t)v(¢), (33) can be also de-
scribed by

{ v(t+1) = =L(0)v() - y(1) 36)

Y+ 1) =g (0v(@).
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From the perspective of the matrix, it can also be
rewritten as

M@+ 1) =T()M(t) (37)

where

v(r)
M) = 38
(® [ﬂﬁ] (38)
and
@) -1 ]
I = . 39
3.4.1. The Simplest Convergence Analysis of ECO
Algorithm

Theorem 1: Consider the constant transfer matrix
= :; _01 , and time-varying parameters in-

cluding £(¢) and y(¢) are simply considered to be
constant parameters. If and only if those parameters
satisfy the following conditions, the solution can be
stable and converge into one point.

-1<y<1
-l1-y<i<1l+y.
In other words, if and only if the solution con-

verges into one point, those parameters should be
yielded to

(40)

1+ 41)
e +2.

y<a
n
0< X oj<2
=1
Proof In order to ensure the stability and the
convergence of one solution, one discrete Lyapunov
function S(t) should satisfy two following condi-
tions.

{ sl So @
Consider the discrete Lyapunov function as
S(n) = %M(I)TPM(t) (43)
where
n=U-D+1+P)(l-1-v) (44)

and

(1+y*)¢
2y +2+ Yl -2

Firstly, it needs to prove that the symmetric ma-
trix %P is the positive definitive matrix, therefore,
the parameters including ¢ and ¢ should satisfy the
following conditions.

[+ +y+i

P=1" v “43)

1. The first condition can be mathematically de-

scribed by
n=—- D= 1+y)?)>0. (46)

2. The second condition can be mathematically

expressed by
CHytry+l Pty 0
n W=D =1+
(47)

3. Finally, the third condition can be mathemati-
cally written by

(L+y?)¢

1| P +y?+y+1
7 2 +2+y? -2

2l ey >0
48)

In other words, the equation (48) can also be ex-
pressed by

Sl Y DX QY+ 249 =)~

(1+92222] > 0. “9)

For simplify, the equation (48) can also be rewrit-
ten as

%xz(l+¢2)(¢+1+§)(¢+1—§)>0. (50)
As aresult, the equation (50) can imply that
—y-1<l<y+1 (51)
and
v>7-1. 52)
Inserting (52) into (46), we can obtain
v <l (53)
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Also inserting (52) into (47), we can get
-l<y<l1. (54)

According to the condition (41), we can con-
clude that the matrix P is the positive definitive ma-
trix.

Secondly, we also need to prove that AS(?)
is strictly smaller than O according to the above-
mentioned Lyapunov function.

Therefore, AS () = S(¢+ 1) — S (¢) can be mathe-
matically calculated by

AS(H) = %[M(t+ DIPM@+1)- M@ PM(©D). (55)
Hence, AS (¥) can also be rewritten as
AS (1) = %M(z)T(FTPF —P)M(?). (56)

Specifically speaking, it is natural to calculate
['TPT that

FTPFZ[2w3+2w2—w42+§2 {+ oy

{+4y? peytrysl |
(57)
Then, the equation of I'TPI" - P is
Tpr_p—_ -n 0
'PIT-P= [ 0 _n]. (58)

Finally, the equation AS (#) can be calculated by

should be yielded to

-1<y<l1
“l1-y<{<1+y
W= DAL+ D = 1+ )2 L0 = (1 +¢)*]
<+ L@+ 1) =01
(60)

In other words, those parameters, including y, «
n

and ) ¢;, should satisfy
j=1

y<a
n

0< Y ¢;<241Z+2
j=1

l+a
J

1 1 4 1
(Vi -D2 1j—g+2—ng<pj(z+1)][2 = +2
@yl gy(t+1)= 3 (0]
=

n —
-2 e > — ;
j=1 (1+a)? INICOPNI
Jj= Jj=

(61)
Proof Consider one discrete Lyapunov function

as
1) = MO P1(OM(1) (62)

where the symmetric matrix Py (%) is

PRyt g+l (L+¢*)(0)
A+yD0) 2 +2+9L(0) =L@
(63)
On one hand, by using the above-mentioned
method, we need to prove that the symmetric P(¢)
is the positive matrix. In order to achieve this task,
there are two typical conditions to be satisfied

Pi(t) =

1. The first leading minor of symmetric matrix

7 (59) Wyt +1>0. (64)

3.4.2. One Random Convergence Analysis of ECO
Algorithm

Theorem 2: Consider one time-varying ECO sys-
tem, and its transfer matrix I'j(¥) is equal to
[ ()

¥
constant parameter. If and only if one solution
should be converge into one point, those parameters

_01 ] where y(t) is considered to be the

According to the equation (64), we can obtain

w>—1. (65)

2. The second principal minor of symmetric ma-
trix Py(¢) is also strictly larger than O.

a+m |
2+ 24902 =0 |7

Pyt g+l
(L+y2)()
(66)
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In terms of (64) and (66), we also obtain

1<y
{ -1-y <@ <1+y. 67

On the other hand, it needs to prove that AS | (¢) =
S1(t+1)—81(¢), without n(r) > 0, is a negative defi-
nite matrix.

AS1() =M@+ DT Pt + DM@+ 1) - MO Py ()M(7).

(68)
For simplify, the equation (68) can be rewritten
as

AS ()= MO [T+ DTP1(t+ DI+ 1) = P (0)IM(©7).

(69)
Assuming Z1(¢) = T(t + DTPi(t + DIt + 1) —
P1(?), and the matrix AS ((#) can be described by

AS1(H=M (t)TZ 1(HM(1) (70)
where

Z1(t) = - - DI+ 1 =W+ 1)?]
Z1n®) =-W?+ DL+ 1) - (0]
Z1o1(1) = =W+ DILE+ 1) = L(0)]
Zln(t) = - - DIL0* - W+ 1)

(71)

In order to establish stability results, there are
two conditions which are closely related to leading
minor of the first and second order of matrix Z1(z).

Z111(n) <0
Z111(1) Z112(2)
Z11(t) Zlxn(?)

(72)

det(Z1(1)) = ‘ >0

where det() is the operator of getting the determinant
value.

To satisfy the equation (72), those parameters
should satisfy the following conditions.

y<l1
{ =1L+ 1)7 = (1 +y)*)L(@0)* = (1 +¢)°]
<@+ DAL+ D)=L
(73)
Remark 1: According to (67) and (73), those
conditions, considering the parameter i as the con-
stant value, are equivalent to the necessary and suf-
ficient condition (61) of ECO algorithm.

3.4.3. Another Random Convergence Analysis of
ECO Algorithm

Theorem 3: Consider another time-varying ECO
system, and the corresponding transfer matrix y(z) is
[ -L@1) -1

Y 0
into one point, those parameters should satisfy the
following conditions.

}. If and only if the solution converges

Y(t) > -1
—1-y(@) <) <1+y(1)
| Z211(1) | <0 (74)
2211(t) Z212(1)

| 2200 | = ‘ 7o) 7290 |7 °
where
Z211(t) =2fl¢j(z+1)¢2(z+1)—2§1¢j(z+1)+
Jj= Jj=

(_ilso,m D) -yt + 1>(i1¢,~<r+ DR +6(0)
J= J=

=

n

2200 == g+ DA+ D= 2 i+ D+ X g0
Jj= Jj= Jj=

A1) é ¢ (D) +5()
22 = —él i+ DY+ 1) - é pi(t+1)+ ,é 0
+H2 (1) ng @j(1) + (1)
Zam() =207 ,é ¢ - waxé o (1) 2§1 0
HE 107+ 500
Gt = [+ =g+ 1)+ 20+t + Do)
+Y(t+ D)+ () +1].

(75)

Proof Consider another discrete Lyapunov func-
tion

Sa(t) = M(D) Py ()M (1) (76)

where the symmetric matrix P;(t) is

Py =| W OFVOTUD ] A+ )L (@)
’ (L+@2O)(@0) WO +2+90E0* - L(0)°
(77

According to the first and second conditions in
(74), we can infer that
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1. The first leading minor of symmetric matrix
P (1) is strictly larger than O.

According to the above-mentioned remarks and
the assumption of (82), we can obtain the mathemat-
ical expression of Z2(t), where

CO+UPO+y@)+1>0. (78)

n n
221(1) =s(O+2 Y jt+ DY+ 1) =2 Y ¢;(t+ D+
2. The second principal minor of symmetric ma- Jj=1 Jj=1

trix P;(7) is also strictly larger than 0. ( i @it + 1) =yt +1)( i @i(t+1))>?
J=1 j=1

WO+ + () + 1 (1 +y2O)L(0) Zon)  =s)- 3 git+ DY+ 1) - 3 ojt+1)
(1 +y2()L(1) 20(t) + 2+ (DL (1) = £(1)? ' =t , !
(79) + 2 @0+ 2 i)
Jj= Jj=
Then, we need to prove that the equation of _ - 2 -
AS (1) = So(t+1)—S,(2) is a negative semi-definite Z2(1) =5 ng e+ D+ 1) El e+ 1)

matrix, and it can be described by

" _il (1) +UA(D) il e5(0)
J= J=

S>()= MO T[T+ )T Pyt + DI+ 1) = Po(HIM(D). n n
AS (1) () [T+ 1)" Pa(r+ DE(r+1) 2(1)] (8(01‘3 Z255(1) — g(t)_‘_sz(t) Zl QDj(l)—i,b(t)( Zl ‘,Dj(t))z
J= J=

Assuming that Z2(t) = T(t+ )T Py (t+ DI (t+ 1) —
P»(1), and each element in Z2(z) is

n n
-2 3 ¢/ +(T 90
Jj=1 Jj=1
(83)
2211 (1) =g+ D= O +yP e+ - '71’2(’)*' In terms of the third and fourth conditions in
2 Z @+ 1)¢2(t+ D+y@+1)-2 Z o(t+ 1)4{74) the first leading minor of matrix of AS,(?)
is strictly smaller than 0, while the second princi-
(Z o+ D) —y(t+ 1)(2 ‘)Dj(t+ 1))?> —y(r) pal minor of matrix AS,(7) is strictly larger than
0. Finally the matrix AS,(f) is a negative semi-
Z215(1) o =P+ D) -0+ lﬁ2(f +1)- %”2(5)_ definite matrix, resulting in the convergence behav-
> @it + D2+ 1)+t + 1) — Z @j(t+1) ior of each solution.

Jj=1 In summary, the ECO algorithm is one of the
(1) + Z @i+ () Z ¢j(;) adaptive swarm optimization methods. The solution
in ECO algorithm avoids the local optimum by in-
Z25,(1) =i+ 1) lﬂ SO +y e+ 1) lﬁ 2(n)- creasing the velocity from the potential energy to the
Z @j(t+ D2+ 1) +y(r+1)— Z @;(t+1) Power energy. Meanyvhile, thp solutions can con-
j= verge into the suboptimal optimum by the friction
power. Therefore, the ECO algorithm not only es-
capes from the local optimum in the early search
stage, but also ensures the convergence of all solu-

—y(t) + Z @i (O +y(t) Z <p,(t)
Z255(1) =yi(t+ 1) w3(r)+w (t+ 1) y? (t)+
Y+ D)= y(0) + 20%(0) -21 j(0) = () zl @j(n)2tions.
j= =

223 0,0 +(3 g0
J=1 Jj=1

(81)
In order to simplify those equations including
Z211(t), Z212(1), Z2,1(¢) and Z255(t), we assume that

s =+ D—yOIY* @+ 1) +y*@)

+y(t+ DY)+t + 1)+ (t) + 1]. (82)

4. Optimal Coverage Tunnel Problem by ECO
Algorithm

In order to tackle with the optimal coverage tunnel
problem, the objective of this section is to introduce
the ECO algorithm to search for the optimal position
of each sensor, fully covering the whole tunnel.
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Step 1: Initialize the parameters of the ECO al-
gorithm and the optimal coverage tunnel problem.
Firstly, we set the dimension of solution space on
the basis of the number of sensors, the number of all
solutions, the topology E of all solutions, the previ-
ous best positions G of each solution, the damping
factor a, the interchanged factor g, etc.

Step 2: Calculate the fitness of the ith solution
according to (6) for the optimal line tunnel coverage
problem or (8) for the optimal complicated tunnel
coverage problem, the corresponding best position
G;(¢) is updated according to (84).

Xi(1)
Gi(1)

if f(Xi(1) < f(Gi(1))

it F6) > £GP

Gi(t+1) :{

where ¢ is the current number of iterations and the
function f(-) denotes the objective function, respec-
tively.

Step 3: Calculate the varying height H;(¢) of
each solution according to (6) and (8), and H;(f) can
be calculated by

H(t) = f(Gi(1) - f(Gi(t - 1)) (85)
and 8o
i(f
vy = 250 (36)

Step 4: In the ECO algorithm, the velocity and
the position of each solution can be mathematically
described by

1 n
Wi+ 1) =4/ IYS) WD)+ Y cureer(Git) — x(1)
k=1

(87)
(88)

x@+1)=v(+1)+x(2)

Step 5: Determine whether the current position
and the current velocity are beyond the correspond-
ing minimum and maximum or not. The current
value is set by the following equations.

X(1) = Xpin + 0.2r1 (Xppax = Xmin) - X(1) < Xiin

(89)

x(1) = Xmin +(0.2r2 + 0.8)(Xmax — Xmin)  X(2) > Xpax
(90)

V(1) = Vinin +0.2r3(Vinax = Vinin) -~ V() < Viin -~ (91)

V(1) = Viin +(0.2r4 + 0.8) Vinax = Vimin) -~ V() > Vinax
92)
where the random variables, including ry, r», r3 and
r4, are changing in the range from O to 1.

Step 6: Testify whether the stopping condition is
satisfied or not. If the stopping condition is satisfied,
stop this algorithm; otherwise, go to Step 2.

There are several main results and remarks on
energy conservation optimization as follows.

1. To effectively avoid premature convergence
in the hypersurface landscape, the next posi-
tion of each solution and the attractor of ECO
algorithm are dependent of several previous
best positions of its neighbors.

2. This proposed algorithm is essentially in-
spired by the law of energy conversation,
which describes the changed process from po-
tential energy closely relating to objective fit-
ness to power energy.

3. In the ECO algorithm, there are two crucial
parameters so-called the damping factor o and
the interchanged factor 8. The damping factor
a mainly determines the convergence speed
of all solutions, while the interchanged factor
BB sets the relationship between power energy
and potential energy.

5. Numerical Simulations

To show the feasibility and the performance of ECO
algorithm, the objective of this section is to investi-
gate the convergence speed and compare the final
optimization result under different parameters and
different benchmark functions. Furthermore, those
results may provide the guideline for parameter se-
lection on the damping factor a and the correspond-
ing topology E, etc.

5.1. Benchmark Functions

To demonstrate the effectiveness of ECO algorithm,
this subsection is to introduce several typical bench-
mark functions which are composed of Sphere func-
tion, Griewank function, Rastrigin function, Rosen-
brock function and Schaffer’s f6 function, and so on.
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Sphere function has no local optimums in the hy-
persurface landscape and denotes the ideal optimiza-
tion problem. In order to increase the complexity of
Sphere function, the modified Sphere function can
be mathematically expressed by

D
Aix) = (xi+50)? (93)
i=1

where D denotes the dimension of the whole solu-
tion space.

Griewank function, which possibly denotes the
practical optimization problem and has a large num-
ber of local optimums in the hypersurface landscape,
can be mathematically described by

1 D
H(x) = 4—; !:[cos( Hrl (94)

In the case of Rastrigin function, it is hard to
search for the suboptimal or global optimum in this
hypersurface landscape. Rastrigin function, which
also has many local optimums, can be mathemati-
cally expressed by

D
Hx) = Z(x,- —10cos(2rx;) + 10). (95)
i=1

Rosenbrock function has only few local opti-
mums in the solution space, and the region around
the global optimum is very flat. More specifi-
cally, Rosenbrock function can be mathematically
described by

D-1

Fa0) = > 1000k = 2% + (xi = 1)),

i=1

(96)

Schaffer’s {6 function also has many local opti-
mums around the global optimum. And all solutions
easily get into the local optimum and never get away
from many local optimums, finally resulting in pre-
mature convergence. Schaffer’s f6 function can be
mathematically expressed by

(simy/x2 +y2)-0.5

By =03+ 0 0012 122

97)

Generally speaking, many benchmark functions
have the initial ranges on the position and the veloc-
ity of all solutions, and those initial ranges are listed
in Tab. 1.

5.2. The Detailed Evolutionary Process of ECO
Algorithm

According to the law of energy conservation, each
solution has its own power energy, which is closely
related to the velocity, and potential energy is
closely related to the changed objective fitness in
the hypersurface landscape. The main idea of ECO
algorithm is to change potential energy into power
energy during the evolutionary process. In other
words, when one solution searches for good solu-
tion, its potential energy should be decreased right
now and the corresponding velocity also increases
to avoid premature convergence.

To better illustrate the evolutionary process of
energy conversation optimization, the objective of
this subsection is to investigate the detailed evo-
Iutionary process which mainly involves in swarm
topology, convergence speed of all solutions, the
corresponding power energy and objective fitness in
the whole evolutionary process, etc.

Schaffer’s f6 function, which has many local op-
timums in the hypersurface solution space, is se-
lected to be the considered objective function. The
dimension of solution space is set to 2 and the num-
ber of all solutions is 10, respectively. Concerning
the damping factor «, the parameter « linearly in-
creases from 0.00 to 0.03 to ensure exploration abil-
ity at the beginning of search stage and exploitation
ability at the end of search stage. The maximum
number of generations is set to 1000 and the topol-
ogy is randomly based on adjacency matrix which
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can be mathematically expressed by

(1 10101001 0]
1111100101
1011011011
001 11000T10
0011100000
E=lo 101011000 ©8)
11101017100

11 10010T1O01

01 10000T11 1
(01100011 11|

According to adjacency matrix E, Laplacian ma-
trix L can be calculated as

[ 4 -1 0 -1 0 -1 0 O -1
-1 6 -1 -1 -1 0 0 -1 O
-1 0 6 -1 0 -1 -1 0 -1
o 0 -1 3 -1 0 O 0 -1

I= o 0 -1 -1 2 0 0O 0 O
o -1 0 -1 0 3 -1 0 O
-1 -1 -1 0 -1 0 5 -1 O
-1 -1 -1 0 0 -1 0 5 O
0O -1 -1 0 0 0 0 -1 4
o -1 -1 0 0 0 -1 -1 -1
99)

The first smallest eigenvalue A, of Laplacian ma-
trix is equal to O and the second smallest eigenvalue
Ay is 2.1725. Since the second smallest eigenvalue
Ay is strictly larger than O, the graph of this topol-
ogy is a connected graph, which gives rise to con-
vergence behavior of all solutions.

According to the law of energy conservation,
each particle has its own power energy, which is
closely related to the velocity of every particle, and
potential energy is closely related to objective fit-
ness in the hypersurface. The main idea of ECO
algorithm is to change potential energy into power
energy during the evolutionary process, that is to
say, when one solution searches for better position,
its potential energy should be decreased right now
and the corresponding velocity should be increased
to avoid premature convergence. To set the relation-
ship between power energy and potential energy un-
der different benchmark functions, the interchanged

0
-1
-1
0
0
0
0
-1
-1

5

factor 8 is calculated by the setting maximum ve-
locity and the initial objective fitness. On the basis
of (20), the interchanged factor 8 of every solution
is 0.0187, 0.0181, 0.0162, 0.0189, 0.0165, 0.0256,
0.0203, 0.0168, 0.0316 and 0.0473, respectively.

According to the above-mentioned analysis, the
sum energy of all solutions, which is composed of
power energy and potential energy, in the whole evo-
lutionary process can be depicted in Fig. 4.

It can be concluded from Fig. 4 that the en-
ergy during the whole evolutionary process strictly
decreases since there exists the resistance force in
the second order linear ECO system. The speed
of reducing the energy is mainly determined by the
damping factor a. In the general case, large « is
helpful for the objective function of few local opti-
mums in the hypersurface landscape, small o bene-
fits from the objective function with many local opti-
mums to easily avoid getting into the local optimum.

Roughly speaking, the current power energy of
all solutions comes from two aspects, which are

" composed of the previous power energy and the in-

terchanged energy from potential energy. Power
energy directly determines the current velocity of
each solution. The large power energy obviously
gives rise to the large velocity while small power
energy leads to small velocity. Additionally, in or-
der to demonstrate the convergence of ECO algo-
rithm, power energy in the evolutionary process is
depicted in Fig. 5, and the velocity norm of all so-
lutions, which is closely related to power energy, is
also shown in Fig. 6.

According to Fig. 5 and Fig. 6, power energy
is closely related to the velocity of all solutions.
At the beginning of evolutionary process, when all
solutions can find good position, objective fitness
quickly decreases and the corresponding power en-
ergy increases. On the basis of the law of energy
conservation, potential energy, which denotes the
changed objective fitness in the optimization prob-
lem, turns into power energy of each solution, to
provide the large velocity of all solutions. At the end
of evolutionary process, the whole energy reduces
because of the resistance force in the ECO system,
and power energy, together with the velocity of each
solution, also reduces to converge into the subopti-
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Figure 4: The sum energy of all solutions in the whole process
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Figure 5: Power energy of all solutions in the evolutionary process
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Figure 6: The 2-norm velocity of all solutions in the evolutionary process
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mal or global optimum.

To show the performance of ECO algorithm, the
corresponding objective fitness in the whole evolu-
tionary process is depicted in Fig. 7. Totally speak-
ing, the previous objective fitness is larger than that
of the current objective fitness. Due to the hyper-
surface landscape of Schaffer’s f6 function, the per-
formance shows that ECO algorithm does not easily
get into the local optimum and suffers from prema-
ture convergence.

In summary, the above-mentioned discussions
mainly focus on the detailed evolutionary process,
which mainly consists of swarm topology, the sum
energy, power energy and objective function in the
whole evolutionary process, etc. In addition, ECO
algorithm can balance the tradeoff between explo-
ration ability and exploitation ability by the damp-
ing factor @ and swarm topology E. By adjusting the
damping factor @ and swarm topology E, ECO algo-
rithm can find good solution and effectively avoids
premature convergence in the presence of many lo-
cal optimums in the solution space.

In order to illustrate the key role of the damping
factor and swarm topology, energy conversation op-
timization in the next subsection is applied to find
the suboptimal or global optimum under different
complicated benchmark functions and different di-
mensional solution space.

5.3. Convergence Speed under Different Factors
and Topologies

As is well known, the convergence speed plays a
great role on premature convergence, the efficiency
of ECO algorithm as well as the tradeoff between
exploration ability and exploitation ability, together
with the optimization result. In this proposed ECO
algorithm, the damping factor @ and swarm topol-
ogy also influences the convergence speed of all so-
lutions. To better illustrate the relationship among
them, convergence speed and numerical results are
compared under different damping factors and dif-
ferent swarm topologies.

Generally speaking, the damping factor @ lin-
early increases during the whole evolutionary pro-
cess. The initial damping factor « is set to 0.0 and
the final damping factor @ linearly increases from

0.01 to 0.05, respectively. Several power energies
under different damping factors are depicted in Fig.
8.

With respect to Fig. 8, the final large damping
factor « largely reduces the whole energy and leads
to large convergence speed of all solutions. At the
beginning of search stage, the power energy quickly
increases since potential energy, closely relating to
the changed objective function, turns into the power
energy to enhance exploration ability of the swarm.
The corresponding large velocity possibly is helpful
for getting away from the local optimum and effec-
tively avoiding premature convergence. At the end
of search stage, the velocity of all solutions is rel-
atively small to find better solution in the adjacent
region.

In addition, the objective fitness of each damping
factor in the whole evolutionary process is shown in
Fig. 9. Due to the complicated landscapes of solu-
tion space, all solutions easily suffer from premature
convergence. Therefore, at the beginning of evo-
Iutionary process, objective fitness quickly reduces
and its potential energy turns into power energy to
provide large velocity for getting out of local opti-
mum. According to the comparison in Fig. 9, the
final damping factor « can be selected to be 0.04.

Different topologies also play a great role on
the convergence speed and the final optimization re-
sult. The role of different topologies is to effectively
avoid premature convergence since the attractor of
each solution is mainly determined by its neighbors
with random factor, therefore, all solutions possi-
bly search for the suboptimal or global optimum in
many regions. The corresponding power energy and
objective fitness during evolutionary process are de-
picted in Fig. 10 and Fig. 11, respectively. By ran-
domly generated different topologies, the connected
link number among all solutions is randomly gener-
ated and TP denotes the number of connected links
in swarm topology.

In terms of Fig. 10 and Fig. 11, all solutions
under different topologies have similar power en-
ergy and similar velocity in the evolutionary pro-
cess. Comparing with different swarm topologies,
when the connected link number among all solu-
tions can be selected to 60, ECO algorithm can get
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Figure 7: Objective fitness of Schaffer’s f6 function in the evolutionary process
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Figure 9: Objective fitness under different damping factors in the evolutionary process
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Figure 10: Different swarm topologies lead to different power energy in the evolutionary process

Objective fitness

107 . . h .
0 200 400 600 800 1000

Generations
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good solution. Furthermore, few connected num-
ber cannot obtain good solution under Schaffer’s f6
function since there is relatively few number of gen-
erations in the evolutionary process, and too many
connected link number also cannot get good solu-
tion since all solutions possibly suffer from prema-
ture convergence.

5.4. Numerical Results under Different
Dimensional Spaces

Concerning the proposed ECO algorithm, one of
crucial factors is considered to be the damping fac-
tor . At the beginning of search stage, the damping
factor « is selected to be small value to enhance ex-
ploration ability of all solutions, while the damping
factor « at the end of search stage can be selected
by large value to improve exploitation ability of all
solutions.

In order to investigate final results under different
damping factors, corresponding results on the modi-
fied Sphere function are concluded in Tab. 2, where
every datum is the mean of 50 independent results.
According to Tab. 2, large « is favor for finding the
suboptimal or global solution in the modified Sphere
function. Since large @ makes the energy to quickly
reduce in the evolutionary process, the velocity of
all solutions becomes smaller and smaller, resulting
in exploitation ability of the swarm. In addition, the
modified Sphere function has no local optimum and
all solutions do not suffer from premature conver-
gence, therefore, large @ benefits the optimization
problem which has few local optimums or without
local optimums.

In the case of Griewank function, there are many
local optimums in the hypersurface landscape, sev-
eral results from 2 dimensions to 20 dimensions are
listed in Tab. 3. According to Tab. 3, the parameter
a from O to 0.05 is the optimal parameter, which can
lead to good solution in Griewank function.

With respect to Rastrigin function, there are also
many local optimums in the complicated solution
space, leading to the uncertainty of final results in
Tab. 4. In the low dimensional space, the optimal
parameter « so-called the damping factor can be se-
lected to [0, 0.02] or [0, 0.03]. In the high dimen-
sional space, the corresponding optimal parameter

can be selected to [0, 0.04] or [0, 0.05].

Regarding Rosenbrock function, it is also dif-
ficult to find the suboptimal or global solution in
this hypersurface landscape and the corresponding
results are listed in Tab. 5 from 2 dimensions to
20 dimensions. In the low dimensional space, the
best parameter a can be selected to [0, 0.04] or [0,
0.05], getting better solution. In the high dimen-
sional space, the best parameter a can be selected
to [0, 0.02] or [0, 0.03], the others possibly result in
early getting into the local optimum.

In the 2-dimensional solution space, all solutions
easily plunge into many local optimums due to the
complicated hypersurface of Schaffer’s f6 function.
According to Tab. 6, the best parameter a can be se-
lected to [0, 0.05] and the corresponding optimiza-
tion result is equivalent to 0.0020.

According to the comparison under different «,
this parameter is better to select [0, 0.04] or [0,
0.05], that is to say, the damping factor « increases
linearly from 0.0 to 0.05 in the whole evolutionary
process.

5.5. Comparison with Particle Swarm
Optimization

In order to compare with the final optimization re-
sults by the standard PSO algorithm, the inertia
weight method [26, 15] and the constriction factor
method [17] in PSO algorithm are selected to com-
pare the advantage and the disadvantage of ECO al-
gorithm. Particle swarm optimization is the typi-
cal population-based optimization and can find good
solution in the different hypersurfaces. In the in-
ertia weight method, the inertia weight w linearly
decreases from 0.9 to 0.4 in the evolutionary pro-
cess, and acceleration coefficients are generally set
to 2.0. In the constriction factor method, the con-
striction factor is selected to be 0.729 and accelera-
tion coefficients are also equivalent to 2.0. In addi-
tion, the damping factor @ in ECO algorithm linearly
increases from 0 to 0.05 in the whole evolutionary
process. To demonstrate the advantage and the dis-
advantage of ECO algorithm, the corresponding re-
sults from 3 dimensions to 30 dimensions are com-
pared in Tab. 7, Tab. 8 and Tab. 9 under Griewank
function, Rastrigin function and Schaffer’s f6 func-
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tion, respectively. In addition, the number of gener-
ations during the whole evolutionary process is set
to 1000, while the number of all solutions is set to
30.

According to Tab. 7 under Griewank function,
when the dimension of solution space is smaller than
18, the inertia weight method in PSO algorithm can
get the best solution. When the dimension of so-
lution space is larger than 18, energy conversation
optimization can get good solution. In addition, the
constriction factor method in PSO algorithm is not
selected to be better method in the low or high di-
mensional space.

On the basis of Tab. 8 under Rastrigin function,
when the dimension of solution space is smaller than
21, the best method is selected to be the inertia
weight method; when the dimension of solution is
larger than 21, ECO algorithm can get the best so-
lution. Furthermore, the constriction factor method
does not obtain the good solution due to the large
convergence speed and easily getting into the local
optimum.

According to Tab. 9 under Schaffer’s f6 func-
tion, the best result is obtained by energy conversa-
tion optimization under Schaffer’s f6 function and
the corresponding optimization result is equivalent
to 0.0024. Due to the complicated hypersurface
of Schaffer’s f6 function, energy conversation op-
timization is possible to obtain good solution un-
der many local optimums to avoid premature con-
vergence.

To better investigate the performance among
three typical algorithms, objective finesses under
three algorithms are compared in the whole evolu-
tionary process. The corresponding comparison un-
der three typical evolutionary methods is depicted in
Fig. 12.

6. Optimal Coverage Tunnels Problem by ECO
Algorithm

In order to demonstrate the effectiveness of ECO al-
gorithm for the optimal tunnel coverage problem,
numerical results mainly concentrate on four differ-
ent typical tunnels to be fully covered. The main
task of ECO algorithm is to search for the optimal

position of each sensor, so that the sensor network
can fully cover the setting tunnel in the different
mountainous scenarios. Since the tunnel in the high-
speed railway is typically classified by the line tun-
nel and the complicated tunnel, therefore, numerical
results mainly discuss one case with one line tunnel,
another case with several line tunnels, the third case
with the complicated tunnel and the fourth case with
several complicated tunnels.

6.1. One Case with One Line Tunnel

Let the length of the line tunnel and the sensor num-
ber in sensor network be 2034 meters and 5, respec-
tively. The covered radius of each sensor is assumed
to be 200 meters. The number of solutions in ECO
algorithm is set to 20, while the maximum number
of generations is assumed to be 1000. The parame-
ter @ in (27) is set to 0.5. By utilizing the ECO al-
gorithm, the computational time of ECO algorithm
is 0.922 seconds. As depicted in Fig. 13, the op-
timal sensor positions are 205.7m, 611.3m, 1017m
and 1828.3m. Notice that the distance between two
adjacent sensors is 5.667m, not fully covering the
whole line tunnel.

Assume the length of the line tunnel and the
number of sensors be 4030 meters and 10, respec-
tively. Other parameters are equal to those of the
above-mentioned case. By the new ECO algorithm,
the computational time is 0.969 seconds. Addition-
ally, as shown in Fig. 14, the positions of all sensors
are 202.6m, 605.3m, 1007.9m, 1410.6m, 1813.3m,
2216m, 2618.7m, 3021.5m, 3424.3m and 3827.1m.
The overlapping distance between two sensors is
2.727 meters, leading to fully covering the line tun-
nel.

6.2. Another Case with Several Line Tunnels

In the practical mountainous scenarios, the whole
length of tunnel is 1647 meters, and the range of
tunnels are set to (0, 140), (305, 467), (597, 738),
(892, 1026), (1172, 1338) and (1498, 1647). In or-
der to effectively protect the sensor, it is of impor-
tance to ensure that the sensors should be set in the
tunnel, mainly avoiding the rain. Let the number
of sensors in sensor network be 5. By using the
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Figure 12: Comparing with two typical methods in the standard PSO algorithm
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Figure 13: Case 1: The optimal line tunnel (L.=2034)
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Figure 15: Case 2: The optimal line tunnels by ECO algorithm (L=1647)

ECO algorithm, its computational time is 2.735 sec-
onds, and the optimal position of each sensor is set
to 124.8m, 466.1m, §93.5m, 1202.2m and 1527.2m.
As depicted in Fig. 15, the black line denotes the
railway in the tunnel and the red line denotes the
railway between two tunnels. Additionally, the red
square denotes the optimal position of each sensor,
finally leading to fully covering the line tunnels.

6.3. Third Case with the Complicated Tunnel

Taking the different complicated tunnels in the
mountainous environment into account, it is so dif-
ficult to set up the mathematical model of each tun-
nel, therefore, we highlight that the corresponding
tunnel consists of the order discrete points along the
railway. In order to deeply study the relationship
between the radius of sensor and the optimal cover-
age tunnel problem, the subsection is to discuss the
optimal coverage tunnel problem in the presence of
different sensor radii.

There are 200 discrete points along the railway
and the sensor radius is set to 20, and the number
of sensors is equal to 5. By the ECO algorithm, the
computational time is 34.5 seconds since each evo-
lutionary step should determine whether each dis-
crete point is covered by the sensor network or not,
and the sensor network cannot fully cover the tun-
nel. As depicted in Fig. 16, the optimal positions of
those sensors are 20, 58, 104, 144 and 181, respec-
tively.

When the radius of each sensor is equal to 22, the

computational time by the ECO algorithm is 37.75
seconds. As shown in Fig. 17, the corresponding op-
timal position of each sensor is 22, 65, 105, 148 and
188, giving rise to fully covering the whole given
tunnel.

When the radius of sensor is set to 24, the com-
putational time by the ECO algorithm is 34.42 sec-
onds, meanwhile, the corresponding position of sen-
sor is 13, 58, 102, 149 and 193. Furthermore, the
sensor network can fully cover the whole tunnel and
several discrete points in the tunnel are covered by
two sensors.

Comparing with the three above-mentioned re-
sults, the optimal radius of sensor is set to 22, and the
sensor network fully covers the whole tunnel. More-
over, few discrete points in the tunnel are covered by
two adjacency sensors.

6.4. Fourth Case with Several Complicated
Tunnels

As for the optimal coverage tunnel problem for sev-
eral complicated tunnels, the radius of sensor is set
to 24, and the computational time of the ECO al-
gorithm is 36.07 seconds. The sensor network can
fully cover the discrete points in the tunnel. In or-
der to protect the sensors in the tunnel, the sensors
should also be in the tunnel. By the ECO algorithm,
the optimal position of each sensor, which is roughly
shown in Fig. 19, is 3, 50, 97, 139 and 183, respec-
tively.
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Figure 16: Case 3: The optimal complicated tunnels by ECO algorithm (R=20)
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Figure 17: Case 3: The optimal complicated tunnels by ECO algorithm (R=22)
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Figure 18: Case 3: The optimal complicated tunnels by ECO algorithm (R=22)
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Figure 19: Case 4: The optimal complicated tunnels by ECO algorithm

7. Conclusion and Future Works

The optimal tunnel coverage problem is mainly
and successfully solved by one new nature-inspired
swarm optimization method so-called ECO algo-
rithm. In order to better handle with the optimal tun-
nel coverage problem, the corresponding objective
function and its constraints are given to mathemat-
ically analyze the different complicated tunnels and
the tunnel coverage problem in the presence of sev-
eral basic assumptions and concepts. Moreover, the
new ECO algorithm, which is chiefly motivated by
the law of energy conversation and PSO algorithm,
is introduced to show the basic concepts and main
steps of ECO algorithm and copy with the optimal
tunnel coverage problem. For the sake of demon-
strating the effectiveness of ECO algorithm, simu-
lation results mainly focus on the different typical
tunnels to be covered, such as the line tunnel, the in-
directed line tunnel and the complicated tunnel, etc.

In this paper, there are several interesting and un-
solved problems in the case of energy conversation
optimization.

1. Due to random numbers in ECO algorithm,
the brief conditions in the case of conver-
gence analysis may be a challenging problem,
which is actually helpful for parameter selec-
tion and suitable topology for different opti-
mization problems.

2. To get better solution in the low dimensional
space, parameter selection and swarm topol-
ogy possibly play a great role on the efficiency
of ECO algorithm in the future.

3. Energy conversation optimization can be ap-
plied to the ranges of neural network, PID
control, system identification and power sys-
tem, other practical applications, etc.

The future work mainly concentrates on the re-
alistic application of tunnel coverage under the dif-
ferent scenarios. It is of importance to develop the
tunnel coverage software by ECO algorithm on GIS
system to locate the time-varying train in the tunnel
or mountain. Additionally, it is necessary to discuss
the large number of sensors to cover the given long
tunnel by the improved ECO algorithm.
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Table 1: The initial position and velocity of the swarm

Function Initial Position | Initial Velocity
Sphere (50,100)P (=50,50)P
Griewank (300,600)” (=300,300)”

Rastrigin (2.56,5.12)P | (-2.56,2.56)"
Rosenbrock (15,30)P (-15,15)P
Schaffer’s f6 |  (50,100)” (-50,50)P

Table 2: Results on the modified Sphere function from 2 dimensions to 20 dimensions

Dim | [0, 0.01] | [0, 0.02] | [0, 0.03] | [0, 0.04] | [0, 0.05]
2 0.0127 | 2.29E4 | 2.73E-6 | 2.73E-8 | 3.1E-10
4 0.9404 | 0.0095 | 9.34E-5 | 7.66E-7 | 8.52E-9
6 4.2850 | 0.0370 | 3.65E-4 | 3.37E-6 | 3.22E-8
8 9.3113 0.0795 | 8.18E-4 | 6.80E-6 | 6.04E-8
10 15.096 | 0.1408 0.0013 | 1.08E-5 | 1.11E-7
12 22.808 0.1936 | 0.0018 | 1.73E-5 | 1.60E-7
14 29.961 0.2828 0.0027 | 2.33E-5 | 2.30E-7
16 40.518 0.3625 0.0034 | 3.18E-5 | 3.12E-7
18 47.777 0.4515 0.0046 | 4.26E-5 | 4.14E-7
20 58.320 | 0.5491 0.0055 | 5.15E-5 | 5.52E-7

Table 3: Results on Griewank function from 2 dimensions to 20 dimensions

Dim | [0, 0.01] | [0, 0.02] | [0, 0.03] | [0, 0.04] | [0, 0.05]
2 0.0256 | 0.0061 0.0039 0.0034 | 0.0043
4 0.2614 | 0.1018 0.0919 0.0828 0.0660
6 0.6257 0.2889 | 0.2660 | 0.2569 0.2350
8 0.9329 | 0.4929 | 0.4725 0.4088 0.3550
10 1.1021 0.6841 0.5082 | 0.4319 0.3538
12 1.2037 0.7389 | 0.3968 0.2661 0.1489
14 1.2917 0.7966 | 0.3604 | 0.1770 | 0.0968
16 1.3700 | 0.8231 0.3820 | 0.1977 0.1069
18 1.4526 | 0.8636 | 0.3981 0.1987 0.1134
20 1.5552 | 0.8692 | 0.3842 | 0.2083 0.1078
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Table 4: Results on Rastrigin function from 2 dimensions to 20 dimensions

Dim | [0, 0.01] | [0, 0.02] | [0, 0.03] | [0, 0.04] | [0, 0.05]
2 0.0081 | 3.09E-4 | 1.19E-5 | 2.57E-5 | 8.15E-5
4 1.9545 1.6540 1.9113 1.5498 1.7123
6 7.8926 6.4301 6.8185 6.9780 | 6.8022
8 17.385 15.449 15.105 15.196 15.689
10 29.899 25.583 26.161 25.114 | 24.812
12 44.793 37.976 38.124 38.796 33.088
14 59.219 50.824 52.300 | 48.108 42.097
16 71.023 65.924 61.875 56.151 62.952
18 90.020 83.083 68.056 | 76.806 72.217

20 107.08 90.782 | 91.178 87.137 85.103

Table 5: Results on Rosenbrock function from 2 dimensions to 20 dimensions

Dim | [0, 0.01] | [0, 0.02] | [0, 0.03] | [0, 0.04] | [0, 0.05]
2 | 1.9650 | 14854 | 15935 | 1.0477 | 2.2424
4 | 35500 | 12.136 | 8.6936 | 6.4596 | 8.7288
6 | 197.05 | 147.97 | 214.63 | 197.13 | 55.260
8 | 52820 | 39520 | 237.93 | 433.56 | 62221
10 | 821.85 | 527.42 | 55499 | 390.86 | 669.12
12 | 11720 | 419.49 | 616.79 | 602.11 | 739.81
14 | 12605 | 782.67 | 973.57 | 499.15 | 686.13
16 | 13247 | 60075 | 35037 | 67449 | 1098.5
18 | 18472 | 760.68 | 881.50 | 837.81 | 955.85
20 | 2107.4 | 69428 | 63672 | 97627 | 877.51

Table 6: Results on Schaffer’s f6 function under the 2-dimensional space

Dim

[0, 0.01]

[0, 0.02]

[0, 0.03]

[0, 0.04]

[0, 0.05]

2

0.0083

0.0030

0.0031

0.0027

0.0020

Table 7: Results on Griewank function from 3 dimensions to 30 dimensions

Dim | ECO | PSO-IW | PSO-CF
3 0.0270 | 0.0197 0.0220
6 | 02074 | 0.1082 0.1054
9 | 04055 | 0.1303 0.1549
12 | 0.1678 | 0.1091 0.1277
15 | 0.0833 | 0.0608 0.2078
18 | 0.0958 | 0.0844 1.1063
21 | 0.1029 | 0.2248 1.1440
24 | 0.1082 | 0.7185 1.3068
27 | 0.1185 | 1.7553 2.1678
30 | 0.1254 | 1.8506 4.5117
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Table 8: Results on Rastrigin function from 3 dimensions to 30 dimensions
Dim | ECO | PSO-IW | PSO-CF
3 0.4337 | 0.1393 1.2934
6 | 7.6859 | 2.5118 10.447
9 16.758 | 8.4354 27.421
12 | 30.001 | 18.090 38.525
15 | 42.599 | 35.641 64.911
18 | 60.289 | 50.217 87.775
21 | 87.719 | 79.982 117.34
24 | 94571 | 98.361 154.72
27 | 10558 | 138.22 182.23
30 | 123.83 | 152.42 207.44

Table 9: Results on Schaffer’s f6 function under the 2-dimensional space
Dim | ECO | PSO-IW | PSO-CF
2 1 0.0024 | 0.0066 0.0066
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