
Received 19 September 2013

Accepted 24 January 2015

Modified GUIDE (LM) algorithm for mining maximal high utility patterns
from data streams

Chiranjeevi Manike 1 ∗, Hari Om 2

1,2 Department of Computer Science and Engineering, Indian School of Mines,
Dhanbad, Jharkhand 826004, India

1chiru.research@gmail.com
2hariom4india@gmail.com

Abstract

High utility pattern mining is an emerging research topic in the data mining field. Unlike frequent pat-
tern mining, high utility pattern mining deals with non-binary databases, in which the information about
purchased quantities of items is maintained. Due to the non-existence of anti-monotone property among
the utilities of itemsets, utility mining becomes a big challenge. Moreover, discovering useful patterns
from the huge number of potential patterns is a mining bottleneck. However, the compact (Closed and
Maximal) high utility pattern mining moderately lessens the number of patterns, but it does not solve
it. Recently, an efficient framework called GUIDE, was proposed in the literature to address this issue.
Though, GUIDE effectively reduced the number of high utility patterns, yet the quality of few mined
patterns and their utilities are not exact. In view of this, we propose a modified MGUIDELM algorithm to
improve the quality and determine exact utilities of maximal patterns.

Keywords: High utility patterns, Data mining, Maximal Patterns, Anti-monotone property, Transaction
projection.

1. Introduction

Frequent pattern mining is probably one of the most

important concepts in data mining. It is a process

of discovering the complete set of frequent patterns,

based on the support measure [2]. The support is

defined over the binary database, where the informa-

tion of each item in the database is represented in the

form of 0s and 1s. The occurrence frequency of an

itemset only represents the statistical significance,

but not the semantic significance. Moreover, in the

real world scenarios customers may purchase mul-

tiple items of different quantities. Sometimes less

frequently purchased items are also contribute more

to the total profit. Thus, the occurrence frequency

of an itemset is not sufficient to measure the impor-

tance of an itemset. Hence, utility mining model [1]

was introduced, in which the statistical and semantic

significance of the itemsets are considered.

For example, consider the transaction database

(i.e., Table 1), in which each item that is present has

some numerical value that is called purchased quan-

tity. Also consider the utility table (i.e., Table 2), in

which unit profit of each item is given. In frequent

itemset mining support is defined as the portion of

transactions in the data set which contain the item-

∗Corresponding Author.

International Journal of Computational Intelligence Systems, Vol. 8, No. 3 (2015) 517-529

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

517

Chiranjeevi Manike, Hari Om

set. Suppose the minimum support threshold is set

to 60%. If we apply Apriori or any other frequent

itemset mining algorithm, then it discovers the item

E as frequent, since, it appeared in more than 60% of

the transactions in the transaction database (i.e., Ta-

ble 1). Remaining items A, B, C and D are omit-

ted, because of their low (i.e., <60%) occurrence

frequencies. Among these items, item B contributes

more profit (i.e., 240$) than the infrequent items A,

C, D as well as frequent item E. Therefore, frequent

itemset mining may neglect some infrequent items,

even though they are contributing more profit to the

company. To overcome above limitations in frequent

itemset mining, utility mining was introduced in the

year 2004.

Table 1. Transaction Database

Item/Tid A B C D E

T1 0 0 18 0 1

T2 0 6 0 1 1

T3 2 0 1 0 1

T4 1 0 0 1 1

T5 0 0 4 0 2

T6 1 1 0 0 0

T7 0 10 0 1 1

T8 3 0 25 3 1

T9 1 1 0 0 0

T10 0 6 2 0 2

Table 2. Utility Table

Item A B C D E

Profit($) 3 10 1 6 5

Utility mining discovers the patterns with utility

more than the user specified minimum utility thresh-

old. The utility of an itemset may be defined in terms

of its purchased quantity, profit, cost and any other

useful measure, which reflect the semantic signifi-

cance of an itemset. The Apriori anti-monotone [2]

property facilitates the process of mining frequent

patterns. Due to the absence of anti-monotone prop-

erty in utility mining model, the process of min-

ing high utility patterns becomes more complex than

the process of frequent pattern mining. Utility min-

ing may be considered as an extension of frequent

itemset mining. The first theoretical model of util-

ity mining and basic definitions were given by Yao

et al. [1], in their approach two pruning strategies

are identified, based on the utility and support of an

itemset. These strategies are overestimating the high

utility patterns. Thus, authors proposed two more al-

gorithms in order to reduce the overestimation rate.

Later, an efficient pruning strategy called transaction

weighted utility downward closure property, was in-

troduced by Liu et al. [3]. Based on this property

authors proposed an algorithm called Two-Phase. In

Phase I of this algorithm, it overestimates some high

transaction weighted utility patterns. In Phase II, it

determines high utility patterns from the high trans-

action weighted utility patterns by calculating their

actual utilities.

Though, transaction weighted utility downward

closure (anti-monotone) property effectively re-

duces the patterns, filtering huge number of high

utility patterns at low minimum utility threshold

range becomes a main bottleneck. Hence, re-

searchers addressed this issue by introducing a con-

cept of compact form of high utility patterns. There

are two compact representations of high utility pat-

terns namely, closed and maximal. An itemset is

said to be closed if it does not have any immedi-

ate proper superset with same support, whereas a

maximal itemset can be an itemset with no subsets.

Recently, a framework called GUIDE [18], was in-

troduced to discover the maximal high utility pat-

terns from data streams. Due to the incomplete

information given by their procedure (i.e., namely

Transaction Projection), algorithm may not identify

the complete set of maximal patterns and their util-

ities. In view of this, in this paper, we have inves-

tigated the problem and proposed modified version

of GUIDELM algorithm by incorporating our proce-

dure. Modified algorithm has improved the quality

of the patterns as well as given exact utilities of pat-

terns.

The remaining part of this paper is organized as

follows. The problem statement and basic defini-

tions of high utility pattern mining are given in Sec-

tion 2. In Section 3, related work and the procedure

of transaction projection is discussed. In Section 4,

we discussed our proposed algorithm. Experimental

results are presented in Section 5. Finally, conclu-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

518

Modified Algorithm of GUIDE(LM)

sions and future enhancements are given in Section

6.

2. Basic Definitions

We have adopted the similar definitions presented

in the previous works [1], [3], [4], [8]. Let I =
{i1, i2, i3, . . . , im} be a set of items and DB be a trans-

action database {T1,T2,T3,. . . ,Tn}, where each trans-

action Ti ∈ DB is a subset of I.

Definition 1. The local transaction utility value, de-

noted as lu(ip,Tq), represents the purchased quan-

tity of item ip in a transaction Tq. For example,

lu(D,T2) = 1, in Table 1.

Definition 2. The external utility, denoted as eu(ip),
is the unit profit of item ip. For example, eu(B)= 10,

in Table 2.

Definition 3. The utility, denoted as u(ip,Tq), is

the quantitative measure of utility for an item ip in a

transaction Tq, is defined by u(ip,Tq) = lu(ip,Tq)×
eu(ip). For example, u(C,T1) = 18×1 = 18 , in Ta-

ble 1 & Table 2.

Definition 4. The utility of an itemset X
in a transaction Tq, denoted as u(X ,Tq), is de-

fined by u(X ,Tq) = Σip∈X u(ip,Tq), where X =
{i1, i2, i3, . . . ik} is a k-itemset, X ⊆ Tq and 1� k �m.

For example, u(AB,T6) = 1×3+1×10 = 13, in Ta-

ble 1 & Table 2.

Definition 5. The utility of an itemset X in DB is

defined as u(X) = ΣTq∈DB∧X⊆Tqu(X ,Tq). For exam-

ple, u(AB) = u(AB,T6)+u(AB,T9) = 13+13 = 26,

in Table 1 & Table 2.

Definition 6. The transaction utility of a transac-

tion Tq, denoted as tu(Tq), describes the total profit

of that transaction and it is defined by tu(Tq) =
Σip∈Tqu(ip,Tq). For example, tu(T5) = u(C,T5) +
u(E,T5) = 4+10 = 14, in Table 3.

Definition 7. The transaction weighted utility of an

itemset X is denoted as twu(X) and it is the sum of

the transaction utilities of all transactions contain-

ing X , i.e., twu(X) = ΣX⊆Tq∈DBtu(Tq). For example,

twu(AB) = tu(T6) + tu(T9) = 13+ 13 = 26, in Ta-

bles 1, 2 & 3.

Definition 8. The minimum utility threshold δ , is

given by the percentage of total transaction utility

values of the transaction database(Table 1). In Ta-

ble 3, the summation of all the transaction utility

values is 400. If δ is 35% (or we can also express

it as 0.35), then the minimum utility value can be

defined as minUtil = δ ×ΣTq∈DBtu(Tq). Therefore,

minUtil = 0.35×400 = 140.

Definition 9. An itemset X is high utility itemset, if

u(X)� minUtil.

Definition 10. An itemset X is high transaction

weighted utility itemset, if twu(X)� minUtil.
The high utility pattern mining is a process of

finding patterns with utility more than the specified

minimum utility threshold(δ).

3. Related Work

In this section, the related works are then described

below. They are high utility pattern mining, compact

form of high utility pattern mining in the context of

traditional databases and data streams respectively.

3.1. High Utility Pattern Mining

A theoretical model and basic definitions of high

utility mining were given by Yao et al. [1], in

which the authors have also identified two proper-

ties to limit the upper bounds of potential high util-

ity patterns, based on the values of utility and sup-

port of an itemset. However, these upper bounds

are too big to identify actual high utility patterns.

Hence, authors have modified these properties and

introduced two more properties called utility up-

per bound and expected utility upper bound. They

have also proposed two algorithms, called UMining

and UMining H [4], by incorporating these proper-

ties. Though, these algorithms minimized the upper

bounds value, still they generate candidate patterns

in each level and check every candidate by calculat-

ing its actual utility value. Thus, process of discov-

ering the useful patterns from the large number of

potential patterns is more complex and it needs sev-

eral database scans. Afterwards, an efficient prun-

ing strategy was introduced by Liu et al. [3], it fol-

lows the anti-monotone property. It is also called

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

519

Chiranjeevi Manike, Hari Om

Table 3. Transaction Utility

Tid T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

twu 23 71 12 14 14 13 111 57 13 72

as transaction weighted utility(twu) downward clo-

sure property. The correlation between the trans-

action weighted utility value and the actual utility

value of itemset is more positive than the earlier up-

per bounds. According to this strategy, the transac-

tion weighted utility of a super itemset is high, only

if its sub itemsets transaction weighted utilities are

high. This strategy never underestimates any low

utility itemsets, it rather overestimates (i.e., discov-

ers the patterns, where the actual utility of those pat-

terns is not more than the specified utility thresh-

old) some itemsets. This approach also suffers from

the level-wise candidate generation and test problem

like earlier approaches.

Later on, an efficient strategy called, IIDS (Iso-

lated Itemset Discarding Strategy) was introduced

by Li et al. [7]. Authors have adopted two efficient

share mining models [20, 21, 23], and applied IIDS

to these models to improve the performance of high

utility pattern mining algorithms, which are based

on the level-wise candidate generation-and-test ap-

proach. Although, the above algorithms effectively

reduce the number of potential patterns, still suf-

fers from the level-wise candidate generation-and-

test problem. To overcome the limitations of level-

wise approach, Erwin et al. [5] proposed an ap-

proach called CTU-Mine, which is based on the pat-

tern growth approach. In this approach, first each

item transaction weighted utility is accumulated by

scanning the database once, and then low transaction

weighted utility items are discarded, these items will

not be considered for further calculations. Since,

superset of a low twu itemset can not become high

utility itemset (i.e., according to the anti-monotone).

After processing all transactions with another scan

of the database, the information on remaining items

is kept in a CTU-Tree. During this step items in

each transaction are processed excluding discarded

items. Thus, the problem with level-wise candidate

generation-and-test approach is overcome, since, it

needs no candidate generation process and requires

maximum two database scans. Afterwards, exten-

sion works of CTU-Mine called CTU-PRO [22] and

CTU-PROL [6], were proposed to improve the per-

formance of high utility pattern mining by reducing

the number of candidate patterns. Later, many ap-

proaches were proposed in high utility pattern min-

ing based on the pattern growth approach.

A novel tree-based candidate pruning technique

called HUC-Prune, was proposed by Ahmed et

al. [8], this technique finds the cumulative sum of

transaction utilities of items and removes the items

that have low (i.e., twu is not more than the min-

imum utility threshold) transaction weighted util-

ity(twu). The remaining items are sorted in de-

scending order of their twu values. In second scan,

the items in each transaction are processed in the

same order and inserted into the tree. By using pat-

tern growth approach, it finds all high transaction

weighted utility patterns. In the final scan, it calcu-

lates the actual utilities of high transaction weighted

utility patterns and determines high utility patterns.

Afterwards, Tseng et al. [9] proposed an efficient ap-

proach called UP-Growth, in which several pruning

strategies have been applied to reduce the number of

candidate patterns in phase I of the Two-Phase al-

gorithm. Lin et al. [10] proposed an efficient tree

structure called HUP-Tree, and applied the HUP-

Growth mining algorithm. The HUP-Growth algo-

rithm achieved better performance over the Two-

Phase algorithm. Subsequently, many approaches

were proposed in the literature to improve the effi-

ciency of high utility pattern mining [11, 13].

On the other hand, the problem of mining high

utility patterns from evolving data streams becomes

more complex. Since, the transactions in the trans-

action data stream are arriving continuously with

rapid rate, and limited amount of memory and ex-

ecution time available to process. Tseng et al. [14]

first addressed the problem of high utility pattern

mining in the context of data streams and proposed

an efficient algorithm called THUI-Mine, using the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

520

Modified Algorithm of GUIDE(LM)

sliding window model. This approach, processes

the transactions in the data stream batch by batch

fashion. For each batch in the window, it finds

the transaction weighted utility of each item and

then discards the items which have low transaction

weighted utility. Next, it generates the candidate

2-itemstes and maintains their transaction weighted

utility value and information of window (i.e., in

which it has appeared) in a tree like structure. With

filtering threshold, this algorithm prunes the item-

sets during window sliding. Next, from high trans-

action weighted utility 2-itemsets, it generates a set

of candidate k-itemsets (k � 2). Finally, it does one

more database scan to find the actual high utility pat-

terns.

Like earlier approaches in the context of tra-

ditional databases, THUI-Mine also overestimates

many patterns, this leads to the increase in usage

of memory and processing time. Li et al. [15],

proposed another two efficient approaches namely

MHUI-TID and MHUI-BIT, in which the transac-

tion information is represented in the form of Tidlist

and Bitvector respectively. Then high transaction

weighted utility patterns (i.e., 1-itemsets) are iden-

tified by processing these lists, and the high trans-

action weighted candidate 2-itemsets are generated

and updated in a tree called LexTree. The Tidlist,

Bitvector representations and construction of Lex-

Tree for 2-itemsets facilitate optimal utilization of

resources, but for processing the itemsets of length

more than 2, they still depend on the level-wise

candidate generation-and-test approach. Moreover,

mining process becomes more complex to manage

(i.e., Tidlist, Bitvector), when the number of trans-

actions or items becomes more.

Afterwards, an approach called HUPMS [17],

was proposed based on the pattern growth approach,

in which the transaction utility of each transaction

in a batch is calculated, and items in each trans-

action are sorted according to lexicographic order.

Next, the items in each transaction are inserted in

HUS-Tree along with transaction utility value. Each

node in the HUS-Tree contains transaction utilities

in decreasing sequence to facilitate the easy dele-

tion when the window slides. To mine the high util-

ity patterns, pattern growth approach is applied to

generate all high transaction weighted utility pat-

terns. Finally, it performs one more scan to cal-

culate the actual utilities of patterns. Although,

the HUPMS achieved better performance as com-

pared to the MHUI-TID, still it generates many false

patterns. Therefore, in the context of traditional

databases and data streams, algorithms still suffers

from the problem of huge number of patterns when

the minimum utility threshold is set to low.

3.2. Maximal High Utility Patterns

To overcome the problem of discovering useful pat-

terns from the huge number of low utility pat-

terns, algorithms have adopted interesting alternates,

which are already been used in the frequent itemset

mining [19]. Alternatives which are used earlier in

frequent itemset mining are closed and maximal pat-

terns. So for, very few approaches are available in

the literature namely GUIDE [16], UMMI [12], and

GUIDE [18] for mining the maximal high utility pat-

terns. Based on the context of traditional databases,

an approach called UMMI, was proposed by Lin et

al. [12]. UMMI algorithm used a maximal item-

set property and lexicographic tree structure in min-

ing high utility patterns. Like earlier approaches,

UMMI also accumulates transaction weighted util-

ity of each item and discards the low transaction

weighted utility items. Next, remaining items are

sorted according to their transaction weighted util-

ity ascending order. In the next phase, items in each

transaction excluding discarded items are processed

in the above order. These items are updated in HTP-

Tree along with transaction utilities. Next, by apply-

ing pattern growth approach maximal high transac-

tion weighted utility patterns are discovered. By in-

serting all maximal high transaction weighted util-

ity patterns it builds MLexTree, then by doing last

scan of the database it updates the actual utility of

patterns. Finally, by tracing MLexTree, algorithm

generates all maximal high utility patterns.

To mine the non-redundant high utility patterns

from the data streams, an efficient algorithm called

GUIDE [16], was proposed, based on landmark win-

dow model. To generate potential maximal high

utility patterns, a procedure called transaction pro-

jection(TP), was used in this approach. The ex-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

521

Chiranjeevi Manike, Hari Om

perimental results shown that the GUIDE outper-

forms the Two-Phase algorithm. Later, same au-

thors were proposed an efficient framework namely

GUIDE [18], for each window model of the data

stream. In this framework, three algorithms are de-

signed: GUIDELM, GUIDESW and GUIDET F for

landmark window, sliding window, and time fading

window respectively. A common procedure called

transaction projection(TP), is used for generating

potential patterns from the transactions. First, from

each transaction, algorithms generates projections

and also calculates actual utilities in parallel. Next,

these projections are updated in a tree structure (i.e.,

MUI-Tree). To mine the patterns, algorithms use

an efficient bottom-up approach. During tree trac-

ing, if any node utility is more than the user spec-

ified minimum utility threshold, then it will send

the pattern corresponding to that node to the output,

and it skips checking the remaining nodes along this

path. Though, algorithm efficiently finds the maxi-

mal high utility patterns with single database scan,

it generates only approximate patterns. Therefore,

GUIDE framework failed to achieve the 100 percent

quality patterns.

3.3. Analysis of Patterns Generated by
Transaction Projection(TP)

Transaction Projection(TP) is a procedure which

is used for generating potential patterns in GUIDE

framework. Let us assume that a transaction con-

tains a set of items {i1, i2, i3, . . . , in}. Procedure

TP projects these items into all its postfixes i.e.,

{{i1, i2, i3, . . . , in},{i2i3, . . . , in},{i3, . . . , in}, . . . ,{in}}.

Then each postfix is projected again to get all its

prefixes, such as {i2, i3, . . . , in} is projected into

{{i2, i3, . . . , in},{i2, i3, . . . , i(n−1)}, . . . ,{i2, i3},{i2}}.

Therefore, the total number of projections generated

by TP from a transaction (if the transaction contains

n items) is n(n+ 1)/2. Consider Fig. 1, that repre-

sents the total search space for 5 items (i.e., A, B, C,

D and E). All patterns within the dotted line region

are the total number of projections generated by TP.

Example. Let us consider a transaction T, which

contains 5 items A, B, C, D, and E. The itemset

(i.e., a set of these five items) can be represented

as {A, B, C, D, E}/ {ABCDE}. According to the

above procedure (i.e., TP), first all postfixes of item-

set {A, B, C, D, E} are generated, i.e., {A, B, C,

D, E}, {B, C, D, E}, {C, D, E}, {D, E} and {E}.

Next, from each postfix set of all prefixes are gen-

erated, for example, prefixes {A, B, C, D}, {A,

B, C}, {A, B} and {A} are generated from post-

fix {A, B, C, D, E}. The same procedure is applied

to the remaining postfixes to get the complete set

of projections/itemsets from transaction T. All pat-

terns within the dotted line region (i.e., in Fig. 1)

are the projections generated by TP from transac-

tion T. The term pattern, itemset and projection are

used interchangeably in this paper. For our conve-

nience, we use the notation of itemset as {ABC}
instead of {A,B,C} in this paper. Suppose two

transactions T1 = {(i1,u1),(i2,u2),(i3,u3)} and T2 =
{(i1,u4),(i3,u5)} with items utility(i.e.,u1,u2 . . . ,u5)

values are updated in the MUI-Tree after generating

the projections. The projections generated from the

transactions T1 and T2, are the following:

{{i1, i2, i3} − (u1 + u2 + u3),{i2, i3} − (u2 +
u3),{i3} − (u3)} {{i1, i2} − (u1 + u2),{i1} − (u1)}
{{i2} − (u2)} {{i1, i3} − (u4 + u5),{i3} − (u5)}
{{i1}− (u4)}

Among these projections/patterns, the total util-

ity of the pattern {i1, i3} in the MUI-Tree is (u4+u5)
instead of (u1 + u3 + u4 + u5). Because the pattern

{i1, i3} is not generated from the transaction T1, it is

only generated from transaction T2. Therefore, the

GUIDE loss some patterns of this type while tracing

the MUI-Tree for high utility patterns. Hence the

quality of generated maximal patterns automatically

decreases.

4. Proposed algorithm MGUIDELM

In this section, we discuss our proposed modified

version of GUIDELM algorithm. Here we mainly

focus on the quality of patterns that are generated

by our procedure. To resolve the problem with

transaction projection of GUIDELM algorithm, we

have modified the procedure of transaction projec-

tion(TP) in such a way that it generates some addi-

tional patterns including the actual projections.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

522

Modified Algorithm of GUIDE(LM)

Fig. 1. Total search space for 5 items

4.1. Procedure of Generating Additional
Patterns

Let S = {i1, i2, i3, . . . , in},(n > 2) be a set of items

in a transaction, assuming the items in lexicographic

order. The following sets of itemsets of length 2 to

n-1 are generated from S.

2-itemsets {{i1}⋃
{i3},{i2}⋃{i5},{i3}⋃{i6}, . . . ,{i(n−2)}

⋃{in}}
3-itemsets {{i1} ⋃{i3, i4},{i2} ⋃{i4, i5},{i3}⋃
{i5, i6}, . . .{i(n−3)}

⋃{i(n−1), in},

4-itemsets {{i1}⋃{i3, i4, i5}, {i2}⋃{i4, i5, i6},{i3}⋃{i5, i6, i7}, . . . ,{i(n−4)}
⋃{i(n−2), i(n−1), in}}

k-itemsets {{i1}⋃{i3, i4, i5 . . . i(k+1)},{i2}⋃{i4, i5, i6
. . . i(k+2)},{i3}⋃{i5, i6, i7 . . . i(k+3)}, . . . ,{i(n−k)}⋃{i(n−k+2, . . . , i(n−1), in}}
Example. Consider the transaction database and

utility table in Tables 1 & 2 respectively. The trans-

action T2 contains the set of items {B, D, E}. So, the

generated additional pattern is {B, E} with utility

65. The actual projections generated by TP are {B,

D, E}, {D, E}, {E}, {B, D}, {B}, {D}. In Fig. 1, the

rounded content with dark line represents the addi-

tional patterns generated. The complete information

about the patterns after updating all transactions of

the transaction database (i.e., Table 1) in MUI-Tree

and MMUI-Tree are shown in Figs. 2 & 3, each el-

lipse contains a pattern and its utility.

The patterns which are represented by white el-

lipses in Fig. 2, contains the incomplete information.

The patterns {AD}, {ADE}, {ACE} and {CE} are

updated with utilities 9, 14, 12 and 55 instead of ac-

tual utilities (i.e., in Fig. 3) 36, 46, 51, and 85 re-

spectively. In Fig. 3, the MMUI-Tree contains ac-

tual projections and the additional patterns with ex-

act utility values. Following is our modified proce-

dure of transaction projection.

Procedure: Modified Transaction Projection

Input: A transaction Ti, n is the number of items

Output: Set of patterns of Tidk including transac-

tion projections, Pi +Pro jk.

1. Pi := φ
2. Stack Pro jk := φ
3. If n > 2

4. for i := 1 to n−1

5. additional patterns of length 2 to n−1

6. add patterns to Pi
7. end for
8. while Tidk �= φ
9. add Tidk,uTidk into Pro jk
10. Tidk temp = Tidk
11. while Tidk temp �= φ
12. prune the last item of Tidk temp
13. add Tidk temp into Pro jk
14. end while
15. prune the first item of Tidk
16. end while

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

523

Chiranjeevi Manike, Hari Om

A
24

AB
26

Root

B
240

C
50

D
36

E
50

AC
41

AD
9

BC
62

BD
172

CD
43

CE
55

DE
56

ACD
52

CDE
48

BCE
72

BDE
182

ACE
12

ADE
14

ACDE
57

Fig. 2. Updated MUI-Tree

A
24

AB
26

Root

B
240

C
50

D
36

E
50

AC
41

AD
36

BC
62

BD
172

CD
43

CE
85

DE
56

ACD
52

CDE
48

AE
33

ADE
46

BE
240

BCE
72

BDE
182

ACE
51

ACDE
57

Fig. 3. Updated MMUI-Tree

Above procedure generates additional patterns, only

if the number of items in a transaction is more

than 2. After generating patterns/projections from

a transaction, MMUI-Tree is constructed by insert-

ing all these patterns. In a header table [10], the

items are maintained in alphabetical order, each item

linked to its node in the MMUI-Tree. Thus, the pro-

cess of updating patterns utilities becomes more ef-

ficient. That is, the patterns with the same prefix as

the items will directly be identified from the header

table. Additional patterns with the same prefix as in

the projections will be processed in sequence. While

updating the MMUI-Tree, new node will be created

if that pattern does not exits, otherwise the utility of

that particular pattern will be incremented with new

utility.

When the system gets a query from a user, the

MMUI-Tree will be traced (traversed) using the

bottom-up approach, to efficiently identify high util-

ity maximal patterns. Tracing starts from the left-

most node and moves towards the root. While trac-

ing the nodes, if any node utility is more than the

user specified minimum utility threshold, the pattern

corresponding to that node is generated as a high

utility pattern. In that case, checking of remaining

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

524

Modified Algorithm of GUIDE(LM)

nodes along that path will be skipped and the pointer

will be move to the leaf node of the next path. Af-

ter generating all high utility patterns, the maximal

high utility patterns are identified using the subset

checking.

5. Experimental Results

In this Section, we show the performance of our ap-

proach under different parameters. We have ana-

lyzed the performance of our approach MGUIDELM
by comparing with that of the GUIDELM, the

MHUI-TID and THUI-Mine algorithms. All al-

gorithms are implemented in Java and the experi-

ments were performed on a PC with processor Intel

CoreT M i7 2600 CPU @ 3.40 GHZ , 2GB Memory

and Microsoft Windows 7 32-bit operating system.

Data sets were generated using IBM Synthetic

Dataset Generator [24], parameters used for data

sets generation are given in Table 4. The IBM data

set generator generates only the binary database, in

order to fit this in the real scenario, items purchased

quantities are generated randomly ranging from 1

to 5. The unit profits of all items are also gener-

ated randomly ranging from 1 to 20. In the real

scenario, lower profit items purchased quantities are

more, in other wards most items are in the low profit

range. Hence, the items unit profits are generated by

following the lognormal distribution, that is shown

in Fig. 4.

We have generated several data sets by varying

the parameters, and another Retail data set is also

used in our experiments, which is obtained from the

frequent itemset mining(FIMI) repository [25].

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

External Utility ($)

N
um

be
r

of
 I

te
m

s

Fig. 4. External utility distribution (Lognormal distribution)

5.1. Scalability of Modified MGUIDELM

In this subsection, we show the scalability perfor-

mance of algorithms. In this experiment, we have

used a data set T10I8DxK, in which, the number of

transactions (i.e., x) varies from 50K to 100K. The

minimum utility threshold is set to 0.5%. We have

analyzed the execution time and usage of memory,

by increasing the number of transactions. The ex-

perimental results shown in Fig. 5, the scalability of

the GUIDELM and MGUIDELM increases linearly

in similar fashion as shown in Fig. 5. Our method

is more efficient than the THUI-Mine and MHUI-

TID, but it is slightly inferior as compared to the

GUIDELM. Since, additional patterns are generated

to improve the quality of the patterns.

In the second experiment, we have used a data set

TxI8D50K, in which, the average number of items

per transaction (i.e., x) varies from 5 to 25 and the

minimum utility threshold is set to 0.8%. As the av-

erage number of items per transaction increases, the

density of the data set becomes increase; so, the ex-

ecution time and the memory requirement increases,

that is shown in Fig. 6. From Fig. 6, we can also ob-

serve that the execution time of the GUIDELM and

MGUIDELM algorithms increases linearly, whereas

in the case of THUI-Mine and MHUI-TID algo-

rithms, increases at much faster rate. Moreover,

memory usage and execution time of THUI-Mine

increases exponentially with increasing number of

transactions.

In the third experiment, we have used the data

set T10I8D50K, where the number of items has in-

creased from 0.5k to 2.5k and the minimum utility

threshold is set to 0.5%. As the number of items in a

data set increases, the distribution of items becomes

sparser. So the density of itemset becomes lower.

From the experimental results which are in Fig. 7,

we can observe that the increasing number of items

has made no significant effect on the execution time

of any algorithm.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

525

Chiranjeevi Manike, Hari Om

Table 4. Parameter settings for synthetic data generation

Parameter Description Values

nitems Number of distinct items 0.5k,1k,1.5k,2k,2.5k

tlen Average items per transaction 5,10,15,20,25

patlen Average length of maximal pattern 4,6,8,10,12,14

ntrans Number of transactions 50k,60k,70k,80k,90k,100k

quantity Purchased quantity of an item 1-5

profit Unit profit of each item 1-20

50 60 70 80 90 100
0

500

1000

1500

Number of transaction(k)

M
em

or
y

C
on

su
m

ed
(M

B
)

GUIDE(LM)
MGUIDE(LM)
MHUI−TID
THUI−Mine

(a) Memory Consumption

50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

Number of transaction(k)

E
xe

cu
tio

n
T

im
e(

Se
c.

)

GUIDE(LM)
MGUIDE(LM)
MHUI−TID
THUI−Mine

(b) Execution Time

Fig. 5: Performance with varying number of transactions

5.2. Performance of Modified MGUIDELM With
Minimum Utility Variation

500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

Number of items

E
xe

cu
tio

n
T

im
e(

Se
c.

)

GUIDE(LM)
MGUIDE(LM)
MHUI−TID
THUI−Mine

Fig. 7. Execution time vs. Number of items

In this experiment, we have used the Retail data

set, in which the number of transactions, number of

distinct items, average length of items per transac-

tion and maximal pattern length are 88162, 16470,

10.3, and 76, respectively. This data set contains

too many patterns at low utility ranges, thus, exe-

cution time and memory requirements of all algo-

rithms becomes high at minimum utility threshold

0.1%, that we can observe from Fig. 8. The per-

formance of all algorithms increases as we increase

the minimum utility thresholds. There is slight vari-

ation in execution time and memory requirements

of the GUIDELM and MGUIDELM. Since, when

the data set becomes sparser the performance of the

MGUIDELM matches that of the GUIDELM.

In the next experiment, we have investigated

the quality of generated patterns. To evaluate the

performance of proposed algorithm we have per-

formed several experiments on synthetic data set

(i.e., T10I4D100K) with varying minimum utility

threshold. Results are shown in Table 5, from this

table we can observe that the number of HUIs, Max-

HUIs and Actual HUIs are decreasing with increas-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

526

Modified Algorithm of GUIDE(LM)

5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

Avg number of items per transaction

M
em

or
y

C
on

su
m

ed
 (

M
B

)

GUIDE(LM)
MGUIDE(LM)
MHUI−TID
THUI−Mine

(a) Memory Consumption

5 10 15 20 25 30
0

100

200

300

400

500

Avg. number of items per transaction

E
xe

cu
tio

n
T

im
e(

Se
c.

)

GUIDE(LM)
MGUIDE(LM)
MHUI−TID
THUI−Mine

(b) Execution Time

Fig. 6: Performance with varying average number of items per transaction

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

Minimum utility threshold(%)

M
em

or
y

C
on

su
m

ed
(M

B
)

GUIDE(LM)
MGUIDE(LM)
THUI−Mine
MHUI−TID

(a) Memory Consumption

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

500

1000

1500

2000

2500

Minimum utility threshold(%)

E
xe

cu
tio

n
T

im
e(

Se
c.

)

GUIDE(LM)
MGUIDE(LM)
MHUI−TID
THUI−Mine

(b) Execution Time

Fig. 8: Performance on Retail dataset

ing minimum utility thresholds. The quality of pat-

terns is measured using a measure called precision,

equation (1) is used to calculate this value. From Ta-

ble 5, we can observe that the quality of generated

patterns, increasing with minimum utility threshold,

since, at the lowest minimum utility threshold, num-

ber of patterns will be more. At minimum utility

threshold 0.1%, our approach generated 910 Max-

HUIs among 12350 HUIs. It effectively reduces

92.63% redundant patterns. Furthermore, with our

modified procedure we have achieved the average

precision about 91.03%(i.e., the accuracy of the gen-

erated patterns is 91.03%), which is comparatively

better than the average precision of GUIDELM (i.e.

83%). Therefore, inclusion of additional patterns

significantly improved the quality of generated max-

imal patterns.

precision =
|MaxHUI ∩Actual MaxHUI|

|MaxHUI| ×100%

(1)

In the above all experiments, the GUIDELM and

MGUIDELM performed better than the THUI-Mine

and MHUI-TID methods. Since, the THUI-Mine

and MHUI-TID methods need to store all trans-

actions in the window and require more than 2

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

527

Chiranjeevi Manike, Hari Om

Table 5. Quality of Patterns

MinUtil #HUI #Actual MaxHUI #MaxHUI Precision

0.1 12350 1111 910 81.90

0.2 3435 309 278 89.96

0.3 1574 141 128 90.78

0.4 879 79 72 91.13

0.5 555 49 45 91.83

0.6 376 33 30 90.90

0.7 271 24 23 95.83

0.8 199 17 16 94.11

0.9 149 14 13 92.85

database scans.

6. Conclusions

In this paper, we have proposed the modified ver-

sion of GUIDELM to overcome the problem with

projections generated by the transaction projection

of the GUIDELM algorithm to improve the quality

of patterns with exact utilities. Our extended pro-

cedure generates few additional patterns, including

the projections that are used effectively to maintain

the complete information of patterns in the tree. Our

approach provides the quality of patterns as 91.03%

as compared to the 83% provided by the GUIDELM
algorithm. We understand that the quality of pat-

terns may be correlated with distribution of items in

transactions that will be the future work.

References

1. H. Yao, H. J. Hamilton and C. J. Butz, “A foundational
approach to mining itemset utilities from databases,”
SIAM Int. conf. on data mining, 482-486 (2004).

2. R. Agrawal, R. Srikant,“Fast algorithms for mining
association rules,” In Proc. Int. Conf. Very Large Data
Bases, VLDB,1215, 487-499 (1994).

3. Y. Liu, W.-k. Liao and A. Choudhary,“A two-phase al-
gorithm for fast discovery of high utility itemsets,” In
Advances in Knowledge Discovery and Data Mining,
689-695 (2005).

4. H. Yao, H. J. Hamilton,“Mining itemset utilities from
transaction databases,” Data and Knowledge Engi-
neering, 59(3), 603-626 (2006).

5. A. Erwin, R. P. Gopalan and N. Achuthan, “CTU-
Mine: An efficient high utility itemset mining algo-

rithm using the pattern growth approach,” In Proc. of
IEEE Int. Conf. on Computer and Information Tech-
nology, 71-76 (2007).

6. A. Erwin, R. P. Gopalan and N. Achuthan, “Efficient
mining of high utility itemsets from large datasets,”
Advances in Knowledge Discovery and Data Mining,
554-561 (2008).

7. Y.-C. Li, J.-S. Yeh and C.-C. Chang, “Isolated items
discarding strategy for discovering high utility item-
sets,” Data and Knowledge Engineering, 64(1), 198-
217 (2008).

8. C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong and Y.-K.
Lee, “An efficient candidate pruning technique for
high utility pattern mining,” Advances in Knowledge
Discovery and Data Mining, 749-756 (2009).

9. V. S. Tseng, C.-W. Wu, B.-E. Shie and P. S. Yu, “UP-
Growth: an efficient algorithm for high utility item-
set mining,” Proc. of 16th ACM SIGKDD Int. Conf.
on Knowledge discovery and data mining, 253-262
(2010).

10. C.-W. Lin, T.-P. Hong and W.-H. Lu, “An effective tree
structure for mining high utility itemsets,” Expert Sys-
tems with Applications, 38(6), 7419-7424 (2011).

11. C.-W. Lin, G.-C. Lan and T.-P. Hong, “An incremen-
tal mining algorithm for high utility itemsets,” Expert
Systems with Applications, 39(8), 7173-7180 (2012).

12. M.-Y. Lin, T.-F. Tu and S.-C. Hsueh, “High utility pat-
tern mining using the maximal itemset property and
lexicographic tree structures,” Information Sciences,
215, 1-14 (2012).

13. M. Liu, J. Qu, “Mining high utility itemsets without
candidate generation,” Proc. of ACM Int. Conf. on In-
formation and knowledge management, 55-64 (2012).

14. V. S. Tseng, C.-J. Chu and T. Liang, “Efficient mining
of temporal high utility itemsets from data streams,”
Second Int. Workshop on Utility-Based Data Mining,
18, (2006).

15. H.-F. Li, H.-Y. Huang, Y.-C. Chen, Y.-J. Liu and S.-Y.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

528

Modified Algorithm of GUIDE(LM)

Lee, “Fast and memory efficient mining of high utility
itemsets in data streams,” In Proc. of IEEE Int. Con.
on Data Mining, 881-886. (2008).

16. B.-E. Shie, V. S. Tseng and P. S. Yu, “Online min-
ing of temporal maximal utility itemsets from data
streams,” In Proc. of the 2010 ACM Symposium on
Applied Computing, 1622-1626 (2010).

17. C. F. Ahmed, S. K. Tanbeer and B.-S. Jeong, “Effi-
cient mining of high utility patterns over data streams
with a sliding window method,” In Software Engi-
neering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing, 99-113 (2010).

18. B.-E. Shie, P. S. Yu and V. S. Tseng, “Efficient algo-
rithms for mining maximal high utility itemsets from
data streams with different models,” Expert Systems
with Applications, 39(17), 12947-12960 (2012).

19. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal,
”Discovering frequent closed itemsets for association
rules,” In Database TheoryICDT99, 398-416 (1999).

20. Y. C. Li, J. S. Yeh and C. C. Chang, ”A fast algorithm

for mining share-frequent itemsets,” In Web Tech-
nologies Research and Development-APWeb, 417-428
(2005).

21. Y. C. Yeh, L. J. S., and C. C. Chang, ”Efficient
algorithm for mining share-frequent itmesets,” In
Proc.of the 11th Int. Fuzzy Systems Association World
Congress, 1,(2005).

22. A. Erwin, R. P. Gopalan, and N. R. Achuthan, ”A
bottom-up projection based algorithm for mining high
utility itemsets,” In Proc. of the 2nd Int. workshop on
Integrating artificial intelligence and data mining, 84,
3-11 (2007).

23. Y. -C. Li, J. S. Yeh and C. C. Chang, ”Direct can-
didates generation: a novel algorithm for discovering
complete share-frequent itemsets,” Fuzzy Systems and
Knowledge Discovery, 551-560, (2005).

24. http://www.almaden.ibm.com/software/projects/hdb
/resources.shtml.

25. http://fimi.ua.ac.be/data/.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

529

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

