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Abstract

This paper introduces a new type of statistical model: the interval-valued linear model, which describes
the linear relationship between an interval-valued output random variable and real-valued input variables.
Firstly, notions of variance and covariance of set-valued and interval-valued random variables are intro-
duced. Then, we give the definition of the interval-valued linear model and its least square estimator
(LSE), as well as some properties of the LSE. Thirdly, we show that, whereas the best linear unbiased
estimation does not exist, the best binary linear unbiased estimator exists and it is the LSE. Finally, we
present simulation experiments and an application example regarding temperatures of cities affected by
their latitude, which illustrates the application of the proposed model.

Keywords: interval-valued linear model, least square estimation, best binary linear unbiased estimation,

D, metric.

1. Introduction

Traditional statistical models have played a signifi-
cant role in a wide range of areas. However, in real
life situations, many problems cannot be handled by
traditional statistical models due to imperfectness of
data. Therefore, specialized statistical techniques
are needed. In many practical cases, we have to face
a particular kind of imperfect data: interval-valued
data®%13,

Interval-valued data may represent uncertainty or
variability. In the former case, the interval data rep-
resent incomplete observations, i.e., we just know
the true data belong to a range (an interval), rather
than precise values. For example, researchers test

the service life of a group of products, such as light
bulbs. Since testing time is very long, they cannot
stay in the laboratory at any time. Alternatively, they
could come to the laboratory to observe how many
bulbs are burnt out every two or three hours. Thus,
the data of service life of bulbs are interval-valued.
In contrast, in the variability case, an interval is not
interpreted as a set containing a single true value,
but the observation themselves are interval-valued.
For instance, a weather forecast typically provides
the highest and lowest temperature of the next day,
which is an interval including almost all the useful
information about tomorrow’s temperature. This in-
terval reflects the variability of temperature in one
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day.

The linear model is probably the simplest and
most frequently-used statistical model. It describes
a random output variable influenced by a few input
variables and an error term in a linear way. In this
paper, we consider the situation of interval-valued
observations, i.e., the output variable is an interval-
valued random variable, which is determined by
real-valued variables in a linear way. This interval-
valued linear model could play a significant role in
dealing with imperfect data, e.g., to investigate how
(interval-valued) temperature is impacted by (point-
valued) intensity of solar radiation, air pressure, lat-
itude of location, or the statistical relationship be-
tween interval-valued service life of light bulbs and
point-valued properties of materials used in making
bulbs.

Interval-valued random variables are a special
kind of set-valued random variables, whose values
are compact convex subsets of real line R'. Since
we have at our disposal many results on the theory
of set-valued random variables!®1%2?  this is a suit-
able framework to tackle the problem addressed in
this paper. Until recently, however, there has been
only a few works discussing the variance and co-
variance of set-valued random variables, since the
difference between two sets is difficult to define and
the hyperspace (e.g., the space of all intervals) is not
linear with respect to addition and multiplication.
Vital?® studied the metric for compact convex sets
via the support functions. In 2005, Yang and Li%’,
Yang?® investigated the d, metric for sets and the
D, metric in the space of set-valued random vari-
ables. They proposed to use the D, metric to de-
fine the variance and covariance of set-valued and
interval-valued random variables, which proved to
be a good approach to deal with this problem. In
Chapter 5 of Yang?®, the author also built a linear
regression model with interval-valued regression co-
efficients. The underlying space in the above two
papers is R, In 2008, Blanco et al.* defined dg-
variance for interval-valued random variables with
underlying space being R', which is a special case
of Yang and Li?’ and Yang?3.

Other authors studied interval-valued and set-
valued statistical models. Tanaka and Lee?! intro-

duced the interval linear regression model, which
is not based on the interval-valued random variable
framework, and estimated the coefficients using a
quadratic optimization method. Blanco-Fernandez
et al.’> and Sinova et al.?” investigated the linear re-
lationship between two interval-valued random vari-
ables considering the input variable as two real-
valued random variables (center and radius of the
interval). They gave the LSE of the coefficients un-
der the d> metric of intervals. Blanco-Fernandez et
al.® studied the strong consistency and asymptotic
distributions of the LSE. Hsu and Wu'# investigated
interval-valued time series and gave three evalua-
tion criteria of estimation and forecast efficiency
for interval-valued time series. Wang and Li** in-
troduced a new type of interval-valued time series
(the interval autoregressive time series model) and
gave the estimation method of parameters and fore-
cast method based on the evaluation criteria. Wang
and Li® investigated set-valued and interval-valued
stationary time series, which is based on the defi-
nition of variance and covariance of set-valued and
interval-valued random variables introduced in Yang
and Li*’ and Yang?®.

In this paper, we start with the set-valued frame-
work and consider interval-valued random variables
as a special case. We then introduce the interval-
valued linear model and its LSE, prove its unbiased-
ness and discuss the best binary unbiased estimation.
Treating an interval-valued random variable as two
separate point-valued random variables (the left- and
right-endpoints of the interval, or the center and ra-
dius of the interval) has some drawbacks. One rea-
son is that it is possible to obtain estimation or fore-
cast results such that the left-endpoint is larger than
the right-endpoint, because these two linear models
are unrelated. In this paper, we also show the limita-
tion of using two separate linear models in terms of
forecast efficiency via a simulation experiment.

This paper is a complete version of the results
presented by the authors?®. The organization of this
paper is as follows. In Section 2, we define the vari-
ance and covariance of set-valued random variables
based on the d, metric for sets and the D, metric
for interval-valued random variables. In Section 3,
we introduce the interval-valued linear model and its
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LSE, prove the unbiasedness of this LSE and give
the covariance matrix of this estimator. Section 4
shows that the best linear unbiased estimation does
not exist in general, but the best binary linear unbi-
ased estimation (BBLUE) exists, is unique and equal
to the LSE. In Section 5, we present a simulation
study to show the methodology, and illustrate the ef-
ficiency of estimation method introduced in Sections
3 and 4. We then present another simulation exper-
iment to compare our model with using two sepa-
rate linear models. Finally, in Section 6, we use the
interval-valued linear model to investigate the rela-
tionship between city temperature and latitude. This
example also shows how this model can be used to
deal with some practical problems.

2. Variance and Covariance of Set-Valued
Random Variables

2.1. d, Metric of Sets

In this section, we assume that (Q,.o7, P) is a proba-
bility space, (£, ]| - || 2-) is a Banach space, K(.2")
is the family of all nonempty closed subsets of 27,
K. (2") is the family of all nonempty compact con-
vex subsets of 2.

For any A,B € K(2"),A € R, define

A+B={a+b:acA,bec B},
A ={Aa:acA},
and denote
A®B=cla+b:acAbecB}.

IfA,B € Ki.(2), then A+ B € K;o(2).
For each A € K.(Z), the support function is
defined by

s(x*,A) =sup{x*(a):a€ A}, x'e€27,

where 27" is the dual space of 2, i.e., the set of
all bounded linear functionals on 2 . For exam-
ple, if 2" =R!, 2* = R!. Take an interval [a,b]
with 0 < a < b, x € R}, then the support function
. bx, x>0
is s(x, [a,b]) = { ax, x < 0
has the following properties:

s(x*A®B) =s(x",A+B) = s(x",A) +s(x*,B),

. The support function

Interval-Valued Linear Model

s(x*;AA) = As(x",A), A >0.

For 1 < p < oo, take A, B € Ky.(Z"). We define
the metric d, on Ki.(27)>1327 by

1/p
ay(A.B) = | [ 15t .) = s B |
S*

where S* is the unit sphere of 27, ie. S* =
{x* € 2% . |x*||2+ = 1}, u is a measure on
Remark 2.1. If 2" =R!, then K;.(R!) = {[a,b] :
—oo < a < b < oo} is the family of all intervals on
R'. IfA1, Az € Kie(RY) with Ay = [a1,b1] = (c1371),
Ay = [az,ba] = (c2;12), where ¢; = (a; +b;)/2 and
ri = (bj—a;)/2 fori=1,2, then

A1 +Ay = a1 +az, by +by) = (c1 +cosr1 +12),

kA] = (kcl; \k|r1),

and

dp(A1,42) = [Jaz — a1 [P + [by — by |P]"/P
= H(Cz—cl)—(rz—r1)|p+!(02—01)+(F2—V1)|p]%-

Theorem 2.1. 27 (K;.(R%),d,) is a complete, sep-
arable metric space for each p € [1,00).

2.2. D, Metric Space of Set-Valued Random
Variables

A set-valued mapping F : Q — K(.2") is called a set-
valued random variable' '3 if, for each open subset
O of 2, F1(0) € o, where F71(0) = {w € Q:
F(w)NO # 0} and 0 is the empty set. Any two set-
valued random variables are considered identical if
Fi(®) = F>(o) for almost every @ € Q (for short,
denoted by "a.s.(P)").

Let % [Q,Ki.(2Z")] denote the family of set-
valued random variables taking values in K.(.Z").
The D, metric?’ with respect to set-valued random
variables is defined by

Dy(Fi, ) = [E(d}(Fi(0), F2(0)))]'/7,

where F1,F> € % [Q,Ki(27)].
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Remark 2.2. If 2 = R!, %Z[Q K. (2)] =
% [Q,Ki(RY)] is the family of all interval-valued
random variables. For F; € %[Q,Ki.(RY)],
Fi(0) = [f(0),8(0)] = (c(@):r(w)), where
fi(w),gi(w) are random variables and f;j(®) <
gi(0), and (@) = (fi(®) + g(0))/2,1(0) =
(gi(w) — fi(w))/2, i = 1,2. By the definition of D,,,
we have

Dy (Fi(0), F2(®))
= [Elf2(®)~ fi(@)]" +Elg2(@) —g1(@)|]/?
= [El(c2(@) = c1(@)) = (n(0) —ri(w))[”

+E|(c2(®) —c1(w)

(

Denote ZP[Q K (Z2)] = {F : F €
U9 Kio(2)E[|F||; ] < +eo}. Then we have
the following theorem:

Theorem 2.2. ?7 (£P[Q,K;.(RY)],D,) is a com-
plete metric space for each p € [1,0).

2.3. Variance and Covariance of Set-Valued
Random Variables

The expectation of a set-valued random variable F
was introduced by Aumann?.

Definition 2.1. For each integrable set-valued ran-
dom variable F, which means S(F) # 0 has finite
expectation, the Aumann integral of F, denoted by

E[F), is defined by

E[F]z{/QfdP:fesF},

where Sp = {f : f(®0) € F(®) a.s.(P) and f is
integrable} is called the selection of set-valued ran-
dom variable F, jg fdP is the usual Bochner inte-
gral.

The properties of the expectation of set-valued
random variables have been discussed'"!®. How-
ever, since the space of subsets of 2 is not a lin-
ear space with respect to the addition and multipli-
cation, the minus between two sets is difficult to de-
fine. Thus, extending the important notions of vari-
ance and covariance to the case of set-valued ran-
dom variables is not a trivial task. Yang and Li*’
proposed to define the variance and covariance us-
ing the D), metric on % [Q, K (R9)], based on the
fact that the support functions of sets are subtractive.

)+ (r2(@) = ri(@))"]'/7.

Definition 2.2. For each set-valued random vari-
able F € % [Q,Ki.(Z)|, the variance of F, denoted
by Var(F), is defined as

Var(F) = [D(F,E(F))]*
- E /[s(x*,F(w))—s(x*,E(F(w)))]zdu
J

For two set-valued random variables Fi,F, €
U Q,Ki.(Z)], the covariance of Fi and F, de-
noted by Cov(F1,F,), is defined as

COV(Fl,Fz) = E{/[s(x*’Fl((t)))—s(x*’E(Fl))]
S+
[s(X*,Fz(w))—s(x*,E(Fz))]du}-

The correlation coefficient of F| and F,, denoted by
p(F1,Fy), is defined as

_ Cov(F,R)
p(F,F2) = V/Var(F) - Var(FR)

The variance and covariance of set-valued ran-
dom variables have the following properties. The
proofs of Theorems 2.3-2.5 can be found in Wang
and Li%.

Theorem 2.3. The variance Var(F) of F €
U Q,Ki.(Z)] has the following properties:

(1) Var(C) = 0 for any constant C € K.(Z").

(2) Var(aF) = a*Var(F) for any a > 0.

(3) Var(Fy + F») = Var(F) + 2Cov(F},F,) +
Var(F,).

(4) (Chebyshev Inequality) P(d,(F,E(F)) >
€)) < Var(F)/€?, for any € > 0.

Theorem 2.4. The covariance Cov(F\,F,) of
Fi,F, € U [Q,Ki.(Z)] has the following proper-
ties:

(1) Cov(aF,,F,) = Cov(F,aF,) = aCov(Fi,F,)
forany a > 0.

(2) Cov(Fy, + F,,F3) = Cov(F,F) +
Cov(F,,F3), Cov(Fi,F, + F3) = Cov(Fi,F) +
Cov(F,F).
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Theorem 2.5. For any two interval-valued
random variables X;(®) = [a;(®),b;(w)] =
(ci(@)ir (@), X2(0) = [w(o)b(@)] =
(c2(@);r2(w)), where ci(®) = (a;(®) + bi(w))/2
is the center and ri(®) = (bj(®) — a;(®))/2 is the
radius of X;(®), i = 1,2, their covariance matrix is

Cov(X)(®),X>())
Cov(ai(w),ax(w)) + Cov(bi(®),br(w))
= 2Cov(ci1(m),c2(®)) +2Cov(ri (), rn()).

Remark 2.3. For an interval-valued random vari-
able F € %[Q,Ki(RY)], denoted as F(®) =
(). g(@)] = (c(@):r(0)), where f(0), g(®) arc
real-valued random variables and f(w) < g(®),
c(w) = (f(0)+8(0))/2,r(0) = (g(®) - f(®))/2.
by the definition of Aumann integral and variance of
set-valued random variables, we have

E(F(0)) = [E(f(0)), E(g(0))] = (E(c(0)); E(r(®)))

= E(|f(0)-E(f)I) +E(lg(0) —E(9)])
= )= (r(@) —E(n))
(€)+ (r(@) = E(n)P).
For interval-valued random variables F|,F, €
U QK (R)],
Cov(Fi(o),F(®))
= E([filo)=E(f)]lf2(0) = E(f2)])
+E(|g1(0) — E(g1)|g2(®) — E(g2)1)
= E(|ei(@) = E(c1) = (r(®) —E(r1))|
c2(@) — E(c2) — (r2(@) — E(r2))])
TE(Jcr(@) = E(c1) + (ri(@) — E(r1))]
|c2(@) = E(c2) + (r2(@) — E(r2))]).

3. Interval-Valued Linear Model and Least
Square Estimation

In this section, we consider an interval-valued linear
model with the following general form

E(y) =XB, (1)

Interval-Valued Linear Model

where y = (y1,y2,--+,yn)7 is an n-dimensional vec-
tor of interval-valued observations, X = (x;;);/] -1
is an n x p design matrix, B = (B, B2, - -

7ﬁp)T isa
p % 1 interval-valued parameter vector.
Definition 3.1. If (yi;xi1, %, ,Xip),i = 1,2,--,n
are n independent observations of interval-valued
linear model (1), the least square estimator (LSE) of
unknown parameters [3 is the estimator which mini-
mizes d>(y, X B).

From the definition of the d), metric, we have

d3(y,XB)

n
= Zd%()’iyxilﬁl +xBr 4+, +xipBp)
i=1
n
= Y [(ey —xiep, — - —xipcp,)
i=1
—(ry, — x| rg, — -+ — |xiplr,)I?
n
+ Z[(C}’i —Xj1Cp, — - fx,-pclgp)
i=1
+(ry, — i lrg, — -+ = |xiplrp, )I?
n
= 2 [(cy —xncp, = —xipcp, )’
i=1
+(ry, — |xia|rg, =+ = xiplrg, )7,

where ¢, and r4 stand for the center and radius of in-
terval A respectively. This is a quadratic function of
CB» e 1CB, s TBys 5 Tp, and d3(y,XB) > 0, so there
exists a minimum value, which satisfies

0 2 2
d2(y’XB):0’ adZ(y’Xﬁ):O,]ZI,Z,,p,
deg, drg,
that is
X (e —xincp =+ = xipcg, )(—i) =0

,Zl(ryi = |xi|rp, =+ = |xip[rp, ) (—xij) =0,

1=

for j=1,2,---, p. Rewriting these equations in ma-
trix form, we get

{ XTey=X"Xcp

X[Try = X|T|X]rp, @

where [X| = (|xi; )10} ;-
We conclude the above discussions by the fol-
lowing theorem.
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Theorem 3.1. If rank(X) = rank(|X|) = p, the LSE
of the interval-valued linear model (1), denoted as

Brs, is unique and

Brs = (XTX)7'XTeys(

)7HXTr). 3

Moreover, we may obtain following theorems
about the LSE fys.
Theorem 3.2. The LSE B is an unbiased estimator

of B.

Cov(Byy.BY)

Proof Since E(y) = X8 = (Xcg;Xrg), we have

E(Brs)
= E(X" X)X ey (XTI X| )

= ((X"X)7'XTE(cey): (IX[" X)X E(ry))
= ((XTX) XX eps (XITIXD X |X |rp)
— (cpirg)=B.0
Theorem 3.3. If E(y) = XB, rank(X) =
rank(|X|) = p and Cov(cy) = cilzln, Cov(ry) = 031,

then the covariance matrix of PBrs is

Cov(Bys) =207 (X" X) ™" + 203 (|x|"|x]) !

Proof By Theorem 2.5, we obtain

= Cov (1)~ X e [XIT XD 1X I ) - (17 X)X [0X T IX D~ 1XI T ) )

- 2COV([(XTX)*IXT](TI.)@,[(XTX)*le](Tj)cy)+2COV([(\X| FORD (A

3 LX) XTI

= 2[(x"X)7'X"] Cov (e ) [(XTX)TIX ) + 2[(1X | 1X]) 7 X[ ]Gy Cov (m) [(IX T IX D 71X ] ),

where B\L(ls) represents the i-th element of vector BLS
and A(;) stands for the i-th line of matrix A. There-
fore,

COV(ELS)
= 2(XTX)"'XTCov(c,)X (XTx)™!
21X [ |1x D)~ Hx| Cov (ry) X |(1X | 1X]) !
= 207 (X"X)"" +207(1X|" X))~

4. Best Linear Unbiased and Binary Linear
Unbiased Estimation

4.1. Best Linear Unbiased Estimation

Given n interval-valued data from the interval-
valued linear model (1), y; = [ay,,by,] = (cy;;1y,) for
i=1,2,---,n, the best linear unbiased estimator is a

T

linear combination of yi, vz, ,yy,

Bi=Aiyi+Apyr+-+Apya = Ay, )

j=1,2,--- p, and the estimation is unbiased, that
is,
E(Bj) = Bj-
Let B; = [ap,,bp;| = (cp,;;7p;)- By (1) and (4), we
have
EB) = A[E()=A]( )

= (A Xeps |47 (X[rg),

where [A;| = (|A4j1], A, Therefore we

obtain

AAjal)T

E(B) = (AXeg: |Al|X|rg), ®)
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where
;Ll; M1 A Ain
A= A _ b Ax Aoy,
and
Ml'; An| || At
NI L I I Y
Mp‘T M‘pl‘ Mp2| |lpn|

On the other hand, since 3 is unbiased,

~

E(B) = (cp:rp)- (6)
Therefore, by (5) and (6), we have
AX =1,, |A||X|=1,. (7)

Unfortunately, the solution of (7) does not ex-
ist in general. For the case p > 1, we consider the
interval-valued linear regression model as an exam-
ple:

E(y) = Bi + B2 X,

where X» = (x12,X22, -+ ,Xs2)" . In this case,

A1 A Ain
A—
( A A2 A2 >’
|A| — < |A'11’ |A‘12’ ‘lln‘ >
|A21] | A22] |A2n]

and ,
¥ ( 1 1 - 1 ) ’
X21 X2 v Xon
then the second equation of (7) is

n

n
Y il =1, Y [Aullxail =0,
i=1

i=1
n
Z MQ,’HXZI" =1.
i=1

=

n
Y [ =0,
i=1

Interval-Valued Linear Model

It is obvious that these equations are contradictory.
For the case p =1,

X11

E(y)=

then (7) becomes

n n
Y Mixa =1, Y [dillxa | = 1.
i=1 i=1

Therefore, a linear unbiased estimator exists only if
Xi1 = O,i = 1,2,-~- , 1.

4.2. Best Binary Linear Unbiased Estimation

From the above discussions, we know that, for the
interval-valued linear model (1), the best linear un-
biased estimator does not exist in general, which is
a major difference with the traditional linear model.
However, for the interval-valued linear model, we
can introduce a new type of estimation: the binary
best linear unbiased estimation, which has some in-
teresting statistical properties.

Definition 4.1. The binary linear combination of
interval-valued data y; = [ay,,by,] = (cy,iry,),i =
1,2,--- ,n with coefficient k;,I; (I; > 0) is defined as

(kicy,-;liry;> = (i kicy,-; ilﬂ‘yl) .
i=1

i=1

-

i=1

Definition 4.2. An estimator of an interval-valued
parameter is called a binary linear estimator, if it is
a binary linear combination of interval-valued ob-
servations. Assume that 0 is a binary linear estima-
tor of interval-valued parameter 0. If 0 is unbiased
and, for any binary linear unbiased estimator 0* of
0,

~

Var(6*) > Var(6),

9 is called best binary linear unbiased estimator
(BBLUE) of 6.
If 6 is a p-dimensional vector of interval-

o~

valued parameter, Var(6*) > Var(0) in this defini-

~

tion means that Cov(6*) — Cov(6) is a nonnegative
definite matrix.
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Theorem 4.1. If E(y) = XB, rank(X) =
rank(|X|) = p and Cov(cy) = 671,, Cov(ry) = 031y,
then the LSE Pys is the unique BBLUE.

Proof By Theorem 3.2,

Bus = (X" X) 7' X ey (IXIT1X]) 71 X[ ry)

is an unbiased estimator of 3, and binary linearity
of Brs is obvious. Therefore, we just need to prove

that the covariance matrix of B¢ is the minimum one
among all binary linear unbiased estimators.
Assume that

Pi(y) = Z(k}k'icyﬁl;iryi)a l;i =0
i=1
is a binary linear unbiased estimate of 3;, then
@(y) = (K"cy;l7ry)

is a binary linear unbiased estimator of 3, where

and [* > 0. By the unbiasedness of ¢(y),

E(p(y)) = (KE(cy);l"E(ry)) = (k' Xep; [ X]rg)
= (CB;I”ﬁ), VCﬁ,FﬁERp.

Hence we have
KX =1, I"|X| =1, ()
By Theorem 2.5,

Cov(@i(y),9;(y))

n n

. * . *
= Cov ( Z kimcym’ Z limr)’m>’

m=1 m=1

n n
* . *
(X Kinens X trs.)
m=1 m=1

Then, we obtain

kiv kiy - kg,
e | B,
k;] k;2 k:m
and
By Iy -
P TR
l;1 122 l;n
Cov(g(y))

= E{[k*cy—kl*ry—(CB—}—rﬁ)][k*cy—{—l*ry—(cl;—|—rﬁ)]T}+E{[k*cy—l*ry—(Cﬁ—rﬁ)”k*c},—l*ry—(clg—rﬁ)]T}
= E{[k*cy+l*’"y_((XTX)_IXTCy+(|X|T|X|)_1‘X|T’”y)][k*cy+l*’"y_((XTX)_]XTCy+(|X|T|X|)_1|X|T’”y)}T}

+Cov((XTX) X ey + (IX|T1X]) 7 |X[Ty)

FE{[K ey + 1y = (XTX) X Ty + (IX]TIXD X ) TTIXTX) ™' X ey + (X IX D)X ry) = (e +7p)]" )
HE{[(XTX) X ey + (IXITIXDTHXI T ry) = (ep +rp)] K ey + U ry = (XTX) X ey + (IX|TIX D 71X )]
HE{[K ey = 1"ry = (XTX) 71X ey = (IXITIXD) X )K" ey = 1ry = (XTX) 7' X ey = (XX DT X| )T

+Cov((XTX) X ey — (IX|T1X]) X[ 1y)

HE{[K ey =y — (XTX) 71X ey = (IXITIXD) X ) I X)X ey — (1X|T1X )T X ry) = (ep = rp)] "}
FE{[(XTX) ™' X ey = (IXITIXD) T X ry) = (ep —rp)]K ey = Ury = (XTX) X ey = (IX[TIX DX Try)] T
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Since and
E[k"cy—ry— (X" X)X e, — (IX|" X))~ 1X|" )] =0,

E[k ey +1ry— (XTX) "X e+ (1X|T1X]) "' 1X|"ry)] =0  we have the following equalities

]

E{[K ey +1"ry = (X7 X) 7' X ey + (IX]T1X))7HX ) IXTX) ™' X ey + (XX DT X ry) = (e +rp)] "}
HE{[K ey = ry = (X X) 71X ey = (IXIT1X)) X ) I X)X ey = (1X]T X)X ry) = (ep = rp)] "}
= Cov (K ey +1"ry = (XTX) "X ey + (IXITIX)) 7HX| ), (XTX)TIX ey + (IXTTIXD X[ ry)
+Cov (K ey = ry = (XTX) ™' X ey = (IXITIXD) T X ry ), (XTX) ™' X ey = (X IX D) X ry)
= Cov((k" = (XTX)"'XT)ey+ (1" = (IXIT X))~ X[ )y, (XTX) X ey + (IX[T1X]) 7 X[ 1)
+Cov((K" — (XTX) 7' X ey — (1 = (IX|TIX DT X )ry, (XTX) 71X ey = (IXIT1X]) X ry)
= 20k = (X"X)7'XT)Cov(ey) (XTX)TIX )T 20" = (|X [T X)X T)Cov () (X" 1X )~ x|
207 (KX — (X X) 7 XTX)(XTX) ™"+ 207 (U IX | = (X7 IX D~ T IXD (x|~
0,

where the last equality holds due to (8). Hence, we have

Cov(o(y))

= E{Kcy+ I ry— (XTX) X ey + (X" 1X )X )]k ey + g — (XTX) 7 X ey 4+ (IX T (X)X T ry)] T}
HE{[K ey = ry— (XTX) 7' X ey — (IXIT X)X )] [k ey — Fry — (XTX) ' X ey — (IXTT1XD) X )]}
+Cov (X" X)X ey + (IX|"1X]) X" ry) + Cov((XTX) ' X ey — (IXIT1X]) X[ ry)
Cov((X"X) ' X ey + (IX|"1X]) X" ry) + Cov((XTX) ' X ey — (IX|T1X]) 71X ry)

= COV(B\Ls).

Thus, the LSE ELS is BBLUE. Furthermore, Proof By Theorem 3.2, we have
Cov(¢(y)) = Cov(BLs) if and only if R

T
T IyT T 1)y|T E<a ﬁLS)

Koy +ry— ((XTX) X ey + (1X) 71X ) X)) =0,

1 — (X7 X) X ey (X7 XD X1r) N A,
and = (" (XTX) X" Xeps el (|X|" X)) XX rp)

T

Koy —(XTX) X ey~ (XM X) x|y =0, = @ P

B B hich that
as., i.e., @(y) = Brs. Therefore, P is the unique which means tha

BBLUE. [ T3 o — (T (xTx\=IxT Ay T (11T 1 N =1 % |T
Theorem 4.2. If E(y) = XB, rank(X) = o Pus = (07 (XXX epslal (XPIXDTIX )
rank(|X|) = p and COV(Cy)f i1y, Cov(ry) = 031y, is a binary linear unbiased estimator of a 3.

then for for all o € RP, a’ By is the unique BBLUE Assume that y(y) is a binary linear unbiased
of o B. estimator of of B, denoted as y(y) = (kT cy;17ry),

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
122



X. Wang, S. Li, T. Denceux

where k, [ are n-dimensional vectors and / > 0. Then

E(w(y)) = E(K"cy;1"ry) = (K" Xeps 1T |X|rp)
= OlTﬁ = (OlTCﬁ;‘(X‘TI’B), Vclg,rﬁ eR?

Therefore,
Kx=al, I"X|=|al. ©)

From Remark 2.3,

Var(y(y)) = Var (k" ¢y;1"ry)) = 2Var(k" ¢,) +2Var(I" 1)

= 2E(k'¢,— OCTCB)Z +2E(I"ry — |()6|Tc/3)2

= 2E(K'cy—a" (X"X) "X ey + o (XTX) "X ey — al )’
+2E(I" ry — ol (1X | 1X )X Ty el (X IX) Xy — o) T ep)?
= 2E[(k" — o (XTX)'XT)e, )2+ 2E[(17 — o T (IX|T1X]) XD )ry)? + 2Var(af (XTX) X ¢y)

+2Var(|ee| " (1X|"1X]) 11X | ry) +4E [(chy—

ol (XTX) X ey) (@ (XTX) X ey — al )]

HAE [(Try — e (XITIX )X ) (ol (X T IX DX ry — e Trg)]

As E(k"c, — a"(X"X)"'XT¢y) = 0 and
E(lTry_|O‘|T(|X|T|X|)_1\X|Try)ZO, we have
E[(K'ey— o (XTX)"'X"¢y)
(a” (X"X)"'X ey~ alcp)]
— Cov(k e, —al (XTX) "X ¢, 0 (X7X) X" cy)
= (K" —a"(XTX) ' XT)Cov(c, )X (X"X) 't
= otk'X(X"X) 'a—ota’ (XTX) '«
= ()’

where the last equality follows from (9). Similarly,
we can obtain

EITr, e (X[ X)) X7
(Ja " (|x 11X 1) =X ry = || g )] = 0.
So we get,

Var(y(y))

= 2E[(K" —a" (XTX)7'XT)c,)?
+2E[(1" — o (1X[ "X )X )y
+Var(OcTELs)

> Var(aTELS).

__9

Furthermore, is tenable if and only
it (kK — oa"(X"X)"'XT)ey, = 0 and (IT —

" (IXITIXD) Xy =0, as., ie. y(y) =
al Brs. Therefore, a’ Brs is the unique BBLUE
of a’ B. 0

5. Simulation Results

5.1. Test of Estimation Efficiency

In this section, we illustrate the interval-valued lin-
ear regression model by simulation experiments. Let
Bi=[1,2] =(1.5;0.5), B, =[1.7,2.3] = (2;0.3) and

yi = Bit+xipte
= (1.5+2x;+¢g;0.5+0.3x;+715,),

for i = 1,2,---,n, where c,, e, are N(0,0.3%) nor-
mal independent random variables, so that E(y;) =
B1 + E(x;)B2. Therefore, we have

g 1 x
ol =L (R ) ()
Vn L X

Firstly, we let the quantity of observations n be
100, x; = 0.5+0.014, i = 1,2,---,100. For each
repetition of the experiment, we get a LSE fB;g of
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B1, B Figure 1 shows the simulation experiment, in
which Brs = ([1.06,2.02],[1.66,2.32])7. In Figure
1, the points show the simulated data y;(x;) = [1,2]+
[1.7,2.3]x; + & ,x; = 0.5+0.01i, i = 1,2,---,100
and the two lines represent the interval-valued lin-
ear regression function computed by the LSE (3):
y=1[1.06,2.02] 4 [1.66,2.32]x.

Fig. 1. Simulated data (100 observations) and interval-
valued linear regression function: y = [1.06,2.02] +
[1.66,2.32]x.

We repeated this experiment (from data gener-
ation to parameter estimation) 1000 times. The
average value of By was [0.9959,1.9964] =
(1.4961,0.5002), with a sample mean square error
(sample MSE) equal to 0.0442. The average value of
1000 B was [1.7061,2.3002] = (2.0032;0.2970)
with a sample MSE is 0.0446. Here the sample MSE

1000 N
of B is defined by 155 _Zl d3(B, Brs).
i=

Then, we increased the quantity of observations
n to 200 and 300. X was obtained via

X =0.5+0.01i,i=1,2,---,100,
Xi = Xi_100, i = 101,102, -+ ,200,
Xi = Xi_200, i = 201,202, -+ ,300.

Similarly, we obtained estimators of EL%) , BL(? by the
same method. The results are reported in Tables 1
and 2, which show the average value and the sam-

ple MSE of 1000 estimators of EL(;) (the real value is

Interval-Valued Linear Model

[1,2]) and [/B\L(? (the real value is [1.7,2.3]), respec-
tively. We may observe that the sample MSE de-
creases as the number of observations increases.

Table 1. Average value and sample MSE of ﬁé;)

mean value of EL@ sample MSE of EL(?
n=100 [0.9959,1.9964] 0.0442
n=200 [1.0029,1.9952] 0.0236
n=300 [1.0025,2.0068] 0.0154

Table 2. Average value and sample MSE of ﬁé?

mean value of EL@ sample MSE of Eé?
n=100 [1.7061,2.3002] 0.0446
n=200 [1.7052,2.2990] 0.0220
n=300 [1.6996,2.2960] 0.0142

5.2. Comparison with Other Models

When handling point-valued input and interval-
valued output data, an easy and intuitive solution is
to fit the left- and right-endpoints, or the centers and
the radii, of the interval-valued data by two point-
valued linear models®!420. As a matter of fact, it is
easy to see these two methods are equivalent. As al-
ready mentioned in the introduction, a drawback of
using two separate point-valued linear models is that
it is possible to obtain an interval-valued estimation
or forecast result such that the left-endpoint is larger
than the right-endpoint (or the radius is negative). In
this section, we present the advantage of our model
from another point of view via a simulation experi-
ment: comparing the efficiency of the forecast.

We generated the data in the same way as in
Section 5.1, with B; = [1,2] = (1.5;0.5), B, =
[1.7,2.1] = (1.9;0.2) and

yi=PBi+xifr+&, (10)

in which x; = (=3 :0.05:6) and ¢, rg are
N(0,0.12) independent random variables.

We then obtained the following estimates us-
i/I\lg the LSE for interval-valued linear model (3):
Brs = ([0.9979,2.0062],[1.7017,2.1000]), and the
estimated regression function

y = 1[0.9979,2.0062] + [1.7017,2.1000]x.  (11)
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In a second step, we fitted (ay,,x;) and (by,,x;),

where ay, and by, are the left- and right-endpoints

of y; via two traditional point-valued linear models.

Using the LSE for the traditional linear model, we
obtained two fitted lines:

{ ay =0.6398 +1.8061x (12)

by =12.3642+1.9956x.

Finally, we generated some new data from (10)
and used (11) and (12) to forecast the output respec-
tively. Letting x; = (—3:0.2:6) in (10), we obtained
the interval-valued output y;,i = 1,2,---,46. Next,
we substituted x; = (—3: 0.2 : 6) back to (11) and
(12) and obtained the forecasts of y;,i =1,2,---,46
using the interval-valued LSE (denoted by y;) and
two endpoints point-valued LSE (denoted by y;), re-

46
spectively. The MSE of y; was % Y &y (yi,yi) =
n=1

46
0.0352 while the MSE of y; was % Y dy(yi,yi) =
n=1

0.1290. The box plots in Figure 2 show the me-
dian, 25th and 75th percentiles and the extreme data
points of the 46 forecasts using interval-valued lin-
ear model and using two separate linear models.
Since the data were randomly generated, the above
procedure (from data generation to forecast) was re-
peated 30 times. The mean values of the MSEs of
the forecasts were 0.0388 for the interval-valued LS
estimation and 0.1321 using two endpoints point-
valued LS estimation. Obviously, we can see that
the interval-valued linear model is better in the sense
that it yields smaller forecasting error.

0.451

++ +

0.151
+
+
0.1f —r
|
| g
1

Fig. 2. Box plots of forecasts results using interval-valued
linear model (left) and left- and right-endpoints point-
valued linear models (right).

6. Application to Real Data

In this section, we use the interval-valued linear
model to investigate the relationship between tem-
perature and latitude. The data are the highest and
the lowest temperatures of 15 European cities on 14
August, 2012, as shown in Table 3 and Figure 3.

Table 3. Temperatures (°C) and latitudes (°) of 15 European
cities on 14 of August, 2012.

City Latitude | Highest Temp. | Lowest Temp.
Athens 38 24 34
Madrid 40.4 19 31
Istanbul 41 23 30

Roma 419 23 33
Marsaille 433 19 31
Geneve 46.25 13 28

Paris 48.8 19 26
Brussel 50.8 14 25
London 51.5 14 21
Berlin 52.5 13 23

Moscow 55.75 14 24
Stockholm 59.3 12 20
St. Petersburg 59.9 13 22
Bergen 60.4 14 20
Reykjavik 64 11 17

e

Fig. 3. Temperatures (in the form of interval) and latitudes
of 15 European cities. Each line segment represents the
temperature interval of each city.
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Suppose that the temperature y (interval-valued)
and the latitude x (real-valued) can be represented
by the interval-valued linear model (1), that is

E(y[) :[31 —I—x,-Bz,i: 1,2,---,15.

The LSE of B;, 3, may be obtained via (3). The lin-
ear relationship (shown in Figure 4) between tem-
perature y and latitude x is

y =[39.03 —0.45x,56.01 — 0.60x].

Figure 4 indicates that as the latitude increases the
temperature decreases, and the daily difference in
temperature also tends to decrease.

Fig. 4. Data and linear relationship of temperature and lat-
itude of 15 cities in Europe on 14 August, 2012. The two
lines represent the interval-valued linear regression function
¥y =1[39.03 —0.45x,56.01 — 0.60x].

7. Conclusions

The linear regression model, which assumes a lin-
ear relationship between a random input variables
and a few input variables, plays an important role in
statistics. However, many phenomena are better de-
scribed by an interval-valued random variable deter-
mined by a few real-valued random variables, e.g.,
temperature, stock price, service life of a kind of
products. The relation between the interval-valued
data and a few real-valued data can sometimes be
expressed by a linear model. Therefore, we need a

Interval-Valued Linear Model

new type of statistical model to describe this kind
of problems. In this paper, we introduced such a
statistical model: the interval-valued linear model,
which considers interval-valued observations deter-
mined by real-valued variables in a linear way.

Interval-valued random variables are a special
kind of set-valued random variables taking values
in the set of compact convex subsets of R'. In
this paper, we investigated the theory in the general
set-valued framework first, before focusing on the
interval-valued random variables, in order to obtain
some more general theoretical results. In particular,
we recalled the definition of variance and covariance
of set-valued random variables based on the d;, met-
ric for sets and the D), metric for set-valued random
variables. We then introduced the interval-valued
linear model and its LSE, proved the unbiasedness
of the LSE and computed the covariance matrix of
this estimator. We also showed that the best lin-
ear unbiased estimation does not exist in general,
but the LSE is the unique best binary linear unbi-
ased estimation (BBLUE). The performances of the
estimation method were illustrated using simulation
experiments, and compared to those of the simple
approach that consists in fitting two separate linear
models using the endpoints of output intervals. The
obtained results suggest that our approach yields
better forecasting performance. Finally, we gave
an example of the interval-valued linear model ex-
plaining how temperature is related by latitude. This
short example shows how our model can be used and
what type of practical problem can be solved using
the interval-valued linear model.
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