
Received 8 March 2014

Accepted 10 June 2014

Selection of Encoding Cardinality for a Class of Fitness Functions to

Obtain Order-1 Building Blocks

Hongqiang Mo 1 ∗, Zhong Li 2 , Lianfang Tian 1 , and Xiang Tian 3

1 College of Automation Science and Engineering, South China University of Technology,
Guangzhou, 510641, P.R. China.

E-mail: hqiangmo, chlftian@scut.edu.cn.
2 Faculty of Mathematics and Computer Science, FernUniversitaet in Hagen,

Hagen, 58084, Germany.
E-mail: zhong.li@fernuni-hagen.de.

3 Department of Mathematics, College of Sciences, South China University of Technology, Guangzhou,
510641, P.R. China.

E-mail: xtian@scut.edu.cn.

Abstract

Encoding plays a key role in determining the optimization efficiency of a genetic algorithm. In
the optimization of a continuous function, binary encodings are normally used due to their low
coding-alphabet cardinalities. Nevertheless, from the viewpoint of building-block supply, it is
remarked that a binary encoding is not necessarily the best choice to express a fitness function
which is linearly combined of sinusoidal functions with frequencies exponential to a positive
integer m when m is not equal to 2. It is proved that, if the frequencies are exponential to m, an
encoding of cardinality m can provide a better supply of order-1 building blocks than the encod-
ings of other cardinalities. Taking the advantage of building-block supplies, a genetic algorithm
with an encoding of cardinality m has higher chance to find fitter solutions. This assumption
is verified via a number of randomly generated fitness functions, and encodings with different
cardinalities are compared according to the optimization performance of corresponding genetic
algorithms on these fitness functions. The simulation results support the assumption, and show
in the statistical sense that the genetic algorithm with an encoding of cardinality m outperforms
those of the other cardinalities when the frequencies of the sinusoidal functions are exponential
to m.

Keywords: Building block, encoding, genetic algorithm, continuous optimization, schema pro-
cessing.

∗Corresponding author: College of Automation Science and Engineering, South China University of Technology,
Guangzhou, 510641, P.R. China. Tel: 86-20-87110719, E-mail: hqiangmo@scut.edu.cn.

International Journal of Computational Intelligence Systems, Vol. 8, No. 1 (2015) 62-74

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

62

H.Q. Mo et al.

1. Introduction

As a crucial part of a genetic algorithm (GA),
encoding determines the optimization perfor-
mance of the algorithm. However, it is still con-
troversial on what kinds of encodings should
be used for an optimization problem. Usual-
ly, the feasible solutions of a continuous op-
timization problem are represented with a bi-
nary encoding. This practice can be traced
back to the principle of minimal alphabets pro-
posed decades ago, which suggests expressing
a problem with the smallest alphabet, say, bina-
ry encodings, to make full use of implicit par-
allelism. But the principle has not been unani-
mous accepted 1,2,3. Antonisse 1 stated that, for
the same purpose of maximizing implicit par-
allelism, the opposite conclusion, i.e., a large
alphabet should be used, could be drawn by
looking at the function of don’t care character
from another viewpoint.Fogel and Ghozeil 3 p-
resented theorems to establish that, under some
general assumptions, no choice of cardinality
of a representation offered any intrinsic advan-
tage over another. Even if merely the encod-
ings with the smallest alphabet were consid-
ered, agreements still could not be reached on
whether to use a binary encoding or a Gray one
4,5,6. The presence of these divergences seems
to support the known fact that no representa-
tion should be superior for all classes of prob-
lems 3,5,7, and evaluation criteria usually de-
pend on what a designer concerns.

When one represents the feasible solution-
s of a continuous optimization problem with
strings, and views the optimal or near-optimal
strings as the combinations of building block-
s (BBs), the supply of BBs can serve as a rea-
sonable evaluation criterion of encoding per-
formance. The notion of building blocks is fre-
quently used in the literature but rarely de-
fined. In general, a building block can be de-
scribed as a highly fit solution to a sub-problem
that can be expressed as a schema 8,9. A schema
is a template that identifies a subset of strings
with similarities at certain string positions, and
a single string belongs to all the schemata in

which any of its fixed positions appear. For ex-
ample, the string 1011 is a member of schema-
ta 10** (where the *‘s stand for unspecified po-
sitions), 1**1, *0**, and so forth. The order of
a schema refers to the number of its fixed po-
sitions, and if the fixed position of an order-
1 schema is at the h-th position of the string
counted from the rightmost, we call it an order-
1 schema at locus h, where h is a positive inte-
ger no larger than string length. For example,
1***, **0* are order-1 schemata at the 4th and
2nd loci, respectively.

Since a schema is a template that identi-
fies a subset of strings, it can be regarded as
a particular region in the solution space, and
the schemata containing many unspecified po-
sitions — the low-order schemata — will typ-
ically be sampled by a large fraction of all the
strings in a population of a GA. And by ma-
nipulating a limited population of strings, a
GA actually samples a vastly larger number
of regions 8,9,10. As stated by the schema the-
orem, successive generations of reproduction
produce increasing numbers of trials that lie
in the regions represented by highly fit, low-
order schemata, i.e., low-order BBs 8,10. The
building block hypothesis further assumes that,
when BBs recombine to form even more high-
ly fit, higher-order schemata, a GA rapidly fo-
cuses its attention on the most promising part-
s of the solution space 8. In this sense, a
schema-processing GA performs well when its
encoding achieves a sufficient supply of low-
order BBs for a given fitness function 9,11,12.
And a practical question intimately associated
with the design and applications of GAs re-
gards, given a special class of fitness functions,
what kinds of encoding s can provide relative-
ly good supplies of low-order building blocks,
and whether or not a binary encoding is always
the best choice.

In the GA literature related to BBs, atten-
tions have been paid on the design of operators
to find and recombine low-order BBs 12,13,14,
or on the features of fitness functions or ge-
netic searching that hamper the low-order BBs

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

63

Selection of Coding Base

from recombining with each other to form over-
all good solutions, e.g., multi-modality 15, GA
deception 16,17, sampling errors 18 and hyper-
plane inconsistency 19, etc. But the topics on
building-block supply have received relatively
few concerns. Before discussing how to make
use of the low-order BBs to lead the search to
the desired regions, it seems necessary to clar-
ify, in the first place, whether or not a repre-
sentation can really result in low-order BBs in
the initial population. There were models to
estimate the population size required to guar-
antee the presence of all raw BBs in a GA 11

or a genetic-programming 20 population, but
the models only established necessary condi-
tions for building-block supply, and did not tell
about whether or not an encoding in deed pro-
vided low-order BBs, i.e., whether or not there
were fitness differences among the low-order
schemata.

In this paper, we make a tentative attemp-
t to study this issue by comparing encodings
of different cardinalities for a fitness function
which is linearly combined of sinusoidal func-
tions with frequencies exponential to a posi-
tive integer m. The choice of such fitness func-
tions is mainly inspired by Fourier transforma-
tion. Linear expansion of a function into sine
functions conforms to the common practices in
functional analysis. By doing so, we hope that
the future analysis of encoding design can get
more supports from functional theory.

The representations discussed in this paper
are limited to base-m encodings, whose cardi-
nalities are positive integers m larger than 1.
When a solution x, also called string or indi-
vidual, is represented with the base-m encod-
ing of string length l, x = ∑l

h=1 xhmh−l−1, where
xh ∈ {0, · · · ,m−1}. The commonly used bina-
ry representations are base-2 encodings. And
for the base-3 encoding of string length 12, x =
∑12

h=1 xh3h−13, and xh ∈ {0,1,2} .
The analyses will be carried out in two step-

s: Firstly, we will discuss whether there are
order-1 BBs when a base-m encoding is used
for a sinusoidal function with frequency expo-

nential to a positive integer m. Secondly, we
will study the effect of linear transformation to
building-block supply. In Ref. 21, it was point-
ed out that, for functions linearly combined of
nB basis functions, when the basis functions
satisfied certain conditions, a base-m encoding
could lead to nB order-1 BBs with fixed position
at different loci. We will apply the results here-
in, and find out what will happen when the ba-
sis functions are sinusoidal functions with fre-
quencies exponential to m. The analysis result-
s will then be tested with simulations to see if
a GA with a base-m encoding outplays those
of other encodings on the optimization of these
fitness functions.

The rest of this paper is organized as fol-
lows: Section 2 introduces an index to the ex-
istence of order-1 BB. Section 3 explains why
there will be order-1 BBs with fixed positions
simultaneously at multiple loci when a base-m
encoding is used for a fitness function which is
linearly combined of sinusoidal functions with
frequencies exponential to m, and why the en-
codings with other cardinalities can not achieve
comparable building-block supply. Section 4
provides simulation results in which the opti-
mization performance of encodings with differ-
ent bases are compared on a number of fitness
functions randomly generated. Finally, Section
5 summarizes the paper.

2. Preliminaries

Without loss of generality, suppose the fitness
functions G(x) discussed in this paper are de-
fined on [0,1), and satisfy G(x)� 0 .

A schema is said to match an individual if
they are identical at the fixed positions of the
former. The fitness of a schema can be de-
fined as the average fitness of all the individ-
uals matched by the schema in a certain popu-
lation or in the whole search space. Let’s take
the base-3 encoding of length 2 as an example:
If the latter definition is employed, the fitness
of the schema *1 is equal to (G(01) + G(11) +
G(21))/3. If the former definition is used, giv-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

64

H.Q. Mo et al.

en a population consisting of 01,01,22, and 10,
the fitness of *1 is equal to (G(01) +G(01))/2.
With the former definition, schema fitness de-
pends not only on encoding, but also on the
formation of initial population, genetic opera-
tors, and selection strategy. The latter, usually
used to determine the static fitness distribution-
s of a schema 8,19, is especially suitable to study
the sole effect of encoding on schema fitness.
Therefore, here and throughout, the latter defi-
nition is adopted, and the fitness of the order-1
schema ∗· · · ∗ xh ∗ · · ·∗ is

fG(xh) =

∑ml−h−1
k=0 ∑mh−1−1

o=0 G(kmh−l + xhmh−l−1 +om−l)

ml−1 , (1)

where the symbols f and xh stand for average
fitness and position value (allele value) at the
h-th locus counted from the rightmost, respec-
tively, and the subscript G indicates the name
of the fitness function. The maximal and min-
imal fitness of the order-1 schemata at locus h
are denoted as maxh(fG(xh)) and minh(fG(xh)) ,
respectively. Similar to the definition given in
Ref. 8, order-1 BBs are defined as highly fit,
order-1 schemata in this paper.

The average fitness of all the order-1
schemata at locus h is

fG(∗) =
∑m−1

xh=0 fG(xh)

m
. (2)

If an order-1 schema at locus h is much fitter
than the other order-1 schemata at the same lo-
cus, the ratio of the maximal fitness to the aver-
age fitness of all the order-1 schemata at this lo-
cus, maxh(fG(xh))/ fG(∗) , FRMax2Avg at locus
h for short, will be significantly larger than 1.
In other words, a large FRMax2Avg at a cer-
tain locus indicates the existence of an order-
1 BB at this locus. Correspondingly, the ra-
tio of the minimal fitness to the average fit-
ness of all the order-1 schemata at locus h,
i.e., minh(fG(xh))/ fG(∗) , is abbreviated as FR-
Min2Avg at locus h.

Note that minh(fG(xh)) � fG(∗) �
maxh(fG(xh)) � ∑m−1

xh=0 fG(xh) = m fG(∗) , there-

fore,

minh(fG(xh))

fG(∗) � 1 � maxh(fG(xh))

fG(∗) � m. (3)

3. Supply of Order-1 Building Blocks for

∑nB
i=1 (ai sin(2πmi−1x+ϕi))+ c

Specially, the fitness function considered here-
in is ∑nB

i=1 (ai sin(2πmi−1x+ϕi))+ c, where m is an
integer larger than 1, nB is a positive integer
smaller than string length l, ai and ϕi are ar-
bitrary real constants, and c is a real number
large enough to ensure nonnegative fitness. As
has been mentioned in Introduction, the discus-
sions are carried out first on sin(2πmi−1x+ϕi)+
1, and then on ∑nB

i=1 (ai sin(2πmi−1x+ϕi))+ c.

xx lmx

)(xBi

lmx 2

)(xBi

)(xBi

Fig. 1. The illustration of an approximation
of

∫ x+m−l

x Bi(x)dx with Bi(x). When m−l → 0,∫ x+m−l

x Bi(x)dx → m−lBi(x).

3.1. Supply of order-1 building block for
sin(2πmi−1x+ϕi)+1

For convenience, consider a more general for-
m of basis function, Bi(x) = sin(2π pix+ϕi)+ 1,
where pi is a positive integer. Obviously, there
are pi complete cycles of Bi(x) within [0, 1).
To simplify expressions, let’s denote mh−l−1 as
Δ. As illustrated in Fig.1, since Bi(x) is inte-
grable, by using the sum-to-product trigono-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

65

Selection of Coding Base

metric formulas and Taylor’s expansion of si-
nusoidal function, we have (4).

∫ x+m−l

x
Bi(x)dx =

Bi(x)+π pim−l cos(2π pix+ϕi)+O(pim−l)

ml , (4)

where x = (mk+xh)Δ+om−l and O(pim−l) is the
sum of high-order terms of pim−l . When ml �
pi, the terms π pim−l cos(2π pix+ ϕi) +O(pim−l)
can be neglected, and further denote (mk+xh)Δ
as Δ, we have (5).

∫ Δ+Δ

Δ
Bi(x)dx =

∫ Δ+m−l

Δ
Bi(x)dx+ · · ·+

∫ Δ+Δ

Δ+Δ−m−l
Bi(x)dx =

mh−1−1

∑
o=0

(m−lBi((km+ xh)Δ+om−l)). (5)

Applying the sum-to-product trigonometric
formulas to

∫ Δ+Δ
Δ Bi(x)dx, one has

∫ Δ+Δ

Δ
Bi(x)dx = Δ+

sin(π piΔ)sin(2π pi(mk+ xh)Δ+π piΔ+ϕi)

π pi
. (6)

According to (1), (5), and (6),

fBi
(xh) = m

ml−h−1

∑
k=0

(Δ+

sin(π piΔ)sin(2π pi(mk+ xh)Δ+π piΔ+ϕi)

π pi
). (7)

Further denote msin(π piΔ)/(π pi) as Ai and
π piΔ(2xh + 1) + ϕi as ϕ i, respectively, and we
have

fBi
(xh) = 1+

ml−h−1

∑
k=0

Ai sin(2kpiπmh−l +ϕ i). (8)

The value of fBi
(xh) depends on h, pi, and xh.

All possible relationships are listed as follows.

(i) If pi = ml−h,

fBi
(xh) = 1+ml−hAi sin(ϕ i) =

1+
m
π

sin
π
m

sin(
π
m
(2xh +1)+ϕi). (9)

(ii) If pi �= ml−h,

(a) When h = l,

fBi
(xh) = 1+Ai sin(ϕ i) =

1+
m

π pi
sin

π pi

m
sin(

π pi

m
(2xl +1)+ϕi). (10)

(b) When h �= l, the amplitudes of the
ml−h sine functions, Ai sin(2kpiπmh−l +
ϕ i), k ∈ {0, · · · ,ml−h −1}, are the same,
and the phase difference between
each adjacent pair of the functions is
2piπmh−l . As a result, their sum is e-
qual to 0, and

fBi
(xh) = 1. (11)

Therefore, if Bi(x) = sin(2πmi−1x + ϕi) +
1, and if a base-m encoding is used for
it, according to (9) and (11), respective-
ly, the fitness of the order-1 schema ∗· · · ∗
xl−i+1 ∗ · · ·∗ at locus l − i + 1 is fBi

(xl−i+1) =
1+msin(π/m)sin((2πxl−i+1 +π)/m+ϕi)/π , and
those at the other loci are all equal to
1. When xl−i+1 increases from 0 to m −
1, we can get the maxl−i+1 (fBi

(xl−i+1)) and
minl−i+1 (fBi

(xl−i+1)), respectively. Obvious-
ly, in most cases, maxl−i+1 (fBi

(xl−i+1)) and
minl−i+1 (fBi

(xl−i+1)) are significantly larger and
small than ∑m−1

xl−i+1=0 fBi
(xl−i+1)/m, respectively.

As a result, in most cases, the FRMax2Avg
and FRMin2Avg at locus l − i + 1 are signifi-
cantly larger and smaller, respectively, than 1,
with only one exceptional case — when m = 2
and ϕi = 0.5π , all the FRMax2Avgs and FR-
Min2Avgs are equal to 1. While at the oth-
er loci, FRMax2Avg= 1 =FRMin2Avg. Thus,
there will be an order-1 BB at and only at lo-
cus l − i+1 when a base-m encoding is applied
to sin(2πmi−1x+ϕi)+1.

And if the basis function Bi(x) is changed
into sin(2πmi−1x + ϕi) + 1, where m �= m, and

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

66

H.Q. Mo et al.

a base-m encoding is used for it, according to
(11), fBi

(xl− j) ≡ 1 for all the j ∈ {1, · · · , l −1}.
The only exception occurs at locus l; similar to
the discussions in the last paragraph, according
to (10), one gets FRMax2Avg> 1 >FRMin2Avg
at this locus. Therefore, no matter what the val-
ue i of Bi(x) = sin(2πmi−1x+ϕi) + 1 is, there is
one and only one order-1 BB at locus l under
this encoding.

Table 1 to Table 4 give several examples,
in which the base-2 encoding of string length
19 and the base-3 encoding of string length
12 are used to express the sinusoidal func-
tions, sin(2π2i−1x)+ 1, and sin(2π3i−1x)+ 1, i ∈
{1, · · · ,4}, respectively. As shown in Table 1 for
sin(2π2i−1x)+1, under the base-2 encoding, the
FRMax2Avgs on the diagonal — at locus 20− i
for sin(2π2i−1x)+1 — are much larger than the
others, which indicates a correlation between
the locus position with large FRMax2Avg and
the function frequency. Thus, there is an order-
1 BB at locus 20− i when the base-2 encoding
is used for sin(2π2i−1x)+1. However, when the
feasible solutions of sin(2π2i−1x)+ 1 are encod-
ed with the base-3 encoding, as shown in Table
2, most of the FRMax2Avgs and FRMin2Avgs
are equal to 1.0, except those at locus 12. As a
result, when the base-3 encoding is employed,
there is one and only one order-1 BB at the high-
est locus regardless of the value of i. The similar
thing happens when the encodings are used for
sin(2π3i−1x)+1, as shown in Table3 and Table 4,
in which the base-3 encoding can obtain order-

1 BB at different locus when i changes, and the
base-2 encoding can get an order-1 BB only at
the highest locus no matter what the value of i
is.

3.2. Supply of order-1 building blocks for
∑nB

i=1 (ai sin(2πmi−1x+ϕi))+ c

Suppose the FRMax2Avgs for a series of ba-
sis functions are significantly larger than 1
at different loci, one may surmise that large
FRMax2Avgs can be obtained simultaneously
at multiple loci for a fitness function linear-
ly combined of them, since the averaging of
fitness is a kind of linear transform. Specifi-
cally, consider the fitness functions of the for-
m, G(x) = ∑nB

i=1 aiBi(x)+ c , where ai and c are
real constants, and nB is a positive integer s-
maller than l. Note that all the basis functions
and their combinations should meet the above-
mentioned demands, i.e., being nonnegative
and defined on [0,1) . Suppose that the FR-
Max2Avg for Bi(x) at locus hi and that for B j(x)
at locus h j are much larger than 1 under a base-
m encoding, where i, j ∈ {1, · · · ,nB}, hi,h j ∈
{1, · · · , l}, and i �= j. One may care about
whether or not the encoding can get large FR-
Max2Avgs simultaneously at both loci under
transformation aiBi +a jB j + c. Theorem 1 gives
a hint for the demands on the basis functions
and the forms of their combinations 21.

Theorem 1. If maxh j(fBi(xh j)) = minh j(fBi(xh j)) and maxhi(fB j(xhi)) = minhi(fB j(xhi)), where i, j ∈
{1, · · · ,nB}, hi,h j ∈ {1, · · · , l}, and i �= j , then

maxhi (fT (xhi))

fT (∗) =
max(ai maxhi (fBi(xhi)) ,ai minhi (fBi(xhi)))+a j fB j(∗)+ c

ai fBi(∗)+a j fB j(∗)+ c
, (12)

maxh j

(
fT (xh j)

)
fT (∗) =

ai fBi(∗)+max
(
a j maxh j

(
fB j(xh j)

)
,a j minh j

(
fB j(xh j)

))
+ c

ai fBi(∗)+a j fB j(∗)+ c
. (13)

where T stands for the transformation aiBi +a jB j + c.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

67

Selection of Coding Base

Table 1. The FRMax2Avgs and FRMin2Avgs for sin(2π2i−1x)+ 1, i ∈ {1, · · · ,4} and the FR-
Max2Avgs for some of their combinations under the base-2 encoding of string length 19.

Fitness Fixed positions
functions 19th 18th 17th 16th other loci
sin2πx+1 FRMax2Avgs 1.64 1.00 1.00 1.00 1.00

FRMin2Avgs 0.36 1.00 1.00 1.00 1.00
sin4πx+1 FRMax2Avgs 1.00 1.64 1.00 1.00 1.00

FRMin2Avgs 1.00 0.36 1.00 1.00 1.00
sin8πx+1 FRMax2Avgs 1.00 1.00 1.64 1.00 1.00

FRMin2Avgs 1.00 1.00 0.36 1.00 1.00
sin16πx+1 FRMax2Avgs 1.00 1.00 1.00 1.64 1.00

FRMin2Avgs 1.00 1.00 1.00 0.36 1.00
∑4

i=1 (sin(2π2i−1x)+1) FRMax2Avgs 1.16 1.16 1.16 1.16 1.00
∑4

i=1 ((−1)i−1 sin(2π2i−1x)+1) FRMax2Avgs 1.16 1.16 1.16 1.16 1.00
0.31sin(2πx+0.71π)+0.72sin(4πx−0.23π) FRMax2Avgs 1.06 1.16 1.06 1.19 1.00

−0.45sin(8πx+0.64π)+0.62sin(16πx−0.95π)+2.1

Table 2. The FRMax2Avgs and FRMin2Avgs for sin(2π2i−1x)+ 1, i ∈ {1, · · · ,4} and the FR-
Max2Avgs for some of their combinations under the base-3 encoding of string length 12.

Fitness Fixed positions
functions 12th 11th 10th 9th other loci
sin2πx+1 FRMax2Avgs 1.72 1.00 1.00 1.00 1.00

FRMin2Avgs 0.28 1.00 1.00 1.00 1.00
sin4πx+1 FRMax2Avgs 1.36 1.00 1.00 1.00 1.00

FRMin2Avgs 0.64 1.00 1.00 1.00 1.00
sin8πx+1 FRMax2Avgs 1.18 1.00 1.00 1.00 1.00

FRMin2Avgs 0.82 1.00 1.00 1.00 1.00
sin16πx+1 FRMax2Avgs 1.09 1.00 1.00 1.00 1.00

FRMin2Avgs 0.91 1.00 1.00 1.00 1.00
∑4

i=1 (sin(2π2i−1x)+1) FRMax2Avgs 1.34 1.00 1.00 1.00 1.00
∑4

i=1 ((−1)i−1 sin(2π2i−1x)+1) FRMax2Avgs 1.11 1.00 1.00 1.00 1.00
0.31sin(2πx+0.71π)+0.72sin(4πx−0.23π) FRMax2Avgs 1.10 1.00 1.00 1.00 1.00

−0.45sin(8πx+0.64π)+0.62sin(16πx−0.95π)+2.1

Table 3. The FRMax2Avgs and FRMin2Avgs for sin(2π3i−1x)+ 1, i ∈ {1, · · · ,4} and the FR-
Max2Avgs for some of their combinations under the base-3 encoding of string length 12.

Fitness Fixed positions
functions 12th 11th 10th 9th other loci
sin2πx+1 FRMax2Avgs 1.72 1.00 1.00 1.00 1.00

FRMin2Avgs 0.28 1.00 1.00 1.00 1.00
sin6πx+1 FRMax2Avgs 1.00 1.72 1.00 1.00 1.00

FRMin2Avgs 1.00 0.28 1.00 1.00 1.00
sin18πx+1 FRMax2Avgs 1.00 1.00 1.72 1.00 1.00

FRMin2Avgs 1.00 1.00 0.28 1.00 1.00
sin54πx+1 FRMax2Avgs 1.00 1.00 1.00 1.72 1.00

FRMin2Avgs 1.00 1.00 1.00 0.28 1.00
∑4

i=1 (sin(2π3i−1x)+1) FRMax2Avgs 1.18 1.18 1.18 1.18 1.00
∑4

i=1 ((−1)i−1 sin(2π3i−1x)+1) FRMax2Avgs 1.18 1.18 1.18 1.18 1.00
−0.25sin(2πx−0.57π)−0.36sin(6πx−0.43π) FRMax2Avgs 1.07 1.10 1.24 1.15 1.00

−0.77sin(18πx+0.95π)+0.69sin(54πx−0.15π)+2.07

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

68

H.Q. Mo et al.

Table 4. The FRMax2Avgs and FRMin2Avgs for sin(2π3i−1x)+ 1, i ∈ {1, · · · ,4} and the FR-
Max2Avgs for some of their combinations under the base-2 encoding of string length 19.

Fitness Fixed positions
functions 19th 18th 17th other loci
sin2πx+1 FRMax2Avgs 1.64 1.00 1.00 1.00

FRMin2Avgs 0.36 1.00 1.00 1.00
sin6πx+1 FRMax2Avgs 1.21 1.00 1.00 1.00

FRMin2Avgs 0.79 1.00 1.00 1.00
sin18πx+1 FRMax2Avgs 1.07 1.00 1.00 1.00

FRMin2Avgs 0.93 1.00 1.00 1.00
sin54πx+1 FRMax2Avgs 1.02 1.00 1.00 1.00

FRMin2Avgs 0.98 1.00 1.00 1.00
∑4

i=1 (sin(2π3i−1x)+1) FRMax2Avgs 1.24 1.00 1.00 1.00
∑4

i=1 ((−1)i−1 sin(2π3i−1x)+1) FRMax2Avgs 1.12 1.00 1.00 1.00
−0.25sin(2πx−0.57π)−0.36sin(6πx−0.43π) FRMax2Avgs 1.04 1.00 1.00 1.00

−0.77sin(18πx+0.95π)+0.69sin(54πx−0.15π)+2.07

Proof. By definition (1) and (2), respectively,

fT (xhi) = ai fBi(xhi)+a j fB j(xhi)+ c, (14)

and
fT (∗) = ai fBi(∗)+a j fB j(∗)+ c. (15)

With the known condition, maxhi

(
fB j(xhi)

)
=

minhi

(
fB j(xhi)

)
, we get

max
hi

(
fB j(xhi)

)
= min

hi

(
fB j(xhi)

)
= fB j(∗). (16)

Depending on the sign of ai,

max
hi

(ai fBi(xhi))=max(ai max
hi

(fBi(xhi)),ai min
hi

(fBi(xhi))).

(17)
For the same reason,

max
hi

(a j fB j(xhi))=max(a j max
hi

(fB j(xhi)),a j min
hi

(fB j(xhi))).

(18)
Substituting (16) into (18) results in

max
hi

(a j fB j(xhi)) = a j fB j(∗). (19)

From (14), (15), (17) and (19), it is straightfor-
ward to obtain (12). And similarly, we have
(13).

Remark: Besides the conditions giv-
en in Theorem 1, if we further demand

ai fBi(∗) ≈ a j fB j(∗) � c, then from (12), we
have (20). And if maxhi (fBi(xhi)) � fBi(∗) �
minhi (fBi(xhi)) and maxh j

(
fB j(xh j)

) � fB j(∗)�
minh j

(
fB j(xh j)

)
, FRMax2Avgs at locus hi and

locus h j for T = aiBi+a jB j+c will be much larg-
er than 1. The requirement ai fBi(∗)≈ a j fB j(∗)�
c may seem restrictive in practices, but actual-
ly, the FRMax2Avgs are still acceptably large
provided c is small enough.

maxhi(fT (xhi))

fT (∗) =

max(ai maxhi(fBi(xhi)),ai minhi(fBi(xhi)))

2ai fBi(∗)
+

1
2
. (20)

From Theorem 1 and the Remark, we can
figure out requirements for a certain basis func-
tion Bi(x) , where i ∈ {1, · · · ,nB} , as follows:
the maximal and minimal fitness of the order-
1 schemata at locus hi should be remarkably
greater and smaller, respectively, than the av-
erage fitness of all the order-1 schemata at this
locus, whereas the maximal, minimal, and av-
erage fitness of the order-1 schemata at the oth-
er loci should be almost identical, as shown in
(21) and (22).

max
hi

(fBi(xhi)) � fBi(∗) � min
hi

(fBi(xhi)) (21)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

69

Selection of Coding Base

∀ j �= i, max
h j

(
fBi(xh j)

)
= fBi(∗) = min

h j

(
fBi(xh j)

)
(22)

According to the results in Section 3.1, when
a base-m encoding is applied to sin(2πmi−1x+
ϕi)+ 1, the FRMax2Avg and FRMin2Avg at lo-
cus l − i + 1 will be significantly larger and
smaller, respectively, than 1, and the FR-
Max2Avgs and FRMin2Avgs at the other loci
are all equal to 1. That is to say, sin(2πmi−1x+
ϕi) + 1 satisfies (21) and (22) under a base-
m encoding. As a result, there will be nB
order-1 BBs at the leftmost nB loci when
a base-m encoding with long enough string
length is used for ∑nB

i=1 (ai sin(2πmi−1x+ϕi))+ c.
An encoding of another cardinality does not
have such advantage; when it is used for
∑nB

i=1 (ai sin(2πmi−1x+ϕi))+ c, an order-1 BB can
usually be obtained only at the highest lo-
cus. In a word, a base-m encoding out-
plays an encoding of another cardinality on
the supply of order-1 BBs when applied to
∑nB

i=1 (ai sin(2πmi−1x+ϕi))+ c.

The last lines of the tables, from Table 1 to
Table 4, give several examples. As shown in
Table 1, when the base-2 encoding of string
length 19 is applied to ∑4

i=1 (sin(2π2i−1x)+1),
there are order-1 BBs at the 4 highest loci.
The same thing happens when the base-3 en-
coding of string length 12 is employed for
∑4

i=1 (sin(2π3i−1x)+1), as shown in Table 3.
However, when the base-2 encoding is used
for ∑4

i=1 (sin(2π3i−1x)+1) or the base-3 one
for ∑4

i=1 (sin(2π2i−1x)+1), as shown in Table
2 and Table 4, respectively, only one BB at
the highest locus can be obtained. The situ-
ations of the other combinations of the sinu-
soidal basis functions given in the tables are
similar to those of ∑4

i=1 (sin(2π2i−1x)+1) and
∑4

i=1 (sin(2π3i−1x)+1), in which the base-2 en-
coding and the base-3 one achieve order-1 BBs
at 4 loci for the fitness functions with frequen-
cies of the basis functions exponential to 2 and
3, respectively.

4. Simulation Results

Taking the advantage of building-block sup-
plies, a GA with an encoding of cardinality m is
likely to outdo those of other cardinalities in the
optimization of ∑nB

i=1 (ai sin(2πmi−1x+ϕi))+ c,
and has higher chance to find fitter solutions.
Therefore, the encodings are further evaluated
according to the optimization performance of
corresponding GAs.

do{
if (j < (PopulationSize/3))
{ mate1= RouletteWheelSelection();

mate2= RouletteWheelSelection();
}
else if (j < (2* PopulationSize /3))
{ mate1= RouletteWheelSelection ();

mate2= RandomSelection();
}
else
{ mate1= RandomSelection();

mate2= RandomSelection();
}

} while (j < PopulationSize);
ElitismSelection();

// PopulationSize is the size of population; mate1 and mate2 are the
// individuals selected from the parent population.

//RouletteWheelSelection() implements roulette-wheel selection.
//RandomSelection() randomly selects an individual from the

// parent population with a uniform rate.
// ElitismSelection() replaces the worst individual of the offspring

//population with the fittest one of the parent population.

Fig. 2. The pseudo codes of the selection strategies.

4.1. Algorithm descriptions

The introduction of a properly designed hy-
brid operator can often significantly enhance
the performance of a GA 12,13,22,23, and there-
fore can facilitate encoding evaluation. How-
ever, there are too many hybrid GAs, and it is
almost impossible to compare encodings based
on all of them one by one. In this paper, we lim-
it the simulations within the frame of pure GAs,
and only employ general selection strategies,
single-point crossover, and bitwise mutation.
The selection implemented herein is a compro-
mise between diversity maintenance and the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

70

H.Q. Mo et al.

realization of ”survival of the fittest”, whose
pseudo codes are shown in Fig. 2. In the single-
point crossover, a crossover point is selected,
and string from the rightmost of chromosome
to the crossover point is copied from one parent
, i.e., mate1 in Fig.2, and the rest is copied from
the second parent , i.e., mate2 in Fig.2. For a
base-m encoding, the bitwise mutation is to re-
place the original allele value with another inte-
ger randomly selected from {1, · · · ,m− 1}. For
functions ∑nB

i=1 (ai sin(2πmi−1x+ϕi))+ c, a base-
m encoded GA can result in order-1 BBs at nB
loci, so that the GA can make use of this ad-
vantage to search for fit allele values at multiple
loci in parallel. Therefore, a high mutation rate
is favorable. In the simulation, a mutation rate
up to 0.3 is used, and its results are much bet-
ter than those of a mutation rate much smaller
than 0.3(Pls. see Fig. 6).

0 50 100 150 200
30

40

50

60

Average fitness of the best solutions

A
ve

ra
ge

 f
itn

es
s

Under base-2 encoding
Under base-3 encoding
Under base-5 encoding

0 50 100 150 200

0

2

4

6

8

Difference of the average fitness of the best so lutions

D
if

fe
re

nc
e

of
 A

ve
ra

ge
 fi

tn
es

s

Between base-2 and base-3 encodings
Between base-2 and base-5 encodings
Between base-3 and base-5 encodings

Fig. 3. The average fitness of the best solutions found
in the 20 rounds of calculation for the fitness functions
∑51

i=1 (ai sin(2π2i−1x+ϕi)+ |ai|) under the three encod-
ings. The GA with the base-2 encoding significantly
outperform the other GAs.

4.2. Simulation settings and results

The settings and results of the simulation are
given as follows.

• Fitness functions: Totally 600 samples of fit-
ness functions, ∑nB

i=1 (ai sin(2πmi−1x+ϕi)+ |ai|),
are randomly generated, with each setting
of (m = 2, nB = 51), (m = 3, nB = 32), and
(m = 5, nB = 22) applied to 200 samples. For
these functions, c = ∑nB

i=1 |ai| so as to ensure
nonnegative fitness.

• Encoding schemes: The base-2 encoding of
string length 62, the base-3 encoding of string
length 39, and the base-5 encoding of string
length 27 are used.

• Parameter settings: The population size,
crossover rate, and mutation rate are 300, 0.8
and 0.3, respectively. For each pair of fitness
function and encoding, 20 repetitive round-
s of calculation are performed, with each
round running for 200 generations.

• Performance index: The search spaces of the
functions are too large for an exhaustive al-
gorithm to find their global optima in limited
time. In this regard, the encodings are com-
pared according to the fittest solutions that
the corresponding GAs find, and the fitter the
best solutions a GA finds, the better the corre-
sponding encoding performs. To each of the
fitness functions, the three encodings are ap-
plied in turn, and in view of the probabilis-
tic development of the solutions, the fitness
values of the best solutions found in the 20
repetitive rounds are averaged, and the aver-
ages are compared.

• Simulation Results: The average fitness of
the best solutions and the differences of the
average fitness between each pair of the GAs
with the three encodings are shown in Fig. 3,
Fig. 4 and Fig. 5, respectively.

As shown in Fig. 3, for all of the 200 samples
in which the frequencies of the basis functions
are integral powers of 2, the average fitness of
the best solutions found by the base-2 encoded
GA are point-to-point larger than those of the
best solutions found by the other GAs. Similar
situations occur when the frequencies are inte-
gral powers of 3 and 5, respectively. As shown
in Fig. 4 and Fig. 5, for each of the situations,

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

71

Selection of Coding Base

the base-3 encoded GA and the base-5 encoded
one, respectively, play the best. The simulation
results indirectly confirm the analyses in Sec-
tion 3.

Performance of GAs with different mutation
rates is also compared, with results given in Fig.
6. As shown in Fig. 6, the performance of the
GAs with the higher mutation rates, 0.1 and 0.3,
is significantly better than that of the GAs with
the low mutation rate of 0.01.

5. Conclusion

In this paper, it was suggested to encode the
feasible solutions of ∑nB

i=1 (ai sin(2πmi−1x+ϕi))+ c
with a base-m encoding so as to obtain a bet-
ter supply of order-1 BBs. Both the analysis
and simulation results showed that, for such
fitness functions, a base-m encoding outper-
formed the encodings with the other cardinali-
ties on building-block supply and optimization
performance.

0 50 100 150 200

20

30

40

50
Average fitness of the best solutions

A
ve

ra
ge

 f
itn

es
s

Under base-2 encoding
Under base-3 encoding
Under base-5 encoding

0 50 100 150 200

-2

0

2

4

6

8

Difference of the average fitness of the best so lutions

D
iff

er
en

ce
 o

f A
ve

ra
ge

 fi
tn

es
s

Between base-2 and base-3 encodings
Between base-2 and base-5 encodings
Between base-3 and base-5 encodings

Fig. 4. The average fitness of the best solutions found
in the 20 rounds of calculation for the fitness functions
∑32

i=1 (ai sin(2π3i−1x+ϕi)+ |ai|) under the three encod-
ings.The GA with the base-3 encoding significantly
outperform the other GAs.

0 50 100 150 200
10

20

30

40

Average fitness of the best solutions

A
ve

ra
ge

 f
itn

es
s

Under base-2 encoding
Under base-3 encoding
Under base-5 encoding

0 50 100 150 200

-2

-1

0

1

2

3
Difference of the average fitness of the best so lutions

D
iff

er
en

ce
 o

f A
ve

ra
ge

 fi
tn

es
s

Between base-2 and base-3 encodings
Between base-2 and base-5 encodings
Between base-3 and base-5 encodings

Fig. 5. The average fitness of the best solutions found
in the 20 rounds of calculation for the fitness functions
∑22

i=1 (ai sin(2π5i−1x+ϕi)+ |ai|) under the three encod-
ings. The GA with the base-5 encoding significantly
outperform the other GAs.

The main point of this paper was about the
selection of encoding cardinality, and not on ge-
netic operators. The simulation has been imple-
mented with pure GAs. Yet, it does not ham-
per one from establishing more skillful memet-
ics algorithms 22,23 to facilitate encoding eval-
uation, since a skill applies to an encoding of a
certain cardinality can usually be used for those
of other cardinalities.

It should be noted that the idea that GAs
search by schema sampling has received many
different criticisms, and to evaluate an encod-
ing according to building-block supply is not
always reliable. That we based the analyses in
this paper upon schema theory stemmed from
the following considerations: There is not a per-
fect explanation for the mechanisms of genetic
search yet; the schema theorem itself is correc-
t 24, and the improved versions of the theorem
25,26,27 have helped to describe genetic behav-
iors more exactly. Under such circumstances, it
seems advisable to seek supports from schema
theory, which can guide the design of an algo-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

72

H.Q. Mo et al.

rithm, even if it is imperfect. And we will seek
for better criteria and their rationales in future
study.

0 20 40 60 80 100
-2

0

2

4

6
The frequencies of the basis functions are integral powers of 2

D
iff

er
en

ce
 o

f A
ve

ra
ge

 fi
tn

es
s

Between Pm=0.01 and Pm=0.1
Between Pm=0.01 and Pm=0.3
Between Pm=0.1 and Pm=0.3

0 20 40 60 80 100

-2

0

2

4

The frequencies of the basis functions are integral powers of 3

D
iff

er
en

ce
 o

f A
ve

ra
ge

 fi
tn

es
s

Between Pm=0.01 and Pm=0.1
Between Pm=0.01 and Pm=0.3
Between Pm=0.1 and Pm=0.3

0 20 40 60 80 100

-1

0

1

2

3
The frequencies of the basis functions are integral powers of 5

D
iff

er
en

ce
 o

f A
ve

ra
ge

 fi
tn

es
s

Between Pm=0.01 and Pm=0.1
Between Pm=0.01 and Pm=0.3
Between Pm=0.1 and Pm=0.3

Fig. 6. The differences of the average fitness of
the best solutions found in the 20 rounds of cal-
culation between each pair of the GAs with dif-
ferent mutation rates Pm for the fitness functions
∑nB

i=1 (ai sin(2πmi−1x+ϕi)+ |ai|), where the settings are
(m = 2, nB = 51) under the base-2 encoding, (m =
3, nB = 32) under the base-3 encoding, and (m =
5, nB = 22) under the base-5 encoding, respectively.
For each setting of (m, nB), there is no difference be-
tween the performance with Pm = 0.1 and that with
Pm = 0.3 in the statistical sense, but they both signifi-
cantly better than that with Pm = 0.01.

Acknowledgments

This work was supported by ”National Natural
Science Foundation of China, 61105062”, ”Fun-
damental Research Funds for the Central Uni-
versities, SCUT, 2012ZZ0106”, and in part by
”National Natural Science Foundation of Chi-
na, 61273249”, ”Natural Science Foundation of

Guangdong Province, China, S2012010009886”,
and ”the Key Laboratory of Autonomous Sys-
tems and Network Control, Ministry of Educa-
tion”.

References

1. J. Antonisse, “A new interpretation of schema
notation that overturns the binary encoding con-
straint,”Proceedings of the 3rd International Confer-
ence on Genetic Algorithms, 1, 86–91(1989).

2. K. Chellapilla and D. B. Fogel, “Fitness distri-
butions in evolutionary computation: Motiva-
tion and examples in the continuous domain,”
BioSystems, 54(1), 15–29 (1999).

3. D. B. Fogel and A. Ghozeil, “A note on repre-
sentations and variation operators,” IEEE Trans-
actions on Evolutionary Computation, 1(2), 159–161
(1997).

4. J. Rowe, D. Whitley, L. Barbulescu, and J.-P.
Watson, “Properties of gray and binary repre-
sentations,” Evolutionary Computation, 12(1),47–
76(2004).

5. D. Whitley, “A free lunch proof for gray versus
binary encodings,” Proceedings of the Genetic and
Evolutionary Computation Conference, 1, 726–733
(1999).

6. U. K. Chakraborty and C. Z. Janikow, “An
analysis of gray versus binary encoding in ge-
netic search,” Information Sciences, 156(3), 253–
269(2003).

7. D. H. Wolpert and W. G. Macready, “No free
lunch theorems for optimization,” IEEE Trans-
actions on Evolutionary Computation, 1(1), 67–
82(1997).

8. D. E. Goldberg, Genetic Algorithms in Search, Op-
timization and Machine Learning, Addison-Wesley,
1989.

9. F. Rothlauf, Representations for genetic and evolu-
tionary algorithms, Springer, 2006.

10. J. H. Holland, Adaptation in natural and artificial
systems: An introductory analysis with application-
s to biology, control, and artificial intelligence, U
Michigan Press, 1975.

11. D. E. Goldberg, K. Sastry, and T. Latoza, “ On
the supply of building blocks,” Proc. of the 2001
Genetic and Evolutionary Computation Conference,
336–342 (2001).

12. D. E. Goldberg, Design of Innovation: Lessons from
and for Competent Genetic Algorithms, Kluwer A-
cademic Publishers, 2002.

13. D. E. Goldberg, K. Sastry, and Y. Ohsawa, “Dis-
covering deep building blocks for competent ge-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

73

Selection of Coding Base

netic algorithms using chance discovery via key-
graphs,” Chance Discovery, 276–301(2003).

14. Y.P. Chen and M.H. Lim, Linkage in Evolution-
ary Computation (Studies in Computational Intelli-
gence), Springer Verlag, 2009.

15. J. Horn and D. E. Goldberg, “Genetic algorith-
m difficulty and the modality of fitness land-
scapes,” Foundations of Genetic Algorithms, 3, 243–
269 (1995).

16. K. Deb and D. E. Goldberg, “Sufficient condition-
s for deceptive and easy binary functions,” An-
nals of Mathematics and Artificial Intelligence, 10(4),
385C408(1994).

17. D. E. Goldberg, “Construction of high-order de-
ceptive functions using low-order walsh coeffi-
cients,” Annals of Mathematics and Artificial Intelli-
gence, 5(1), 35–48 (1992).

18. S. Forrest and M. Mitchell, “What makes a
problem hard for a genetic algorithm? some
anomalous results and their explanation,” Ma-
chine Learning, 13(2-3), 285–319(1993).

19. D. Whitley, R. B. Heckendorn, and S. Steven-
s, “Hyperplane ranking, nonlinearity and the
simple genetic algorithm,” Information Sciences,
156(3), 123–145(2003).

20. K. Sastry, U.-M. OReilly, D. E. Goldberg, and D.
Hill, “Building block supply in genetic program-
ming,” Genetic Programming Theory and Practice,
9, 137–154(2003).

21. —, “Construction of fitness functions for which
order-1 building blocks can be obtained at mul-
tiple loci,” 2013 Asia-Pacific Computational Intelli-
gence and Information Technology Conference, 149–
155(2013).

22. N. Krasnogor and J. Smith, “A tutorial for com-
petent memetic algorithms: Model, taxonomy,
and design issues,” IEEE Transactions on Evolu-
tionary Computation, 9(5),474–488(2005).

23. X.S. Chen, Y.S. Ong, M.H. Lim, and K. C. Tan,
“A multi-facet survey on memetic computation,”
IEEE Transactions on Evolutionary Computation,
15(5), 591–607(2011).

24. D. Whitley, “An overview of evolutionary algo-
rithms: Practical issues and common pitfalls,”
Information and software technology, 43(14), 817–
831(2001).

25. C. Stephens and H. Waelbroeck, “Schemata evo-
lution and building blocks,” Evolutionary compu-
tation, 7(2), 109–124(1999).

26. C. R. Stephens and R. Poli, “Coarse-grained
dynamics for generalized recombination,” IEEE
Transactions on Evolutionary Computation, 11(4),
541–557(2007).

27. L. Altenberg, “The schema theorem and prices
theorem,” Foundations of Genetic Algorithms, 3,
23–49(1995).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

74

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

